
WSL
Programmer's Reference Manual

Dr Martin Ward Feb. 2002;
revised T. Hardcastle Nov. 2003 and Stefan Natelberg Jul. 2008

Table of Contents
Section 1 : Introduction to FermaT/WSL..3
1.0: Preface..3
1.1: About WSL...3
1.2: Getting started...3
1.3: Contents of the distribution...4
Section 2: The Wide Spectrum Language...5
2.0: Note on case sensitivity..5
2.1: Data types...5
2.2: Variables...6
2.3: Arrays and hash tables..8
2.4: Expressions...9
2.5: The general structure of a WSL program...11
2.6: Simple imperative commands...12
2.7: Conditional structures and loops...13
2.8: Functions and procedures...14
2.9: Action systems..15
2.10: Utility functions..16
2.11: File handling...17
2.12: Error reports and debugging...18
Section 3: Meta-WSL..19
3.0: MW_BFUNCT, MW_FUNCT and MW_PROC...19
3.1: The internal representation of a WSL program..20
3.2: How meta-WSL looks at a WSL program..20
3.3: General types..23
3.4: Specific types and components of WSL commands...23
3.5: Making WSL items: @Make and FILL ... ENDFILL..26
3.6: Meta-WSL functions on program items...28
3.7: The current program and the current item..29
3.8: Editing the current item..30
3.9: FOREACH, ATEACH and IFMATCH..31
3.10: The maths simplifier...32
3.11: Metrics on program items...33
Section 4: Transformations..34
4.0: Writing, installing and testing transformations...34
4.1: The transformations included with FermaT..35

2

Section 1 : Introduction to FermaT/WSL

1.0: Preface
It is assumed in this document that the reader is already familiar with programming in imperative languages.
Anyone who is not so familiar has probably downloaded this file by accident.

1.1: About WSL
WSL is a Wide Spectrum Language. That is to say that the language contains a wide selection of possible
structures, so as to make it as easy as possible to translate a program or algorithm into WSL.

The "Spectrum" in "Wide Spectrum Language" refers to the range of operations, from "low level" things
such as assignments, IF statements and gotos to high level operations such as specification statements.
The highest level WSL operations are not implemented in FermaT (because they cannot be implemented
on *any* machine!)

Besides having all the usual programming structures and commands, WSL also contains commands,
functions and routines for operating on programs written in WSL. This gives the user a tool for analyzing,
rewriting, and simplifying programs, and indeed for writing programs which analyze and rewrite programs.
This is the main purpose of WSL.

Further resources and information on FeramT/WSL can be found at

 http://www.cse.dmu.ac.uk/~mward/fermat.html

or

 http://www.dur.ac.uk/martin.ward/fermat.html

When FermaT is revised, the new release is made available from these sites.

1.2: Getting started
To unpack the tar file and build FermaT:

 gunzip < fermat3.tar.gz | tar xf -
 cd fermat3
 source DOIT.csh (OR "source DOIT.sh" depending on your shell)
 make test

If for any reason the tests should fail, please report this to Martin.Ward@durham.ac.uk

Once the program has installed, various commands should be available from the command line interface of
your OS, which will compile, run, or rewrite programs.

Each time you log in you will need to source the DOIT.csh or DOIT.sh script unless you include these, or
similar commands in your .profile or .cshrc file.

3

http://www.cse.dmu.ac.uk/~mward/fermat.html
http://www.dur.ac.uk/martin.ward/fermat.html

The program files on which the program operates are simply plain text files containg program listings, with
the suffix .wsl

wsl FILENAME.wsl

will compile and run the file FILENAME.

wsl FILENAME

will have the same effect --- by default, the compiler expects that your file will have a .wsl suffix.

dotrans FILENAME1.wsl FILENAME2.wsl Transformation

will apply a transformation called Transformation to the file FILENAME1.wsl and will put the result in the file
FILENAME2.wsl. A list of the available transformations and their uses will appear later in this manual.

wsl2scm FILENAME1.wsl FILENAME2.scm

will translate a WSL file called FILENAME1.wsl into a Scheme program called FILENAME2.scm

1.3: Contents of the distribution
Here is a brief description of the files in this distribution:

File(s) Description

DOIT.csh Source one of these files into your shell to
DOIT.sh set up your environment variables and path to use FermaT.
LICENSE A copy of the GNU General Public License
Makefile Type "make test" to build and test FermaT
bin/* Perl scripts to build and run FermaT
config/* Perl modules and other support files
example/* Example files: how to write a transformation
doc/* Documentation
scm/* Source code for the Scheme interpreter
scm/hobbit.scm Source code for the Hobbit Scheme to C compiler
slib/* The Scheme library distributed with Scheme
src/* The WSL and Scheme source code for FermaT
src/adt/* WSL source for the Abstract Data Type (Meta-WSL extensions to WSL for

manipulating syntax trees)
src/scheme/* Scheme support files (not implemented in WSL)
src/trans/* WSL source for all the transformations
src/wslib/* WSL source for the WSL parser, pretty printer, wsl2scheme, and other support
functions
test/* WSL test files (testing features of WSL)
test/trans/* Transformation test files

4

Section 2: The Wide Spectrum Language

2.0: Note on case sensitivity

The WSL compiler is case sensitive. The reserved words of WSL are all in CAPITALS, and must be typed in
capitals or the compiler won't recognize them.

Similarly, a variable, function or procedure called heLLo would be treated as distinct from a variable, function
or procedure called hEllo.

2.1: Data types
WSL supports the following data types:

Integers: 3, 17, 0, -5, etc.
Boolean values: TRUE or FALSE
Lists: < 3, 2, 1, 2 > , < > , < "hello", 5, <1, 2 ,3> > , etc.
Sets: <1 , 2 , 3> , < > , <2 , 3 , 5 , 7 , 11 , 13> , etc.
Strings: "hello world", "goodbye cruel world", "", "spong", etc.

WSL also allows the creation of arrays and hash tables. (See section 2.3 below).

WSL also has a type Name for use in meta-WSL --- this is the type of variable and procedure names when
they appear in a WSL program. We shall discuss this in the section on meta-WSL.

You will note from the above that there is no requirement that list elements be of the same type.

A set in WSL is internally represented as an ordered list: operations on a set are carried out under the
assumption that it is indeed ordered.

This representation should not be relied upon. A list with more than one element should *always* be
converted to a set via the @Make_Set function before any set operations are applied. For example:

x := @Make_Set(<1, 2, 3, 4>);
y := x \/ <5>;
IF n IN x THEN ... FI;
FOR elt IN x DO ... OD;

The IN operator can be applied to a set or a list. FOR elt IN list DO ... OD can be used with bot lists and
sets. The order in which the elements of a set are processed is implementation dependent and should not
be relied upon.]]

WSL supplies some Boolean-valued functions which allow you to find the type of a piece of data:

NUMBER?(x) : true if x is a number
STRING?(x) : true if x is a string
SEQUENCE?(x) : true if x is a list or a set

5

2.2: Variables

Variables may be declared using the VAR ... ENDVAR structure.

VAR < v1 := a1, v2 := a2, ... >:
piece of code using the variables v1, v2, ...
ENDVAR

Note that the block of code must not end with a semicolon (see section 2.5).

The values a1, a2 etc. may be constants or expressions.

Example:

VAR < x:=4, y:="foo"++"bar" >:
PRINT(x); PRINT(y)
ENDVAR

will print:

4
foobar

Variables may be of any type listed in the section above WITH THE EXCEPTION of the Boolean type. Only
logical expressions can be of Boolean type. WSL does NOT support Boolean-valued variables. Obviously,
anything you might wish to do with Boolean-valued variables can be just as well simulated using another
data type.

The VAR ... ENDVAR structures can of course be nested to any depth:

VAR < v1 := a1, v2 := a2, ... >:
piece of code using the variables v1, v2, ... ;

 VAR < w1 := b1, w2 := b2, ... >:
piece of code using the variables w1, w2,... and also v1, v2, ...
ENDVAR;
more code using the variables v1, v2, ...
ENDVAR

If a variable name is reused within a nested VAR...ENDVAR, a new local variable will be created for use
within that block of code. An example will make my meaning clearer:

VAR <a:=1>:
PRINT(a);
VAR <a:=2>:
PRINT(a)
ENDVAR;
PRINT(a)
ENDVAR

will print:

1
2
1

6

To carry over the value from the outer VAR ... ENDVAR to the inner, we can assign the new variable to have
the value of the old, as follows:

VAR <a:="foo">:
PRINT(a);
VAR <a:=a>:
PRINT(a)
ENDVAR
ENDVAR

and this program will print:

foo
foo

If we do this, then the changes made to the new local variable within the inner VAR...ENDVAR do not affect
the value of the original variable in the outer VAR...ENDVAR. For example:

VAR <a:="foo">:
PRINT(a);
VAR <a:=a>:
PRINT(a);
a:="spong";
PRINT(a)
ENDVAR;
PRINT(a)
ENDVAR

will print:

foo
foo
spong
foo

Note that in WSL a data type is a property of a value not of a variable. Any variable can hold a value of any
type. Hence a program such as the following:

VAR <a:="foo">:
PRINT(a);
a:=5;
PRINT(a)
ENDVAR

will compile and run without any problems.

WSL does not explicitly support constants, but you are of course welcome to introduce a variable and then
not change its value.

There are various "constants" supplied by WSL itself for your convenience. There is nothing to prevent you
from changing any of these, but you probably don't want to.

7

2.3: Arrays and hash tables
Arrays and lists are two implementations (in FermaT) of WSL sequences. The same notation can be used
to access and update arrays and lists, with some differences in efficiency, and some implementation
restrictions.

The function ARRAY(size, init) returns an array where size is the size of the array and init is the value to
which each element of the array should be initialized. For example:

Ar:=ARRAY(10,5)

sets the variable Ar to be an array with ten elements each of which is initialized to 5. The elements of the
array are then Ar[1], Ar[2], ... Ar[10]. Note that the counting begins at Ar[1] --- by contrast with the language
C, there is no element Ar[0].

Since the variable to which we assign the array must in any case be declared somewhere, such
initializations may as well be done at the time when the variable is declared:

VAR <Ar:=ARRAY(10,5)>:
code involving the array Ar

ENDVAR

Lists and arrays use the same operators, but are implemented differently. An assignment to a whole array
will copy a pointer to the array rather than the whole array and therefore create an alias. Technically, this is
an error in the implementation (the WSL specification does not allow aliasing) which might be fixed in a
future version, so it should not be relied upon.

There is absolutely no requirement that the elements of an array should be of the same type.

In a similar manner, a hash table may be created by setting a variable equal to HASH_TABLE. For example:

T:=HASH_TABLE;
T.("foo"):=5;
T.(67):="spong";
PRINT(T.("foo"));
PRINT(T.(67))

will print:

5
spong

Note again that there is no restriction on the types either of the indices or the elements of the hash table.

Acessing arrays and lists will have different time efficiency. Arrays have efficient random access and update.
Lists have efficient access/update for the first few elements, but accessing elements or updating elements
near the end of a long list is inefficient. Lists can be copied efficiently without breaking WSL semantics, e.g.:

x := <1, 2, 3, 4>;
y := x;

The array assignment is efficient, but at the expense of breaking WSL semantics.

8

2.4: Expressions
WSL contains a number of built-in operators and functions. You will notice that Boolean-valued functions all
have names ending in a question-mark.

Integer operators : +, -. *, /, **, MOD, DIV

The operators are listed here in ascending order of precedence. Round brackets () may be used as usual to
group expressions.

x**y means "x to the power y".

Integer functions : ABS(), FRAC(), INT(), MAX(), MIN(), SGN()

ABS(x) : returns the absolute value of x
FRAC(x) : returns the fractional part of a number, and so returns 0 when applied to any

 integer.
INT(x) : returns the integer part of x --- which is not spectacularly useful at present either.
MAX(x1,x2,...xn) : returns the maximum of x1 ... xn
MIN(x1,x2,...xn) : returns the maximum of x1 ... xn
SGN(x) : returns -1 if x < 0, 0 if x = 0 and +1 if x > 0.

Operators Z * Z -> < TRUE, FALSE > : < , > , = , <> , <= , >=

These are the usual relations on the integers.

It is easy to confuse the symbols < and > with the brackets used to specify lists and sets. The empty set
must be written as < > and not as <>, or the parser will translate it as "is not equal to". Similarly, if we write
the Boolean-valued expression <x,y>=<1,2>, the parser will interpret >= as "is greater than or equal to" with
undesirable results. The expression would be correctly written as <x,y> = <1,2>.

Functions Z -> < TRUE , FALSE > : ODD?(n), EVEN?(n)

A pair of Boolean valued functions which return, respectively, the truth value of "n is odd" and "n is even".

Logical operators and functions: OR , AND , NOT , IMPLIES?

These are the standard logical operators. OR , AND and NOT are listed in increasing order of precedence.
IMPLIES? is implemented as an ordinary function with two parameters, i.e. IMPLIES?(a, b), and so the
question of precedence does not arise. IMPLIES?(a, b) is equivalent to NOT a OR b.

List/array operators and functions

a1 ++ a2 : returns the concatenation of two lists.
L[n] : returns the nth element of an array or list
L[n..m] : returns the sublist of elements n to m inclusive.
L[n..] : returns the sublist from element n to the end of the list.
BUTLAST(L) : returns the list L with the last element removed.
HEAD(L) : returns the first element of the list L[1]
IN : returns TRUE if x is an element of y.
LENGTH(L) : returns the length of the list.
LAST(L) : returns the last element of the list L[LENGTH(L)]
MAP("f",L) : returns the list obtained by applying the function f to each element of L
REDUCE("o",L) : returns the value of the expression obtained by inserting the operator o between

 each pair of elements of the list (which must be non-empty). For example:
 REDUCE("+", list) returns the sum of the values in the list.

REVERSE(L) : returns the list reversed
TAIL(L) : returns the list with the first element removed.

9

It is much more efficient to access and update the head of a list, rather than its tail. So if you want a list to
be in the order in which elements are added to it, it's quickest to append the elements to the front and then
reverse the result:

list := < >;
FOR i := 1 TO 10000 STEP 1 DO
list := <i> ++ list OD;
list := REVERSE(list)

will be much faster than:

list := < >;
FOR i := 1 TO 10000 STEP 1 DO
list := list ++ <i> OD

since the latter has to rebuild the whole list for each iteration, so it is O(n^2) in processing time. (On my
machine the first takes about 30ms while the second takes nearly 11 seconds.)

Note the following identities :

L = <HEAD(L)> ++ TAIL(L)
L = BUTLAST(L) ++ <LAST(L)>
L[1] = HEAD(L)
L[2..] = TAIL(L)
LAST(L) = L[LENGTH(L)]
BUTLAST(L) = L[1..LENGTH(L)-1]

Set operators and functions

 \ , \/ , /\

These are the operators of set difference, union, and intersection respectively. As usual, they are listed in
increasing order of precedence. We also have:

EMPTY?(s) : Returns true if and only if s = < >
IN : e IN s is true if and only if e is an element of s
NOTIN : e NOTIN s means the same as NOT(e IN s)
POWERSET(s) : returns the set of all subsets of s
SUBSET?(s1, s2) : true if the set s1 is a subset of s2

Functions and operators on strings

Note that WSL differs from many other languages in that the first character of each string is character 0, the
second is character 1, etc.

s1 ++ s2 : returns the concatenation of two strings.
INDEX(s1, s2) : returns the position of the first occurrence of string s1 in s2, or -1 if the string s1 is

 not present in s2.
INDEX(s1, s2, n) : returns the position of the first occurrence of s1 in s2 starting at character n in s2,

 or -1 if there is no such occurrence. For example INDEX("456",
 "1234567812345678", 3) returns 3, while INDEX("456", "1234567812345678", 4)
 returns 11.

SLENGTH(str) : returns the length of string str.
SUBSTR(str,i,n) : returns n characters of str starting with the character at position i; e.g.

 SUBSTR("abcdef", 2, 3) returns "cde".
SUBSTR(str, I) : returns the characters from i to the end of the string.

Note that the same operator is used for string concatenation as for list concatenation.

10

Because string constants are enclosed in quotes "like this", it isn't possible to directly refer to strings with
quotation marks in them. A command of the form

PRINT("Have you read "Watership Down"?")

would obviously bewilder the interpreter. For this reason WSL provides a variable called Quote which
contains a " character. Hence we can write:

PRINT("Have you read "++Quote++"Watership Down"++Quote++"?")

which will print

Have you read "Watership Down"?

as required.

2.5: The general structure of a WSL program
A WSL program consists of a sequence of imperative commands
concatenated by semicolons. Note that the semicolons are considered to
be statement separators and not statement terminators: hence, a block
of code should not end with a semicolon.

As has been remarked, a program should be saved as a plain text file
(conventionally with a .wsl suffix) in order for the compiler to
interpret it. The last line of the program should not terminate with a
semicolon (for the reason given above) but MUST terminate with a
newline character.

Example:

PRINT("This is an example program");
PRINT("Hello world")

Besides imperative commands, the user may insert comments into the program using the COMMENT:"..."
command or the abbreviation C:"..."

Example:

COMMENT:"This is a comment. It has no effect on the program";
C:"This is another comment."

Note that a comment is in other respects like a command in the program: it must be divided off from
commands before and after it by semicolons just like a regular command. It is not an interpolation in the
same way that for example curly brackets are in Pascal. Note also that you cannot have a quotes character "
inside a comment, as this will give the compiler the impression that this is the end of the comment.

WSL also of course supports control structures --- conditionals and loop commands. Simple imperative
commands will be discussed in section 2.6 and conditional structures and loop structures will be discussed
in section 2.7 below.

In the next few sections that follow, and indeed in the review of built-in operators above, we are only looking
at the reserved words of WSL --- those which are written in CAPITALS. Besides these commands and
functions, WSL also has a large array of utility functions which are written in WSL and included as part of the
distribution. These include procedures for allowing the user to input text, functions for generating random
numbers, various list and string handling functions, and file-handling procedures. File-handling procedures
will be dealt with in section 2.11; the other utility functions will be reviewed in
section 2.10.

11

2.6: Simple imperative commands
Assignment of a value to a variable --- as you may by now have gathered --- is performed by a command of
the form

variable_name:=expression

This sets the variable called variable_name to the value of the expression --- if the expression is in a correct
form and can be evaluated.

<x1 := e1, x2 := e2>

is a parallel assignment which evaluates all of the expressions and then assigns to all of the variables. For
example:

<x := y, y := x>

will exchange the values of the two variables.

Besides the assignment commands, the other simple commands in WSL are as follows:

{condition} Checks whether the Boolean-valued condition is TRUE. If it's false, the program
aborts.

ABORT Aborts the program.
C:"..." A comment in the program
COMMENT:"..." A longer way of inserting a comment
ERROR(e1,e2,..) Raises an error and prints the strings e1, e2, ...
POP(v,list) Short for v:=HEAD(list); list:=TAIL(list)
PRINFLUSH(e1,e2,..) Prints (the values of) the expressions e1,e2,...
PRINT(e1,e2,..) Prints (the values of) the expressions e1, e2, ... on separate lines.
PUSH(list,i) Short for list:=<i>++list
SKIP Does nothing at all. Useful in program rewriting.

There are a few subtleties to PRINT and PRINFLUSH.

Just as we cannot set a variable equal to a Boolean value, so we cannot PRINT a Boolean value (as we
would be giving PRINT a Boolean parameter). A command of the form PRINT(x=5) is syntactically invalid:

In short, the only use for such conditions is in conditional statements and loops, which we deal with in the
section on control structures below.

A list or set will not PRINT out in the quite the same format as it appears in the program. For example:

PRINT(<1,"foo",<3,2,1>>)

will give the output

(1 foo (3 2 1))

As "" is the empty string, we can obtain a newline by PRINT("")

Recall that a " character is stored in the variable Quote.

12

2.7: Conditional structures and loops

WSL has the usual conditional structures

IF condition THEN block of code FI

and

IF condition THEN one block of code ELSE another block of code FI

which are interpreted as you'd expect.

Example:

IF 2+2=4 THEN PRINT("Maths still works"); PRINT("What a relief") FI;
IF 2+2=5 THEN PRINT("Reality has crashed") ELSE PRINT("Whew") FI

There is also a keyword ELSIF which can be used to make certain structures neater: things of the form

IF condition THEN do this ELSE IF another condition THEN do that FI FI

can be better written as

IF condition THEN do this ELSIF another condition THEN do that FI

By repeated use of ELSIF we have the equivalent in WSL of a case statement:

IF condition 1 THEN do thing number 1
ELSIF condition 2 THEN perform action do thing number 2
. . .
ELSIF condition n THEN perform action n
ELSE do whatever it is we do when none of conditions 1 to n is met FI

WSL also implements Dijkstra's guarded conditional:

D_IF condition 1 -> statement 1
[] condition 2 -> statement 2
...
[] condition n -> statement n FI

If some of the conditions 1...n is true, then this will pick one of these --- call it condition k --- and will perform
action k. If none of the conditions are met, then it will abort the program.

WSL also implements standard loop structures.

DO some code OD

is a loop which can only be terminated by executing a statement of the form EXIT(n) where n is an integer
(not a variable or expression). EXIT(n) will terminate n enclosing loops. An EXIT(n) within fewer than n loops
can only appear inside a IF, D_IF or DO...OD statements (so, for example, you cannot terminate a WHILE
loop via an EXIT statement).

WHILE condition DO ... OD

is the usual while loop.

FOR var := start TO end STEP step DO ... OD

is the usual FOR loop. Note that var is a local variable whose scope extends to the body of the loop only.
Note also that specifying the step size is mandatory.

13

FOR var IN list DO ... OD

is an iteration over the elements of a list, array or set. The list can be an expression, e.g.

FOR comp IN some_list ++ some_other_list DO ... OD

The expression will be evaluated once before the loop starts. For example:

x := <1>;
FOR y IN x DO
x := x ++ <y> OD

will terminate after the first iteration.

Note that the blocks of code inside DO ... OD , IF ... FI etc. do not and should not end with a semicolon, just
as the program itself should not end with a semicolon. The semicolon is not the terminator of a line, but a
concatenation operator.

WSL also implements Dijksta's guarded loop:

D_DO condition 1 -> statement 1
[] condition 2 -> statement 2
 ...
[] condition n -> statement n OD

This is equivalent to:

WHILE cond1 OR cond2 OR ... OR condn DO
D_IF condition 1 -> statement 1
[] condition 2 -> statement 2
...
[] condition n -> statement n FI OD

2.8: Functions and procedures
Local procedures and functions can be defined in a WHERE clause:

BEGIN
...statements...
WHERE

PROC foo(x VAR y) ==
... statements ... END
FUNCT bar1(x, y) ==
VAR < v1 := e1, v2 := e2 >:
(expression) END

 FUNCT bar2(x, y) == :
(expression) END
BFUNCT spong?(x, y) ==
VAR < v1 := e1, v2 := e2 >:
(condition) END

END

A WHERE clause is just an ordinary statement which may be part of another statement or WHERE clause.
The body of the WHERE clause consists of a statement sequence which may contain calls to any of the
procedures or functions. Any procedure or function body may also contain calls to the other procedures or
functions.

In the example procedure foo given above, the Parameter x of foo is a value parameter, while y is a value-
result parameter (the final value of y is copied back into the corresponding actual parameter in the call). The

14

general format of a procedure call is: name(e1, e2, ... VAR v1, v2, ...) and the VAR keyword is mandatory,
even if there are no value parameters.

A FUNCT cannot be Boolean valued. A BFUNCT is always Boolean valued (the B stands for Boolean). The
name of a BFUNCT must terminate in a question-mark.

The body of a FUNCT or BFUNCT consists of:

1. An optional VAR < ... > which assigns to local variables. The local variables may be referenced in
the final expression or condition. Note that there is no ENDVAR since this is not a VAR clause. (A
PROC may introduce local variables by using a VAR ... ENDVAR clause).

2. A mandatory ":"
3. An expression or condition enclosed in parentheses.
4. The keyword END or a full stop.

A "minimal" function which contains no local variables may be defined like this:

FUNCT fib(n) == :
(IF n <= 1 THEN 1 ELSE fib(n-1) + fib(n-2) FI) END

You will notice that a FUNCT or BFUNCT has no main body of code (by contrast with other imperative
languages). The FermaT transformation system assumes that all functions (and Boolean functions) are
"pure" functions which always terminate and which depend only on their parameters.

WSL also allows reference to external procedures, functions and Boolean functions --- "external" in that they
are implemented in Scheme rather than WSL.

!XP procedure_name(parameter1,parameter2,...)

calls an "external procedure", i.e. a procedure written in Scheme. Similarly,

!XF function_name(parameter1,parameter2,...)

calls an external function, and

!XC condition_name?(parameter1,parameter2,...)

calls an external condition.

2.9: Action systems
A piece of code of the form

ACTIONS start:
start == some block of code END
name1 == another block of code END
name2 == yet another block of code END
...
...
ENDACTIONS

is an "action system", a collection of mutually recursive parameterless procedures. The system starts by
executing the body of the start action (the action named on the ACTIONS line). Within the action system a
statement of the form CALL action_name will call the action named action_name.

The special action call CALL Z will terminate the whole action system immediately. Z should therefore not be
used as the name of an action.

15

An action system in which execution of every action body leads to a CALL is called a "regular action system"
and is equivalent to a collection of labels and GOTOs since no action call can ever return. Note: action calls
cannot appear within loop structures.

The purpose of action systems is to facilitate the translation of machine-code and spaghetti code into nice
well-structured WSL. It is unlikely that you will ever want to use an action system for programming.

2.10: Utility functions
Here is a list of the utility functions which are built into WSL. As they are written in WSL as MW_FUNCTs ,
MW_BFUNCTs and MW_PROCs (see section 3.0 below) the name of each function necessarily begins with
@. By convention, each word in the name of a utility function begins with a capital letter, and the words in
the name are divided by the underline character _

@Ends_With?(str, extn): checks if the string ends with the given extn.

@Join(str, list): join a list of strings using str as the "glue".

@Join_Removing_Dups(str, list): like @Join but removes duplicates in the list first.

@List_To_String(list): converts a list to a string with spaces as separators (roughly like PRINT does).

@Make_Name(string) : convert a string to a "name"

@Make_Set(list) : converts a list into a set.

@N_String(name) : convert a "name" to a string

@Prefix?(list1,list2) : checks if list1 is a prefix of list2.

@Random(n): returns a random integer between 1 and n inclusive.

@Read_Line(port_v) : a function returning a string read from the input port assigned to the variable port_v.

@Seed_Random_State(string) : initializes the random number generator in a way that depends on the string
parameter. If @Seed_Random_State is not called, then the random number generator will be initialised
randomly provided the device file /dev/urandom is available on your system.

@Sort_List(list): sorts a list of names or lists of names alphabetically.

@Sort_Merge(list1,list2) : merges two sorted lists.

@Split(str): splits a string into a list of words.

@Starts_With?(str, prefix): checks if the string starts with the given prefix

@String: converts a string, number or character to a string.

@String_To_Num : converts a string to a numerical value.

@Word_In_String?(word, string): checks if the given word is in the string (treated as a space-separated list
of words).

@WP(P, R) : takes a WSL program P and condition R and returns a WSL condition equivalent to the
weakest precondition of P on R. Note that @WP is not defined for programs which contain loops of
recursion since the weakest precondition for such programs is an infinitary formula!

16

2.11: File handling
In the following, "filename" can be a string or an expression returning a string, and "port" is a variable.

@Close_Input_Port(port) : closes a port returned by @Open_Input_File

@Close_Output_Port(port) : closes a port returned by @Open_Output_File

@Delete_File(filename) : deletes the given file.

@EOF?(obj) : a Boolean function which tests if the given object (returned by @Read_Char, @Peek_Char or
@Read_Line) is an end of file object

@EOL?(obj) : a Boolean function which tests if the given object (returned by @Read_Char or @Peek_Char)
is an end of line character.

@File_Exists?(filename) : a Boolean function which tests if the file already exists.

@Open_Input_File(filename) : a function which returns a "port" which you can use to read from the file. The
filename is a string.

@Open_Output_File(filename) : a function which returns a port which you can use to write to the file.

@Peek_Char(port) : a function returning the next character which is about to be read from the port.

@Read_Char(port) : a function which returns a character read from the specified port. Returns an end of file
object on end of file.

@Read_Line(port) : a function which reads a line from the file, returns either a string or an end of file object.
The string doesn't include the newline character at the end (ie a blank line will return the empty string).

@Write(str, port) : writes the string str without adding a newline.

@Write_Line(str, port) : writes the line in str to the file, adding a newline character.

The variables Standard_Input_Port and Standard_Output_Port can be used to access standard input and
standard output.

Simple file writing:

For the following functions, the "current output" starts out as standard output.

@Write_To(filename) : opens the given file and start writing to it. If the filename is the empty string, start
 writing to standard output.

@WS(str) : writes the string str to the current output
@WL(str) : writes the string str plus a newline to the current output.
@WN(num) : writes the number num to the current output
@End_Write() : closes the currently open file (if any) and redirects output back to the previous
output.

@Write_To()...@End_Write operations can be nested to any depth.

17

2.12: Error reports and debugging
When you run a program

wsl program.wsl

then the WSL program is compiled into a temporary Scheme program, which is then run. A number of errors
are not detected during the translation process and therefore are first brought to the user's attention as
errors in the Scheme program which is created from the WSL code.

For example, if you make a mistake along these lines:

VAR <spong:=0>:
PRINT(sping)

ENDVAR

then you will get an error message from Scheme, which will report the line number IN THE TEMPORARY
SCHEME PROGRAM of the failure point, and the main body of which will look like this:

;ERROR: unbound variable: /sping
; in expression: (display /sping)
; in scope:
; /spong

As in this case, such error reports often allow you quickly to find the corresponding error in your WSL
program --- especially if you have a basic knowledge of Scheme.

If the program is long and complicated, it may be useful in such cases to produce a non-temporary version
of the scheme program

wsl2scm program.wsl program.scm

so as to be able to figure out which line of the Scheme program represents which line of your WSL program.

Also, the translator from WSL to Scheme can itself detect a number of syntax errors. For example, let us
suppose I make a mistake of this kind:

VAR <x:=0> :
WHILE x<=10 DO

IF EVEN?(x) THEN
PRINFLUSH(x," is even; ");
x:=x+1 OD FI

ENDVAR

then I should get an error message like this:

!!!! Line 4: Syntax Error: Duff guard syntax or un-terminated IF: 29
!!!! Line 6: Syntax Error: Missing `ENDVAR': 26
!!!! Line 7: Syntax Error: Extra characters at end of program: 999

 Better explanation: The parser reads up to the "OD" and detects that the IF has not been closed. So it
inserts a closing FI before the OD. It then reads the FI and recognises that the VAR has not been closed, so
it inserts a closing ENDVAR. At this point it is expecting either a semicolon followed by another statement, or
the end of the file. So the remaining "FI ENDVAR" tokens are listed as extra characters at the end of the
program. So ENDVAR is not actually missing from the program above: but the syntax has already gotten so
tangled that the parser doesn't know where to find it. The first syntax error, on the other hand, is telling me
roughly what I need to know.

It is still possible that problems may lurk in WSL itself. If you should find such a bug in WSL, please notify its
creator, including in your e-mail an example program exhibiting the bug.

18

Section 3: Meta-WSL

3.0: MW_BFUNCT, MW_FUNCT and MW_PROC
The "MW" procedures and functions are used for implementing the FermaT transformation system. These
are statements which define procedures and functions and Boolean functions, and the functions are allowed
to have side-effects (but the transformation system will still assume that there are none: so it is up to the
programmer to ensure that any side-effects are "benign").

MW_PROC @foo(x VAR y) ==
...statements... END;

MW_FUNCT @bar(x, y) ==
VAR < v1 := e1, v2 := e2 >:

...statements...;
(expression) END;

MW_BFUNCT @spong?(x, y) ==
VAR < v1 := e1, v2 := e2 >:

...statements...;
(condition) END;

...more statements and declarations...

Note that the semicolon after each END is not part of the declaration, it is the normal statement separator.

Each MW_PROC, MW_FUNCT or MW_BFUNCT name must start with an "@" and each MW_BFUNCT
name must end with a "?".

The body of an MW_FUNCT or MW_BFUNCT consists of:

1. An optional VAR < ... > which assigns to local variables. The local variables may be referenced in
the final expression or condition. Note that there is no ENDVAR since this is not a VAR clause. (An
MW_PROC may introduce local variables by using a VAR ... ENDVAR clause).

2. A mandatory ":"
3. A NON-EMPTY statement sequence
4. A mandatory ";"
5. An expression or condition enclosed in parentheses
6. The keyword END (or a full stop).

A "minimal" function which contains no local variables may be defined like this:

MW_FUNCT @fib(n) == : SKIP;
(IF n <= 1 THEN 1 ELSE @fib(n-1) + @fib(n-2) FI) END

The SKIP statement is there to satisfy (3) above.

19

3.1: The internal representation of a WSL program
A WSL program is represented within WSL as a list of lists of lists ... of lists of elements. Note that this is one
way of implementing a tree structure.

To be precise, a program item consists of a list of which the first element is a database table, which is used
internally by FermaT; the second item is an integer giving the type of the item, and the successive elements
of which (if there are any) are items which are components of the item. Note the recursive nature of this
definition.

For example, the program

PRINT("Hello world");
PRINT("Goodbye world")

is, in my present implementation, internally represented by a list which would PRINT as

 (() 17 (() 156 (() 10 (() 206 . Hello world))) (() 156 (() 10 (()
 206 . Goodbye world))))

There is no guarantee whatsoever that the integers used to represent various features (e.g. 156 for PRINT)
will be stable from version to version. Hence this representation should not be relied upon: WSL items
should be created and manipulated via the appropriate MetaWSL functions and procedures.

3.2: How meta-WSL looks at a WSL program
WSL supplies a suite of constants, functions and procedures which are especially designed to handle lists
which represent WSL programs. This collection of procedures and functions is known as meta-WSL.

The functions and procedures of meta-WSL are all WRITTEN IN WSL. (The source code is open to your
inspection). They are all implemented as MW_PROCs, MW_FUNCTs or MW_BFUNCTs. Hence by
necessity they all begin with the symbol @, and by convention the first letter in each word of the name of the
procedure or function begins with a capital letter, the words being separated by the underline character. The
conditional functions of course have names ending in ? , as this is compulsory.

To meta-WSL, an item consists of a specific type and either

1. a value (a constant integer, string, list etc.)
2. a list (possibly empty) of items which are components of I. Note the recursive nature of this

definition.

For example, the little program above has specific type T_Statements (meaning that it is a list of statements)
and two components, of which the first is returned by the function

@Make(T_Print, < >, <@Make(T_Expressions, < >, <@Make(T_String,
"Hello World", < >)>)>)

In my present implementation, T_Print is just a constant containing 156, T_Expressions is a constant
containing 10, and T_String is a constant containing 206, and indeed for this specific implementation, the
function

@Make(156, < >, <@Make(10, < >, <@Make(206,"Hello World", < >)>)>)

would return just the same result. Let us emphasise again : the meanings we attach to the integers may
change from implementation to implementation. However, the meanings of the constant names will remain
stable. The command PRINT may come to be represented by the integer 1001, in which case the constant
T_Print will be defined as 1001, so that the *meaning* of T_Print remains stable between implementations.

20

Let's look at the program given by

@Make(T_Print, < >, <@Make(T_Expressions, < >, <@Make(T_String, “Hello World", < >)>)>)

in more detail. It has specific type T_Print (meaning that it is a PRINT statement) and one component. This
component is an item of specific type T_Expressions, which means that it is a LIST of expressions ---
remember that the syntax of the PRINT command is PRINT(e1,e2,...,en). This list, in this case, consists of
just one item of specific type T_String (meaning that it is a string) and a value --- the string "Hello world".

Such constants USUALLY but not invariably have the name that you would expect: the specific type of an
D_IF statement is T_D_If; the specific type of an ABORT statement is T_Abort; the specific type of x<>10 is
T_Not_Equal. However, there are exceptions: the specific type of an IF statement is T_Cond. T_If is the
specific type of a conditional expression.

A complete list of such constants may be found by inspecting the file fermat3/src/adt/WSL-init.wsl

The components of an item invariably occur in exactly the order that you would expect: the same order as
they appear when you program WSL. So, for example a FOR loop will have five components: the name of
the loop variable, the start value, the end value, the step size and the list of statements inside the DO...OD
clause, and they will appear in that order.

I have remarked that the program essentially has the structure of a tree, and we might conveniently
represent our program visually as such.

This is simple enough. Now let's look at

IF x = 0 THEN y := 1 ELSE y := 2 FI

This has the following structure:

21

Observe carefully the way that IF...THEN...ELSE...FI is represented. In the same way, the program

IF x = 0 THEN y:=1 FI

would be represented like this:

The purpose of all this is to give conditional statements a nice uniform structure: every conditional statement
has as its components a list of items of type T_Guarded.

Observe also that (the numbers identifying) variables have the type T_Variable when we inspect their value
but T_Var_Lvalue when they stand on the left hand side of an assignment.

As a final example, let's look at a loop structure.

FOR x:=1 TO 10 STEP 1 DO SKIP OD

The syntax tree looks like this:

Note that as x is to be assigned it has type T_Var_Lvalue.

Meta-WSL provides you with functions which allow you to find whether a specific type takes a value or a list
of components.

@Has_Value_Type?(st): true if the specific type st is one which has a value
@Has_Comps_Type?(st): true if the specific type st is one which may have components

22

3.3: General types
We may also consider the "general type" of an item --- as distinct
from its specific type.

A statement has general type T_Statement.
An expression has general type T_Expression.
A condition has general type T_Condition.
A constant (integers, strings, etc) has general type T_Value.
The definition of a FUNCT, PROC etc has general type T_Definition.
A list of statements has general type T_Statements
A list of expressions has general type T_Expression
A list of conditions has general type T_Conditions

These last three may also be considered as specific types. That is to
say, a list of statements has general type T_Statements and also
specific type T_Statements.

3.4: Specific types and components of WSL commands
Here is a summary of the specific types and the components of
structures found in WSL as described in section 2 above.

The types given for the components may be specific or general types,
depending on the structure of the item.

When describing the types of an items components below, I shall use
the notation 2*T_Type, 3*T_Type etc to mean a list of 2, 3 etc
components of type T_Type. I shall write n*T_Type to indicate that any
number of components of type T_Type are acceptable.

Note that T_Expressions has components n*T_Expression; T_Statements
has components n*T_Statement, etc. (This rule breaks down only on
T_Lvalues, which is more likely to have as components a list of items
of type T_Var_Lvalue).

Item Specific type Components of type
Integer T_Number (takes a value)

List T_Sequence (takes a value)

Set T_Set (takes a value)

String T_String (takes a value)

+ T_Plus n*T_Expression

- T_Minus n*T_Expression

* T_Times n*T_Expression

/ T_Divide n*T_Expression

** T_Exponent 2*T_Expression

= T_Equal 2*T_Expression

< T_Less 2*T_Expression

> T_Greater 2*T_Expression

<= T_Less_Eq 2*T_Expression

23

Item Specific type Components of type
>= T_Greater_Eq 2*T_Expression

<> T_Not_Equal 2*T_Expression

++ T_Concat 2*T_Expression

list[n] T_Aref T_Expression, T_Expressions

list[n..m] T_Subseg 3*T_Expression

list[n..] T_Final_Seg 2*T_Expression

\ T_Set_Diff 2*T_Expression

\/ T_Union 2*T_Expression

/\ T_Intersection 2*T_Expression

{..} T_Assert T_Condition

bfunct_name(..) T_BFunct_Call T_Name, T_Expressions

function_name(..) T_Funct_Call T_Name, T_Expressions

procedure_name(..) T_Proc_Call T_Name, T_Expressions,
T_Lvalues

ABORT T_Abort

ABS T_Abs T_Expression

ACTIONS ... ENDACTIONS T_A_S T_Name,T_Actions

AND T_And 2*T_Condition

ARRAY T_Array 2*T_Expression

BEGIN ... WHERE ... END T_Where T_Statements, T_Definitions

BFUNCT T_BFunct T_Name, T_Lvalues, T_Assigns,
T_Condition

BUTLAST T_Butlast T_Expression

CALL T_Call (takes a value)

D_IF T_D_If n*T_Guarded

D_DO T_D_Do n*T_Guarded

DIV T_Div 2*T_Expression

DO T_Floop T_Statements

EMPTY? T_Empty T_Expression

ERROR T_Error T_Expressions

EVEN? T_Even T_Expression

FALSE T_False

FOR IN T_For_In T_Var_Lvalue, T_Expression,
T_Statements

FOR TO STEP T_For T_Var_Lvalue, 3*T_Expression,
T_Statements

FRAC T_Frac T_Expression

FUNCT T_Funct T_Name, T_Lvalues, T_Assigns,
T_Expression

HASH_TABLE T_Hash_Table

HEAD T_Head T_Expression

24

Item Specific type Components of type
IF THEN T_Cond 2*T_Guarded

IF THEN ELSE T_Cond 2*T_Guarded

IF THEN ELSIF ... T_Cond n*T_Guarded

IMPLIES? T_Implies 2*T_Condition

IN T_In 2*T_Expression

INDEX T_Index 2*Expression

INT T_Int T_Expression

LAST T_Last T_Expression

LENGTH T_Length T_Expression

MAP T_Map T_Name, T_Variable

MAX T_Max n*T_Expression

MEMBER? T_Member 2*T_Expression

MIN T_Min n*T_Expression

MOD T_Mod 2*T_Expression

NOT T_Not T_Condition

NOTIN T_Not_In 2*T_Expression

NUMBER? T_Numberq T_Expression

ODD? T_Odd T_Expression

OR T_Or 2*T_Condition

POP T_Pop 2*T_Var_Lvalue

POWERSET T_Powerset T_Expression

PRINFLUSH T_Prinflush T_Expressions

PRINT T_Print T_Expressions

PROC T_Proc T_Name, 2*T_Lvalues,
T_Statements

PUSH T_Push T_Var_Lvalue,T_Expression

REDUCE T_Reduce T_Name, T_Variable

REVERSE T_Reverse T_Expression

SEQUENCE? T_Sequenceq T_Expression

SGN T_Sgn T_Expression

SKIP T_Skip

SLENGTH T_Slength T_Expression

STRING? T_Stringq T_Expression

SUBSET? T_Subset T_Expression

SUBSTR T_Substr T_Expressions

TAIL T_Tail T_Expression

TRUE T_True

VAR T_Var T_Assigns, T_Statements

WHILE T_While T_Condition, T_Statements

!XC name(..) T_X_BFunct_Call T_Name,T_Expressions

!XF name(..) T_X_Funct_Call T_Name,T_Expressions

25

Item Specific type Components of type
!XP name(..) T_X_Proc_Call T_Name,T_Expressions

Also, note T_Guarded T_Condition, T_Statements

Note that the suffix q on T_Numberq, T_Setq and T_Stringq are there to distinguish them from T_Number,
T_Set and T_String. In all other cases a final question-mark in a keyword disappears entirely in the name of
its specific type: e.g. the type of EVEN? is T_Even.

3.5: Making WSL items: @Make and FILL ... ENDFILL
The function @Make(type, value, comps) constructs a new item with the given type, value and list of
components.

The function @Make_Name(string) converts a string to a "name" suitable to use as the value for various
item types. For example, a T_Variable needs a "name" as the value: @Make(T_Variable,
@Make_Name("foo"), < >).

For example:

@Make(T_Assignment, < >,
<@Make(T_Assign, < >, <@Make(T_Lvalue, @Make_Name("x"), < >),
@Make(T_Number, 3, < >)>)>)

returns the list representing the program

x:=3

Note that the "name" is actually an index into the array N_Symbol_Table. The hash table
N_String_To_Symbol returns the array index for each string in the symbol table); similarly @N_String(name)
converts a name value to a string (this is implemented via the N_String_To_Symbol lookup table).

To save you trouble, WSL provides a structure

FILL general_type item_schema ENDFILL

which returns a program item of the given general type as specified by the text program given as the second
parameter. For example:

FILL Statement PRINT("Hello world") ENDFILL

returns the list representing the program

PRINT("Hello world")

while

FILL Statements
PRINT("Hello world");
PRINT("Goodbye world")
ENDFILL

returns the list representing

PRINT("Hello world");
PRINT("Goodbye world")

26

as you would hope.

The item schema can refer to variables containing items. For example:

n := @Make(T_Number, 3, < >);

S := FILL Statement x := ~?n ENDFILL

will leave S containing a list representing the program

x:=3

Note that if we had accidentally written

n := @Make(T_Number, 3, < >);
S := FILL Statement x := n ENDFILL

then S would end up containing a list representing

x:=n

The patterns in a schema take the form: "~" plus "+", "*" or "?" plus a variable name. For example: ~?S1,
~+vars, ~*B2

"~?foo" means insert the single item contained in variable foo.
"~+foo" means splice in the non-empty list of items stored in foo.
"~*foo" means splice in the possibly-empty list of items stored in foo.

For example:

S1 := <FILL Statement x := x+1 ENDFILL, FILL Statement y := y+x ENDFILL>;
S2 := FILL Statements x :=1; ~*S1 ENDFILL

sets S2 to an item which is a statement sequence with three components, representing the program:

x := 1;
x := x+1;
y := y+x

Note that whereas

FILL Statement SKIP ENDFILL

is equivalent to

@Make(T_Skip, < >, < >)

the expression

FILL Statements SKIP ENDFILL

is equivalent to

@Make(T_Statements, < >, <@Make(T_Skip, < >, < >)>)

27

3.6: Meta-WSL functions on program items
I^n returns the nth component of item I. I^^list may be defined recursively: if list=< > then I^^list is I;
otherwise, I^^list is (I^HEAD(list))^^TAIL(list). Alternatively, if you choose: if list=< > then I^^list is I;
otherwise, I^^list is (I^BUTLAST(list))^LAST(list). To put it still another way, if list = <list[1],list[2],...,list[n]>,
then I^^list is the list[n]-th component of the list[n-1]-th component of ... of the list[2]-th component of the
list[1]-th component of I.

Besides these operators, we have the following functions on program items:

@Assd_Only(I) = @Assigned(I) \ @Used(I).

@Assd_To_Self(I): the set of variables which are only used in assignments to themselves.

@Assigned(I): the set of all variables assigned in I.

@Calls(I): returns a list of pairs the form <<name1, n1>, <name2, n2>,...> giving the actions called and
number of times each action is called.

@Call_Freq(n, I): returns how many times the action n is called in I.

@Clobbered(I): the set of variables which are always assigned in I.

@Cs(I): the components of I (only works on items which don't have a value) @Components(I): the
components of I (works on any item)

@Cs?(I), @Components?(I): true if I has components.

@Funct_Calls(I): Like @Calls, but counts FUNCT calls.

@Funct_Call_Freq(n, I) returns how many times the procedure n is called in item I.

@GT(I): the generic type of I.

@Proc_Calls(I): like @Calls, but counts PROC calls.

@Proc_Call_Freq(n, I): returns how many time procedure n is called by I.

@Redefined(I): the set of variables which are always redefined, and not in terms of themselves.

@Size(I):the number of components in I.

@ST(I): the specific type of I.

@UBA(I): the set of variables whose initial values are used before any new values are assigned to them in I.

@Used(I): the set of all variables referenced in I.

@Used_Only = @Used(I) \ @Assigned(I).

@V(I): the value of I (only works on items with a value)-

@Valid_Posn?(I, list): checks whether I^^list is defined-

@Value(I): the value of I or < > (works on any item)-

@Variables(I): the set of all variables in I-

@X_Funct_Calls(I): Like @Funct_Calls, but counts external function calls only.

@X_Funct_Call_Freq(n, I): Counts how often the external function n is called by I.

28

3.7: The current program and the current item
To assist in the transformation of programs, Meta-WSL has the concept of the current program and the
current program item within the current program. The current program is returned by the parameterless
function @Program and the current item is returned by the parameterless function @I.

Similarly the parent and grandparent of the current item are returned by @Parent and @GParent
respectively. If the current item doesn't have a parent (respectively, grandparent) in the current program,
then these functions will cause the program to crash: they must be used carefully.

To start with, the current program will be the empty list, and the current item will be the current program. You
can set the current program to be an item P like this:

@New_Program(P).

@Program will now return P, and as the program has just been reset, @I will also return P.

NOTE THAT as @Program and @I are parameterless functions and not variables, it is NOT POSSIBLE to
write @Program:=P to achieve the same effect.

The idea of the current item is that it is the particular bit of the current program we can most easily inspect
and edit. The position of the current item within the program is given by a list, as explained at the start of
section 3.5. Hence as the parameterless function @Posn returns the position of @I in @Program, we have
@I = @Program^^@Posn.

WSL provides the following procedures and functions for moving the position of the current item.

@Down moves to the first component of the current item.

@Down? checks whether the move @Down is possible.

@Down_Last moves to the last component of the current item.

@Down_To(n) moves to the nth component of the current item.

@Find_Type(type) moves "forwards" (down and right) to the first component with the given specific type.

@Goto(posn): move to the given position.

@Left moves to the left, i.e. to the component of the parent of the current item which precedes the current
item in the list of components of @Parent

@Left? checks whether the move @Left is possible.

@Posn: returns the current position.

@Posn_n: returns the current position in the current parent: so that @Posn_n = LAST(@Posn)

@Right moves to the right, i.e. to the component of the parent of the current item which succeeds the
current item in the list of components of @Parent.

@To(n) moves to the nth sibling of the current item.

@Up moves up, i.e. to the parent of the current item.

@Up? checks whether the move @Up is possible.

29

3.8: Editing the current item
Meta-WSL provides you with the following tools for editing the current item.

@Buffer: return the item or list of items in the buffer.

@Clever_Delete: delete the current item and "fix up" the syntax of the resulting program. This may change
@Posn, but the resulting position will be valid.

@Cut: delete the current item and store it in the cut buffer.

@Cut_Rest: delete any items to the right of the current item and store the list of deleted items in the cut
buffer.

@Delete: delete the current item (without worrying about the resulting syntax) This leaves @Posn
unchanged, even if the resulting position is invalid.

@Delete_Rest: delete any items to the right of the current item. This leaves @I and @Posn unchanged.

@Edit: start editing the current item. This will create a new program in which the current item is the whole
program. This has two uses:

1. Editing operations on the current item are more efficient since they only need to create a new item,
not a whole new program.

2. The result of the edit can be "undone" very efficiently.

@Edit_Parent: start editing the current item, but the parent of this item is the new current program. This is
like @Edit but preserves a little more "context".

@End_Edit: stop editing the current item and paste the result back into the original program.

@Paste_Over(I): replace the current item by I @Paste_Before(I): insert I as a new sibling to the left of the
current item. @Paste_After(I): insert I as a new sibling to the right of the current item.

@Rename(old, new): rename a variable throughout the current item.

@Splice_Over(L): replace the current item by the list of items in L

@Splice_Over(< >) is equivalent to @Delete.

@Splice_Before(L), @Splice_After(L): insert the list L of items to the left or right of the current item.
@Splice_Before(<I>) is equivalent to @Paste_Before(I).

@Trans(n, data): execute transformation n on the current item, passing the given data to the @XXX_Code()
procedure. Assumes that the transformation is valid (i.e. @Trans?(n) would be true if called). For further
information see section 4.0 below.

@Trans?(n): true if transformation n is valid on the current item. This works by calling the appropriate
@XXX_Test?() procedure and checking whether @Pass or @Fail was called. If the result is false (i.e.
@Fail was called) then @Fail_Message returns the message passed to @Fail.

@Undo_Edit: throw away the current program and go back to the original program.

Note that @Edit ... @End_Edit/@Undo_Edit operations can be nested to any depth.

30

3.9: FOREACH, ATEACH and IFMATCH
The FOREACH structure is very useful for program rewriting:

FOREACH type DO ...statements... OD

This iterates over every component of the current item, executing the body of the code on each component
of the right type. The iteration is done in a "bottom up" fashion: i.e. all subcomponents of a component will
be processed before the component itself.

The possible types are:

Statement
Statements
Terminal Statement
Terminal Statements
STS (short for Simple Terminal Statement)
NAS (short for Non-Action System)
Expression
Condition
Variable
Global Variable
Lvalue

FOREACH NAS DO ... OD

will not descend into an action system. This is used for unfolding action calls:

FOREACH NAS DO
IF @ST(@I) = T_Call AND @V(@I) = name

THEN @Splice_Over(body) FI OD

where we don't need to worry about a sub-action system which uses the same action name.

While executing the body of the loop, the currently selected item will appear to be the entire program (if the
item is a statement then it will appear as the only statement in an outer statement sequence). The body of
the loop can delete the statement or insert extra statements and the FOREACH loop will sort out the
resulting syntax.

For example, this loop:

FOREACH Statement DO
IF @ST(@I) = T_Skip THEN @Delete FI OD;

will transform:

WHILE x = 0 DO SKIP OD

into the assertion:

{x <> 0}

There is an alternative structure

ATEACH type DO ... statements ... OD

This is similar to a FOREACH loop but with three differences:

31

1. Components are processed in a top down fashion: i.e. an item is processed first and then the
components of the (processed) item are processed.

2. Executing a @Fail() in the loop body will cause the loop to terminate.
3. A new program is not created for the current item: this means that the "context" of the item is

available to the loop body, but care must be taken to return to the starting point if the loop body
contains move operations. Otherwise the loop might miss out some components or iterate
indefinitely. For example this WSL program will loop forever:

@New_Program(FILL Statements SKIP; SKIP ENDFILL);
ATEACH Statement DO

IF @Left? THEN @Left FI OD

The list of types is the same as for FOREACH.

The IFMATCH...ENDMATCH structure is also useful.

IFMATCH type schema
THEN ...statements...
ELSE ...statements... ENDMATCH

This statement does a pattern match on the current item. Pattern variables in the schema (e.g. ~?S) are
either matched against the current value of the corresponding variable (e.g. S for the pattern variable ~?S)
or, if the current value is < > then the corresponding variable is set to the matched item or list of items.

For example, here is a statement which will match against a simple IF statement and rewrite it by reversing
the two arms of the IF and inverting the test:

VAR < B := < >, S1 := < >, S2 := < > >:
IFMATCH Statement IF ~?B THEN ~?S1 ELSE ~?S2 FI

THEN B := @Not(B);
@Paste_Over(FILL Statement IF ~?B THEN ~?S2 ELSE ~?S1 FI ENDFILL)

ENDMATCH ENDVAR

Whereas the following program

VAR < B := < >, S1 := FILL Statements SKIP ENDFILL, S2 := < > >:
IFMATCH Statement IF ~?B THEN ~?S1 ELSE ~?S2 FI

THEN B := @Not(B);
@Paste_Over(FILL Statement IF ~?B THEN ~?S2 FI ENDFILL)

ENDMATCH ENDVAR

matches an IF statement of the form

IF condition THEN SKIP ELSE statements FI

Note the result of setting S1 := FILL Statements SKIP ENDFILL

3.10: The maths simplifier
Meta-WSL provides you with a number of functions which automatically simplify expressions and conditions:

@And(b1, b2): constructs the condition b1 AND b2 and then tries to simplify it.

@False?(cond): checks if the given item simplifies to FALSE.

@Implies?(b1, b2): checks if the condition "NOT b1 OR b2" simplifies to TRUE.

32

@Invert(x, v, exp): exp should contain exactly one occurrence of the name v. This returns an expression
exp2 which inverts the effect of exp such that "x := exp; x := exp2" is equivalent to SKIP. In other words,
replacing v in exp by exp2 will give an expression that simplifies to x.

For example:

@Invert(FILL Expression x ENDFILL, @Make_Name("v"),
FILL Expression 2*v - 1 ENDFILL)

will return the expression (x + 1)/2

@Invert(FILL Expression x ENDFILL, @Make_Name("v"),
FILL Expression 3 - 2*v ENDFILL)

will return the expression (3 - x)/2

@Not(b): constructs the condition NOT(b) and then tries to simplify it.

@Or(b1,b2): constructs the condition b1 OR b2 and then tries to simplify it.

@Simplify(item, budget): return a simplified item. The integer
"budget" indicates how much "effort" to exert in trying to simplify
the item.

@Simplify_Expn(expn), @Simplify_Cond(condition): call @Simplify with the default budget value of 10.

@True?(cond) checks if the given condition will simplify to TRUE.

3.11: Metrics on program items
A number of functions are provided which measure the complexity of a given WSL item according to a
variety of metrics.

@Stat_Types(I) : return set of statement types appearing in I
@Total_Size(I) : total number of nodes (items) in I
@Stat_Count(I) : total number of statement items
@Gen_Type_Count(type, I) : number of occurrences of given generic type
@Spec_Type_Count(type, I) : ditto for a specific type
@McCabe(I) : McCabe cyclometric complexity measure for I
@CFDF_Metric(I) : control-flow / data-flow metric for I
@BL_Metric(I) : branch-loop metric for I
@Struct_Metric(I) : a weighted sum over all the items in I

33

Section 4: Transformations

4.0: Writing, installing and testing transformations
The source files for the available transformations are in the folder fermat3/src/trans.

Each transformation is written to operate on the current item @I. Hence when we call the procedure

@Trans(n,data).

it applies transformation n on @I with the given data. Most transformations do not require any data as
parameters.

If you call the transformation from the command line interface:

dotrans FILENAME1.wsl FILENAME2.wsl Transformation

then before running the transformation, the current item will be set to the program in FILENAME1.wsl, so
that it will transform the whole program.

Each transformation consists of a program called trans_name.wsl (where Trans_Name is the name of the
transformation) containing

1. An MW_PROC without parameters called @Trans_Name_Test which raises errors if the item is not
suitable for the transformation.

2. An MW_PROC called @Trans_Name_Code and taking as its parameter the data to be passed to
the transformation (if any).

3. Any auxiliary functions or procedures useful to Trans_Name_Code or Trans_Name_Test.
4. A final SKIP --- which constitutes the main body of the programtransformation_name.wsl, thus

ensuring that technically it is indeed a well formed WSL program.

In addition, for each transformation there is an auxiliary file transformation_name_d.wsl which registers the
transformation with the system, and having the following form:

TR_Trans_Name := @New_TR_Number;
TRs_Name[TR_Trans_Name] := "Trans Name";
TRs_Proc_Name[TR_Trans_Name] := "Trans_Name";
TRs_Test[TR_Trans_Name]:=!XF funct(@Trans_Name_Test);
TRs_Code[TR_Trans_Name]:=!XF funct(@Trans_Name_Code);
TRs_Keywords[TR_Trans_Name] := < "key" , "words" >;
TRs_Help[TR_Trans_Name] := "This transformation does the following...";
TRs_Prompt[TR_Trans_Name] := "";
TRs_Data_Gen_Type[TR_Trans_Name] := ""

Hence if you have a procedure which rewrites program items, you can put it into the form given above, and
put it together with an appropriate _d.wsl file into fermat3/src/trans. Then rebuild FermaT. Your procedure is
now a FermaT transformation.

You will find various tests for the transformations in the folder fermat3/test/trans. Each test file has the name
trans_name_TEST.wsl where as before Trans_Name is the name of the transformation.

34

A test file consists of a set of @Test_Trans commands. The arguments of Test_Trans consist of:

1. A string identifying the test: "nth test of `Trans Name'".
2. The item to be tested.
3. The position in this item at which the transformation should be applied (given as a list --- see section

3.6).
4. The data for the transformation: if there is none, an empty set
5. Either the code which should result from the transformation (if the item to be transformed ought to

pass Trans_Name_Test in trans_name.wsl) OR the string "Fail" if it should be failed by
Trans_Name_Test.

These tests are applied every time FermaT is compiled.

4.1: The transformations included with FermaT
Here is a brief summary of the transformations included with this distribution:

Absorb_Left: This transformation will absorb into the selected statement the one that precedes it.

Absorb_Right: This transformation will absorb into the selected statement the one that follows it.

Actions_To_Procs: Search for actions which call one other action and make them into procs.

Actions_To_Where: converts an action system to a WHERE clause

Add_Assertion: This transformation will add an assertion after the current item, if some suitable
information can be ascertained.

Add_Left: This transformation will add the selected statement (or sequence of statements) into the
statement that precedes it without doing further simplification.

Align_Nested_Statements: This transformation takes a guarded clause whose first statement is a IF and
integrates it with the outer condition by absorbing the other guarded statements into the inner IF, and then
modifying its conditions appropriately. This is the converse of Partially Join Cases.

Collapse_Action_System: Collapse Action System will use simplifications and substitution to transform an
action system into a sequence of statements, possibly inside a DO loop.

Collapse_All_Action_Systems: Collapse All Action Systems will attempt to collapse the action systems
within a program which is a WHERE structure.

Combine_Wheres: will combine two nested WHERE structures into one structure which will contain the
definitions from each of the original WHERE structures. The selected WHERE structure will be merged into
an enclosing one if there is one or, failing that, into an enclosed WHERE structure.

Constant_Propagation: Constant Propagation finds assignments of constants to variables in the selected
item and propagates the values through the selected item (replacing variables in expressions by the
appropriate values)

D_Do_To_Floop: converts a D_DO loop to an equivalent DO ... OD loop.

Delete_All_Assertions: This transformation will delete all the `ASSERT' statements within the selected
code. If the resulting code is not syntactically correct, the program will be `tidied up' which may well result in
the re-instatement of `ASSERT' or `SKIP' statements.

Delete_All_Comments: This transformation will delete all the `COMMENT' statements within the selected
code. If the resulting code is not syntactically correct, the program will be `tidied up' which
may well result in the insertion of `SKIP' statements.

35

Delete_All_Redundant: Delete All Redundant searches for redundant statements and deletes all the ones
it finds. A statement is `Redundant' if it calls nothing external and the variables it modifies will all be
assigned again before their values are accessed.

Delete_All_Skips: This transformation will delete all the `SKIP' statements within the selected code. If the
resulting code is not syntactically correct, the program will be `tidied up' which may well result in the
reinstatement of `SKIP' statements.

Delete_Item: This transformation will delete a program item that is redundant or unreachable

Delete_Redundant_Statement: Delete Redundant Statement checks whether the current statement is
`Redundant' (because it calls nothing external and the variables it modifies will all be assigned again before
their values are accessed). If so, it deletes the Statement.

Delete_Unreachable_Code: Delete Unreachable Code will remove unreachable statements in the selected
object. It will also remove unreachable cases in an IF statement, e.g. those which follow a FALSE guard.

Delete_What_Follows: Delete What Follows will delete the code which follows the selected item if it can
never be executed.

Double_To_Single_Loop: Double to Single Loop will convert a double nested loop to a single loop, if this
can be done without significantly increasing the size of the program.

Else_If_To_Elsif: This transformation will replace an `Else' clause which contains an `If' statement with an
`Elsif' clause. The transformation can be selected with either the outer `If' statement, or the `Else' clause
selected.

Elsif_To_Else_If: This transformation will replace an `Elsif' clause in an `If' statement with an `Else' clause
which itself contains an `If' statement. The transformation can be selected with either the `If' statement, or
the `Elsif' clause selected.

Expand_And_Separate_All: Expand And Separate All will attempt to apply the transformation Expand and
Separate to the first statement in each action in an action system.

Expand_And_Separate: Expand And Separate will expand the selected IF statement to include all the
following statements, then separate all possible statements from the resulting IF. This is probably only
useful if the IF includes a CALL, EXIT etc. which is duplicated in the following statements, otherwise it will
probably achieve nothing.

Expand_Call: Expand_Call will replace a call to an action, procedure or function with the corresponding
definition.

Expand_Forward: Expand_Forward will copy the following statement into the end of each branch of the
selected IF or D_IF statement. It differs from Absorb Right in that the statement is only absorbed into the
`top level' of the selected IF.

Find_Entry_Points: Find possible entry points in the action system by looking for actions which are not
reachable from the starting action. Create a new starting action with a Dijkstra IF statement.

Find_Terminals: Find and mark the terminal statements in the selected statement. If a terminal statement
is a local procedure call, apply recursively to the procedure body.

Floop_To_While: Convert a suitable DO...OD loop to a While loop.

Force_Double_To_Single_Loop: Force Double - Single Loop will convert a double nested loop to a single
loop, regardless of any increase in program size which this causes.

Fully_Absorb_Right: This transformation will absorb into the selected statement all the statements that
follow it.

Fully_Expand_Forward: Apply Expand Forward as often as possible.

36

Global_To_Pars: converts global variables to parameters.

If_To_Case: turns IF statements into case statements.

Insert_Assertion: This transformation will add an assertion inside the current item, if some suitable
information can be ascertained.

Join_All_Cases: This transformation will join any guards in an `If' statement which contain the same
sequence of statements (thus reducing their number) by changing the conditions of all the guards as
appropriate.

Make_Basic_Block_Form: This transformation will put an action system into Basic Block Form.

Make_Proc: `Make Procedure' will make a procedure from the body of an action or from a list of
statements.

Merge_Calls_In_Action: Merge Calls in Action will attempt to merge calls which call the same action, in
the selected action.

Merge_Calls_In_System: Use absorption to reduce the number of calls in an action system.

Merge_Left: This transformation will merge the selected statement (or sequence of statements) into the
statement that precedes it.

Merge_Right: This transformation will merge the selected statement into the statement that precedes it.

Meta_Trans: Convert a FOREACH with a long sequence of IFMATCH commands to a more efficient form.

Move_Comment_Left: Moves the selected Comment Left.

Move_Comment_Right: Moves the selected Comment Right.

Move_Comments: Move Comments will move any comments which appear at the end of actions within an
action system and which follow a call. The comments will be moved in front of the call.

Move_To_Left: This transformation will move the selected item to the left so that it is exchanged with the
item that precedes it.

Move_To_Right: This transformation will move the selected item to the right so that it is exchanged with the
item that follows it.

Partially_Join_Cases: This transformation will join any guards in an IF statement which contain almost the
same sequence of statements (thus reducing their number) by introducing a nested IF and changing the
conditions of all the guards as appropriate.

Push_Pop: Replaces PUSH(stack, v); ... POP(stack, v) by VAR < v := v >: ... ENDVAR, and replaces
PUSH(stack, v1); ... POP(stack, v2) by VAR < tmp := v1 >: ... v2 := tmp ENDVAR

Recursion_To_Loop: will replace the body of a recursive action if possible by an equivalent loop structure.

Reduce_Loop: Automatically make the body of a DO...OD reducible (by introducing new procedures as #
necessary) and either remove the loop (if it is a dummy loop) or convert the loop to a WHILE loop (if the loop
is a proper sequence).

Reduce_Multiple_Loops: This transformation will reduce the number of multiply nested loops to a
minimum.

Remove_All_Redundant_Vars: Remove All Redundant Vars applies Remove Redundant Vars to every
VAR structure in the statement or sequence.

Remove_All_Redundant_Vars: takes out as many local variables as possible from the selected VAR
structure. If they can all be taken out, the VAR is replaced by its (possibly modified) body.

37

Remove_Comment: removes the selected item if it's a comment.

Remove_Dummy_Loop: Remove Dummy Loop will remove a DO loop which is redundant.

Remove_Elem_Actions: Remove Unnecessary Actions will remove any actions in the selected action
system which merely call another action or are not called at all. Calls to the deleted action will be replaced
by calls to the other action.

Rename_Defns: Ensures that no two procedures have the same name.

Rename_Local_Vars: Ensures that no two local variables have the same name.

Replace_Accs_With_Value: This transformation will apply Replace With Value to all variables with the
names a0, a1, a2 and a3 in the selected item.

Replace_With_Value: This transformation will replace a variable (in an expression) by its value ----
provided that that value can be uniquely determined at that point in the program.

Reverse_Order: This transformation will reverse the order of most two-component items; in particular
expressions, conditions and `If's which have two branches.

Separate_Both: will take code out to the right and the left of the selected structure.

Separate_Left: will take code out to the left of the selected structure. As much code as possible will be
taken out; if all the statements are taken out then the original containing structure will be removed.

Separate_Right: will take code out to the right of the selected structure.

Simplify_Action_System: Simplify action system will attempt to remove actions and calls from an action
system by successively applying simplifying transformations. As many of the actions as possible will be
eliminated without making the program significantly larger.

Simplify: This transformation will simplify any component as fully as possible.

Simplify_If: Simplify If will remove false cases from an IF statement, and any cases whose conditions imply
earlier conditions. Any repeated statements which can be taken outside the if will be, and the conditions will
be simplified if possible.

Simplify_Item: This transformation will simplify an item, but not recursively simplify the components inside
it. In particular, the transformation will simplify expressions, conditions and degenerate conditional, local
variable and loop statements.

Substitute_And_Delete: Substitute and Delete will replace all calls to an action, procedure or function with
the corresponding definition, and delete the definition

Substitute_And_Delete_List: Substitute and Delete List will replace all calls to any action within the
selected list of actions with the corresponding definition and delete the definition. Actions which are called
more than once will not be affected.

Substitute Once-Called Actions: replaces calls to actions which are called only once with their
definitions , and then deletes the respective definitions.

Take_Out_Left: This transformation will take the selected item out of the enclosing structure towards the
left.

Take_Out_Of_Loop: This transformation will take the selected item out of an appropriate enclosing loop
towards the right.

Take_Out_Right: This transformation will take the selected item out of the enclosing structure towards the
right.

Unfold_Proc_Call: Unfold the selected procedure call, replacing it with a copy of the procedure body.

38

Unfold_Proc_Calls: Unfold Proc Calls searches for procedures which are only called once, unfolds the call
and removes the procedure.

Use_Assertion: if the current item is an assertion, this tries to use the assertion to simplify the following
program.

While_To_Floop: changes a WHILE loop to an equivalent DO..OD loop.

39

	Section 1 : Introduction to FermaT/WSL
	1.0: Preface
	1.1: About WSL
	1.2: Getting started
	1.3: Contents of the distribution
	Section 2: The Wide Spectrum Language
	2.0: Note on case sensitivity
	2.1: Data types
	2.2: Variables
	2.3: Arrays and hash tables
	2.4: Expressions
	2.5: The general structure of a WSL program
	2.6: Simple imperative commands
	2.7: Conditional structures and loops
	2.8: Functions and procedures
	2.9: Action systems
	2.10: Utility functions
	2.11: File handling
	2.12: Error reports and debugging
	Section 3: Meta-WSL
	3.0: MW_BFUNCT, MW_FUNCT and MW_PROC
	3.1: The internal representation of a WSL program
	3.2: How meta-WSL looks at a WSL program
	3.3: General types
	3.4: Specific types and components of WSL commands
	3.5: Making WSL items: @Make and FILL ... ENDFILL
	3.6: Meta-WSL functions on program items
	3.7: The current program and the current item
	3.8: Editing the current item
	3.9: FOREACH, ATEACH and IFMATCH
	3.10: The maths simplifier
	3.11: Metrics on program items
	Section 4: Transformations
	4.0: Writing, installing and testing transformations
	4.1: The transformations included with FermaT

