
ConSUS: A Light-Weight Program Conditioner

Sebastian Danicic,
�

Mohammed Daoudi,
�

Chris Fox,
�

Mark Harman,
�

Rob M. Hierons,
�

John R. Howroyd,
�

Lahcen Ourabya,
�

and Martin Ward
�

�
Department of Computing, Goldsmiths College, University of London, New Cross,

London SE14 6NW, United Kingdom�
Department of Information Systems and Computing, Brunel University, Uxbridge,

Middlesex, UB8 3PH, United Kingdom.�
Department of Computer Science,University of Essex, Wivenhoe Park, Colchester,CO4

3SQ, United Kingdom�
Software Technology Research Lab, De Montfort University, The Gateway, Leicester

LE1 9BH, United Kingdom

Abstract

Program conditioning consists of identifying and removing a set of statements which
cannot be executed when a condition of interest holds at some point in a program. It has
been applied to problems in maintenance, testing, re–use and re–engineering. Program con-
ditioning relies upon both symbolic execution and reasoning about symbolic predicates.
Automation of the process therefore requires some form of automated theorem proving.
However, the use of a full-power ‘heavyweight’ theorem prover would impose unrealistic
performance constraints.

This paper reports on a lightweight approach to theorem proving using the FermaT sim-
plify decision procedure. This is used as a component to ConSUS, a program conditioning
system for the Wide Spectrum Language WSL. The paper describes the symbolic execution
algorithm used by ConSUS, which prunes as it conditions.

The paper also provides empirical evidence that conditioning produces a significant re-
duction in program size and, although exponential in the worst case, the conditioning sys-
tem has low degree polynomial behaviour in many cases, thereby making it scalable to unit
level applications of program conditioning.

Key words: program conditioning, slicing, program transformation, decision procedures

Preprint submitted to Elsevier Preprint 1 October 2003

1 Introduction

1.1 Related Work

Program slicing originated with Mark Weiser’s 1979 doctoral thesis [1]. Weiser’s
formulation of slicing [1,2] was a static one, captured by the slicing criterion, which
was a set of variables and a program point. This static paradigm for slicing, was
augmented by a dynamic paradigm in 1988, by Korel and Laski [3]. Dynamic slic-
ing represented the first move away from the static paradigm, indicating that there
may be other ways to formulate a slicing criterion.

The move from static to other paradigms was further developed in 1990, by Venkatesh,
who suggested a form of slicing to provide a bridge between static and dynamic
slicing, called quasi-static slicing. A quasi-static slice is constructed with respect
to a prefix of input, rather than a full input sequence. Quasi-static slicing was mo-
tivated by work on partial evaluation [4,5]. The concept of quasi-static slicing is
subsumed by conditioned slicing, which is the most general form of slicing, hith-
erto explored in the slicing literature.

Conditioned slicing, the subject of this paper, was introduced by Canfora et al. [6]
in 1994. Field, Ramalingam and Tip [7] introduced a similar technique called con-
strained slicing, which also uses conditions to specialize programs. In constrained
slicing, parts of the program which cannot contribute to the values of variables of
interest are identified as holes. Because it contains holes, a constrained slice is not
necessarily an executable subprogram, as a conditioned slice is.

Earlier, ideas and techniques very similar to program conditioning were introduced
by Coen-Porisini et al. in [14]. This work uses symbolic execution and theorem
proving to specialize Ada programs. In their approach, generalised software com-
ponents are specialised by restricting their domain of inputs thereby increasing the
efficiency of components for each particular instance of their use.

To implement conditioned slicing it is necessary to use some form of theorem prov-
ing technology. In early work on conditioned slicing, the theorem proving was per-
formed by hand [6,8,9], or by term-rewriting (in the case of constrained slicing [7]).
More recent work explored the use of Isabelle [10] and SVC [11]. This work using
Isabelle and SVC can be thought of as a proof-of-concept implementation, showing
how the theorem prover could be interchanged as a component of the overall con-
ditioning approach. The present work explores the use of the FermaT simplify
transformation, a decision procedure which is used to implement a form of highly
light-weight theorem proving.

The paper also introduces a new approach to symbolic execution which follows a
different form to previous symbolic executors [11–14] in its handling of loops and

2

which is more closely integrated with the theorem prover than previous approaches
[9–11]

�
, thereby exploiting the possibility of path–pruning to speed up the condi-

tioning process. Our approach is similar to .

Other authors have considered the way in which theorem provers may be used in
slicing [15] and the way in which forms of symbolic execution can assist related
analyses such as constrained test data generation [16–18].

In the VALSoft project [15], Krinke and Snelting show how the computation of
symbolic values can be used to refine data-flow relations between array assignments
and uses. Specifically, they consider the situation where an assignment to an array
like

A[i] := 4;

may not filter through to a reference to the same array

IF A[j] == K THEN ...

because it can be statically determined that i and j are guaranteed to be non-equal
at the IF statement. In order to determine this statically, Krinke and Snelting use
a simple form of symbolic execution and then a theorem prover to determine (stat-
ically) the properties of expression indices at array expressions. This work differs
from the work reported here because the application of theorem prover and sym-
bolic executor is used to refine the static data dependence relation used to construct
a static slice.

In the work of Offutt et al. [16–18], constraint solving techniques are used to sup-
port automated test data generation. This approach requires the backward propaga-
tion of constraints from a point of interest, 	 , within the program. This is a form
of backward symbolic execution. The constraints are (ideally) propagated back to
the starting state of the program, where they become constraints on the input space.
The solution of these input constraints is a valid test data vector to execute point	 in the desired way. Constraint solving can be achieved using a theorem prover
or a simple decision procedure, offering similar speed/precision trade–offs to those
considered in the present paper.

There are several surveys of slicing in the literature which cover dynamic slicing
and its applications [19], slicing techniques and algorithms [20], forms of slicing
and their applications [21–23] and empirical results on the application of slicing
[24].

�
It has some similarities to the approach taken by Coen-Porisini et al. in [14]. See Sec-

tion 3.

3

1.2 Program Conditioning

Program conditioning

[9,25], like program slicing [2], is a form of source code
manipulation that allows a software engineer to extract an executable sub-program
based upon a criterion of interest. The original formulation of slicing [2] was static.
That is, the slicing criterion contained no information about the input to the pro-
gram. A static end-slice of program � with respect a set of variables � , is a program�� that ‘behaves the same’ as � with respect to all the variables in � . Furthermore,�� is obtained from � by statement deletion. The way in which slicing produces an
executable sub-program, based upon some criterion of interest, gives rise to many
applications. For example, slicing has been applied to, among others, debugging
[26,27], testing [28–31], program comprehension [32–34], program decomposition
[35] and integration [36,37], software metrics [38–40] and re-engineering and re-
verse engineering [6,41–43].

Static slicing has now reached a mature stage of development, in which tools such
as the Wisconsin Program Slicing System, marketed through Grammatech [44] can
efficiently slice real-world C programs of the order of hundreds of thousands of
lines of code in reasonable time [45]. Conditioning is central in a variation of slicing
called conditioned slicing.

Conditioned slicing forms a theoretical bridge between the two extremes of static
and dynamic slicing. It augments the traditional slicing criterion with a condition
which captures a set of initial program states of interest. This additional condition
can be used to simplify the program before applying a traditional static slicing al-
gorithm. Such pre-simplification is called conditioning, and it is achieved by elim-
inating statements which do not contribute to the computation of the variables of
interest when the program is executed in an initial state which satisfies the condi-
tion.

Conditioning is defined independently of slicing: The result of conditioning � will
be a program, � , that behaves the same as � whenever the inputs satisfy a path
condition. A path condition is simply a boolean expression involving some or all
of the program variables. In the approach described in this paper conditions of
interest are expressed as Assert statements, i.e. boolean expressions, which may
be arbitrarily placed throughout the program. In this case, the resulting program,� , must agree with original, � , for all inputs where � satisfies these intermediate
Assert statements. Even where no Assert statements are added, the system will
attempt to remove infeasible paths (a useful step in itself).

The paper focuses upon the conditioning step in producing a conditioned slice. This
is because the slicing step is standard static slicing, for which a WSL static slicer

Henceforth, the phrase ‘program conditioning’ will be referred to simply as ‘condition-

ing’.

4

is used, which implements an extension [46] of Hausler’s [47] data-flow based ap-
proach to static slicing. The static slicing phase is not discussed further. It is the
conditioning phase that makes conditioned slices interesting, smaller than their
static counter-parts (in general) and, crucially, which increases the difficulty in-
volved in slice construction (because both symbolic execution and some form of
theorem proving is required).

As an example of the way in which conditioning identifies sub-programs, consider
the Taxation program in Figure 1. The figure contains a fragment � of a program
which encodes the UK tax regulations in the tax year April 1998 to April 1999.
Each person has a personal allowance which is an amount of un-taxed income.
The size of this personal allowance depends upon the status of the person, which
is encoded in the boolean variables blind, married and widowed, and the
integer variable age. For example, given the condition

age ��� 65 AND age � 75 AND income=36000 AND blind=0
AND married=1

conditioning the program identifies the statements which appear boxed in the figure.
This is useful because it allows the software engineer to isolate a sub-computation
concerned with the initial condition of interest. The sub-program extracted can be
compiled and executed as a separate code unit. It will be guaranteed to mimic the
behaviour of the original if the initial condition is met.

In the worst case, there is no doubt that the time to perform ‘best possible’ program
conditioning will be exponential in the size of program being conditioned. This
fact is inherent to the problem of conditioning. It can be seen that by considering a
sequence of simple IF-THEN-ELSE statements. The number of paths is clearly ��� .
If no pruning is possible, then the number of calls to the theorem prover will there-
fore be � � . The same, however, is also true of many aspects of theorem proving.
For example, the Boolean Satisfiability Problem, which the CHAFF [48] solver
at the heart of the CVC theorem prover [49] implements a solution to, is a well
known NP-Complete problem [50]. As in the case of theorem provers, this worst
case scenario does not imply that implementations of conditioners are infeasible.
The reasons for this are twofold:

(1) In conditioning, any resulting reduction in program size represents progress.
Even if the best possible results require exponential time, it is possible that
significant reductions will be performed more quickly.

(2) In many cases conditioning may be performed in low order polynomial or
even quadratic time as suggested by the empirical study in this paper. In such
cases conditioning may be applicable to unit level applications at least.

The language of implementation and the language which is sliced by the approach

� This is WSL version of the C program previously used in [10].

5

IF (age>=75) THEN personal := 5980
ELSE IF (age>=65)

THEN personal := 5720
ELSE personal := 4335
FI

FI;
IF (age>=65 AND income >16800)
THEN IF (4335 > personal-((income-16800) / 2))

THEN personal := 4335
ELSE personal := personal-((income-16800) / 2)
FI

FI;
IF (blind =1) THEN personal := personal + 1380 FI;
IF (married=1 AND age >=75)
THEN pc10 := 6692
ELSE IF (married=1 AND age >= 65)

THEN pc10 := 6625
ELSE IF (married=1 OR widow=1)

THEN pc10 := 3470
ELSE pc10 := 1500
FI

FI
FI;
IF (married=1 AND age >= 65 AND income > 16800)
THEN

IF (3470 > pc10-(income-16800) / 2)
THEN pc10 :=3470
ELSE pc10 := pc10-((income-16800) / 2)
FI

FI;
IF (income - personal <= 0)
THEN tax := 0
ELSE income := income - personal ;
FI;
IF (income <= pc10)
THEN tax := income * rate10
ELSE tax := pc10 * rate10 ;

income := income - pc10 ;
FI;
IF (income <= 28000)
THEN tax := tax + income * rate23
ELSE tax := tax + 28000 *rate23 ;

income := income - 28000 ;

tax := tax + income * rate40
FI

Conditioned program: boxed lines of code

Condition: age ��� 65 AND age � 75 AND income=36000
AND blind=0 AND married=1

Fig. 1. A Fragment of the Taxation Calculation Program in WSL

6

SKIP (do nothing)�
B � (Assert statement)

ABORT (abnormal termination)
� := � (assignment) �"!
 (sequence)

IF # THEN

FI (IF-THEN)

IF # THEN
 � ELSE
 FI (IF-THEN-ELSE)

IF # � THEN � ELSIF $%$%$ ELSIF # � THEN � FI (guarded command)

WHILE # DO

OD (repetition)

Fig. 2. WSL Syntax Used in this Paper

reported here is WSL, the Wide Spectrum Language, introduced by Ward [51] for
reverse engineering [52] through program transformation [53,54] (See Section 4.1
for a discussion on why WSL was chosen for this project.). WSL uses an Algol-
like syntax, but has additional facilities to make it wide-spectrum and to allow
transformations to be expressed within WSL itself. The subset of WSL syntax used
in this paper is described in Figure 2. WSL also has IF-THEN and IF-THEN-ELSE
statements. These are, however, just syntactic sugar for special cases of the guarded
command where the number of guards is one and two respectively. The Assert
statement # is equivalent to IF # THEN SKIP ELSE ABORT. It is these Assert
statements that are used to express the conditions of interest used in conditioning.

The contributions of this paper are:

& To define a new more efficient algorithm for program conditioning.& To report on an empirical studies which demonstrate that:
(a) On small ‘real programs’ ConSUS produces a considerable reduction in pro-

gram size when used with and without a program slicer.
(b) The ConSUS algorithm when used in conjunction with WSL’s FermaT Simplify

has the potential for ‘scaling up’ for use on large systems.

The rest of this paper is organised as follows:

Section 2 introduces and defines conditioning. In Section 3, the new conditioning
algorithm is defined in detail. Section 4 describes features of the implementation in
more detail. In particular, subsection 4.1 briefly introduces WSL, the language used
for implementing ConSUS. The FermaT Simplify transformation is described.
In Section 4.2 details of the implementation of ConSUS and are given. It is shown

7

'
x>y (;

IF x>y

THEN a:=1

ELSE a:=2
FI

Key

Conditioned program: boxed lines of code

Condition: x>y

Fig. 3. Conditioning a Simple Program

how the novel features of WSL facilitate many of the programming tasks. In Sec-
tion 5, our empirical studies are presented. Conclusions and directions for future
work are presented in Section 6.

2 Conditioning

Conditioning is the act of simplifying a program assuming that the states of the
program at certain chosen points in its execution satisfy certain properties. These
properties of interest are expressed by adding Assert statements to the program
being conditioned. Consider, for example the program in Figure 3. Here, program
simplification is being attempted assuming that it is executed in an initial state
where � �*) . In such states, the true path of the IF-THEN-ELSE statement will
always be taken and thus the program can be simplified to

�
x>y � ;a:=1. Notice

that the Assert statement is also included in the resulting conditioned program. This
is because an Assert statement is a valid WSL statement that aborts if its condition
is false. Observe that the original program’s behaviour and that of the conditioned
program are identical.

A software engineer may require a program to be conditioned with respect to in-
termediate states as well as with respect to initial states. The example in Figure 4
expresses the fact that the program is to be simplified assuming that all its inputs
are positive. The conditioner should be able to replace the final IF-THEN-ELSE
statement by PRINT("POSITIVE").

A conditioner is a program which tries to remove code that is unreachable given
the assertions. Therefore, a conditioner will try to remove unreachable code even if

8

i:=1 ;

total:=0 ;

WHILE i<n

DO

INPUT(x) ;'
x>0 (;
total:=total+x ;

i:=i+1

OD ;

IF total<0
THEN PRINT("NEGATIVE")

ELSE PRINT("POSITIVE")

FI;

Key

Conditioned program: boxed lines of code

Condition: x>0

Fig. 4. Conditioning with Intermediate Asserts

the program contains no Assert statements (see Figure 5 for an example of this).

Conditioners are required to reason about the validity of paths under certain con-
ditions. In order to perform such reasoning, it appears sensible to utilise existing
automated theorem provers rather than to develop new ones. Consider the program
in Figure 6. Here, conditioning of a simple IF statement assuming that the initial
state has the property that � �+)-,.)/�10 is being attempted. This is achieved
by adding the corresponding Assert statement at the beginning of the program.
The simplification achieved depends upon the conditioner’s ability to infer that� �2)3,4)5�60 �87 � �20 . If the conditioner knows that the operator, � ,
is transitive, then it will be able to infer that the second of these conditions is a
contradiction and therefore that the ELSE branch of the IF is infeasible. Only the
Assert statement,

�
x>y AND y>z � , and assignment a:=1 are required; the rest

of the code can be removed. The simplifying power of the conditioner depends on
two things:

(1) The precision of the symbolic executor which handles propagation of state
and path information.

(2) The precision of the underlying theorem prover which determines the truth of

9

IF (x>y AND y>z)

THEN

IF x>z

THEN a:=1

ELSE a:=2
FI

FI

Key

Original Program: Unboxed lines of code

Conditioned program: boxed lines of code

Condition: True

Fig. 5. Conditioning without Assert

'
x>y AND y>z (

IF x>z

THEN a:=1

ELSE a:=2
FI

Key

Original Program: Unboxed lines of code

Conditioned program: boxed lines of code

Condition: x>y AND y>z

Fig. 6. Conditioning a Simple Program

propositions about states and paths.

By using an approximation to a program’s semantics using a form of symbolic ex-
ecution, and by being willing to accept approximate results from the theorem prov-
ing itself, conditioning allows us to adopt reasoning that does not require the full
force of inductive proofs. The theorem proving used in programming conditioning
is lightweight when compared to the theorem proving required for a complete for-
mal analysis of a program. The problem can be further constrained to cases where

10

the theorem proving can be implemented by completed decision procedures. There
are limitations to the kinds of expressions for which complete decision procedures
exist, one typical limitation is a restriction to reasoning with sets of so-called ‘lin-
ear’ inequalities.

3 The ConSUS Conditioning Algorithm

3.1 An Overview of the Approach

When implementing an interpreter, a program is evaluated in a state, which maps
variables to their values [55]. In symbolic execution [13,56–58], the state, called
a symbolic store 9 , maps variables, not to values, but to symbolic expressions. The
expressions are the objects that can occur on the right hand sides of assignment
statements (in this paper, it is assumed that these are simply arithmetic expressions).

When a program is symbolically evaluated in an initial symbolic store it gives rise
to a set of possible final symbolic stores. The reason that a symbolic evaluator
returns a set of final stores is that our program may have more than one path, each of
which may define a different final symbolic store. Unlike the case of an interpreter,
the initial symbolic store does not give rise to a unique path through the program.
A symbolic evaluator can, thus, be thought of as a mapping, which given a program
and a symbolic store, returns a set of symbolic stores.

In order to implement a conditioner, a richer state space than that used in a symbolic
evaluator is required. For each final symbolic store it is necessary also to record
what properties must have been true of the initial symbolic store in order for the
program to take the path that resulted in this final symbolic store. This is called a
path condition and is simply a boolean expression involving constants and variables
of the program.

A conditioned state, : , is represented by a set of path condition, symbolic store
pairs. A pair ;=<?>A@CB being an element of a conditioned state implies that the symbolic
store @ can be reached if path condition < is true initially. If a conditioned state
contained the pair ; false >D@CB this is equivalent to stating that the symbolic store @ is
unreachable.

ConSUS can be thought of as a function which takes a program and an initial con-
ditioned state and returns a (simplified) program and a final conditioned state E . In

9 Usually called the symbolic state.E In [14], similar functions exec and simpl are defined. Fundamentally different, however,
is that exec and simpl return a single path condition, symbolic state pair, not a set of such
pairs as in our case.

11

practice, a conditioner will normally be applied to programs starting in the natu-
ral conditioned state. In the natural conditioned state, the corresponding symbolic
store, id maps all variables to their names, representing the fact that no assignments
have yet taken place. The corresponding path condition in the natural state is true,
representing the fact that no paths have yet been taken.

3.1.1 Statement Removal

The program simplification produced by ConSUS arises from the fact that a state-
ment from a program can be removed if all paths, starting from the initial condi-
tioned state of interest, leading to the statement are infeasible. The path condition
corresponding to a symbolic store is a condition which must be satisfied by the
initial store in order for the program to take the path that arrives at the correspond-
ing symbolic store. If, therefore, the final path condition, is equivalent to false (a
contradiction) this means that the store is not reachable. If, on the other hand , the
final path condition is equivalent to true (a tautology) then all paths starting from
the given initial store will lead to the corresponding symbolic store. The power of
a conditioner, in essence, depends on the ability to prove that the path conditions
encountered are tautologies or contradictions. This is why a conditioner needs to
work in conjunction with a theorem prover. Of course, to do this perfectly is not a
computable problem and therefore, in general, infeasible paths will be unnecessar-
ily considered.

Consider again, the program in Figure 6. This program potentially has two possible
final symbolic stores: FHGJI KML

FHGJI � L
The corresponding path conditions are:

� �N) ,)O�P0 , � �P0
� �P) ,)3�N0 , QR; � �S0�BUT

Combining these two gives the conditioned state with two elements:

; � �P) ,)3�P0 , � �P0V> FHGJI KML B
; � �W) ,)O�S0 , QX; � �P0YBU> FHGJI � L BUT

A sufficiently powerful theorem prover will be able to infer that the second of these
path conditions is a contradiction.

Often programs containing no Assert statements will be conditioned. This corre-
sponds to removing dead code. Consider the program in Figure 5. The programs in
Figures 6 and 5 do not quite have the same semantics. The first will abort in initial
stores not satisfying the initial path condition, while the second will do nothing

12

but terminate successfully in these stores. The dead code a:=2 is removed by the
conditioner in both cases.

As will be shown later, ConSUS is efficient in the sense that it attempts to prune
paths ‘on the fly’ as it symbolically executes. This is clearly an improvement over
other systems like ConSIT [10] which generates all paths and then prunes once at
the end. The way this is achieved, is that on encountering a guard, ConSUS interacts
with its theorem proving mechanism to check whether the negation of the symbolic
value of the guard is implied by the corresponding path condition in all values of
the current conditioned state. If this is the case, then the corresponding body is
unreachable and so can be removed without being processed.

Programs containing loops may have infinitely many paths. These cannot all be
considered and therefore a conservative and safe approach has to be adopted when
conditioning loops. For each WHILE loop, it is essential that in any implementa-
tion, only a finite number of distinct symbolic stores are generated. A meta sym-
bolic store is required in order to represent the infinite set of symbolic stores that
are not distinguished between. This meta symbolic store must be safe in the sense
that it must not add any untrue information about these symbolic stores. The sim-
plest possible approach is simply to ‘throw away’ any information about variables
which are affected by the body of a loop. This idea is very similar to state fold-
ing introduced in [14]. Their program specializer, returns a single symbolic store,
path condition pair, and so it is necessary to throw away values corresponding to
variables assigned different values on each branch of an IF THEN ELSE statement.

Using this approach, a WHILE loop will map each symbolic store, @ , to a set con-
sisting of two symbolic stores. One of the stores will be @ itself, (representing the
fact that that the guard of the loop may be initially false) and the other store (rep-
resenting the fact that the loop was executed at least once) will be represented by
a store, @ , which agrees with @ on all variables not affected by the body of the
loop. In @ , all variables that are affected by the body of the loop are skolemised,
representing that fact that we no longer have any information about their value.
By skolemising a variable, all previous information that we had about it is being
thrown away. As a result of skolemising a symbolic store, wrong information will
never be generated, just less precise information.

The approach taken by ConSUS (based on the approach of ConSIT [10]) is less
crude, however. In this case, as a result of symbolically evaluating a WHILE loop,
there arises the set consisting of @ as before, together with the set of stores which
are the result of symbolically executing the body of the loop in the skolemised store@Z . To see how these two approaches differ, consider the example given in Figure 7.
Using the naı̈ve approach, the two symbolic stores resulting from the WHILE loop
are

F � I)\[K]L and
F � I �_^ L . The first of these represents not executing the loop at

all and the second represents the fact that the loop body has been executed at least
once. The variable � has been skolemised to �Z^ , representing the fact that its value

13

x:=y+1;
WHILE x>y
DO

x:=y+2
OD;

IF x=y

THEN p:=7;

Key

Code removed using the naı̈ve approach: None

Code removed using the ConSIT approach: boxed lines of code

Fig. 7. Conditioning a WHILE loop using two Approaches

is no longer known. Evaluating the guard � �`) of the IF-THEN statement in this
skolemised store gives �a^ �/) . Since �_^ �b) is not a contradiction, the conditioner
using the naı̈ve approach would be forced to keep in the whole IF-THEN statement,
however powerful the theorem prover.

Using the less crude approach gives the two symbolic stores
F � I)R[KML and

F � I
)c[d� L . The fact that in the loop, � is assigned an expression that is unaffected by
the body of the loop has been taken into account. Since)e[K �d) and)e[f���/) are
both contradictions, the IF statement following the WHILE loop can be removed.

3.2 The ConSUS Algorithm in Detail

In this section, the algorithm used by ConSUS is explained in detail. For each WSL
syntactic category given in Figure 2, the result of applying ConSUS to it will be
defined. It will be assumed that the starting conditioned state in each case is given
by:

:N� �ghji � � ;k< h >D@ h Bl�
where the < h are boolean expressions representing path conditions and the @ h are
symbolic stores.

For each statement m , ConSUS returns two objects:

& state(: ,s): the resulting conditioned state when conditioning statement m in :
14

and& statement(: ,s): the resulting simplified statement when conditioning statement m
in : .

If statement m is to be removed by ConSUS, it returns SKIP. A final post-
processing phase will call FermaT’s Delete All Skips transformation to
remove all the SKIPs that have introduced by performing this operation.

Calls to the theorem prover, FermaT Simplifywill be represented by the expres-
sion 	onqpsrt�u;k<UB , where < is a boolean expression. The expression, 	onvp?rt�u;k<UB , is defined
to return true if the theorem prover determines that < is valid and false otherwise. If	onqpsrt�u;k<UB returns false, this represents the fact that either the theorem prover cannot
reduce the condition to true or it reduces it to the condition to false. The method
by which prove is actually implemented for FermaT Simplify will be given in
Section 4. Given a conditioned state, : , and a boolean expression, b, the following
expressions will also be useful throughout our description:

& AllImply ;w:�>"<UB
Denoting that for all pairs ;kx?>D@CB in conditioned state : , prove ;kx �Z7 @4<UB
evaluates to true. Where, given a symbolic store @ , the expression, @f< , denotes
the result of symbolically evaluating < in @ .& AllFalse ;k:yB
Denoting that for all pairs ;kx?>D@CB in conditioned state : , prove ;wQex]B evaluates to
true. If the conditioner has reached a point whose state, : , satisfies AllFalse ;w:yB ,
then all code following this point is unreachable and can thus be removed.

Suppose < is the guard of an IF statement. AllImply ;k:�>"<UB implies that the THEN
branch must be executed in : and the ELSE branch can be removed. Similarly
AllImply ;w:�> NOT <UB implies that THEN branch can be removed. Suppose < is a guard
of a WHILE loop, then AllImply ;w:�>"<UB implies that the body of the loop is executed
at least once and AllImply ;w:�> NOT <UB implies that the loop body is not executed at
all.

3.2.1 Conditioning ABORT

In order to condition an ABORT statement, a special conditioned state called the
ABORT state is introduced and written z . It consists of the single pair ; false > id B .

state ;k:�> ABORT B\{|z
statement ;k:�> ABORT B\{ ABORT

For all statements m , define
state ;wzJ>lm?B\{|z

statement ;wzJ>lm?B\{ SKIP

15

This guarantees that all statements following an ABORT will be removed. In the
rest of the discussion it is assumed that :~}��z .

3.2.2 Conditioning SKIP

state ;w:�> SKIP B�{|:
statement ;w:�> SKIP B\{ SKIP

Conditioning a SKIP has no effect.

3.2.3 Conditioning Assert Statements

In WSL, an assert statement is written
� <�� where < is a boolean expression. It is

semantically equivalent to IF < THEN SKIP ELSE ABORT FI. There are three
cases to consider:

Case Condition Meaning

1 AllImply ;w:�>"<UB The assert condition will always be true

2 AllImply ;k:�> NOT <UB The assert condition will always be false

3 None of the above Nothing can be inferred

From the semantics of the Assert statement it is clear that in case 1, the Assert
is equivalent to SKIP so the rules for SKIP above apply. In case 2, the Assert is
equivalent to ABORT so the rules for ABORT above apply. If neither the guard of
the Assert is not always true or not always false in the current state, then the Assert
cannot be removed. The resulting state will have the same set of symbolic stores.
The path conditions of the resulting state will be different however. For each pair,;k< h >D@ h B the resulting state will have a corresponding pair ;k< h AND @ h <%>D@ h B where< h AND @ h < is the boolean expression created by ‘ANDing’ the boolean expression< h with the result of symbolically evaluating the boolean expression �c< in symbolic
store @ h .
This represents the fact a program will continue executing after an Assert statement
in stores where < evaluates to true. Formally, in this case,

state ;w:�> � <%�qBe{ �ghji � � ;=< h AND @ h <%>�@ h B"�uT
� For example, if � h maps � to �u��� and � to 17 and if � is the boolean expression: �����a���
and if � h is the boolean expression: ��������� then ��� h AND � h �"� is the boolean expression:�y�����.� AND �����y�.�U�\��� .

16

statement ;w:�> � <��qB\{ � <��uT

3.2.4 Conditioning Assignment Statements

When conditioning assignment statements, ConSUS symbolically evaluates the ex-
pression on the right hand side of the assignment and updates the symbolic stores
accordingly. The path conditions do not change. In order to symbolically evaluate
an expression � in a symbolic store, @ , ConSUS replaces every variable in the ex-
pression by its value in @ . This is very straightforwardly achieved using FermaT
transformations as will described in Section 4. Given a symbolic store, @ , we use
standard notation @ F � I � L to represent a store that ‘agrees’ with @ except that vari-
able � is now mapped to � . Using this, the conditioning of assignment statements
can be defined as follows:

state ;k:�> � := �?B\{ �ghji � � ;k<%>D@ h
F � I @ h � L B

statement ;k:�> � := �?B\{ � := ��T

3.2.5 Conditioning Statements Sequences

In the case of standard semantics [55], the meaning of a sequence of statements is
the composition of the meaning functions of the individual statements. The same is
true when conditioning:

state ;w:�>lm �U! m
 B�{ state ; state ;k:�>lm � BU>"m
 B
statement ;w:�>lm �l! m
 B\{ statement ;k:�>lm � B ! statement ; state ;w:�>lm � Bl>lm
 B

This reflects the fact that conditioned states are ‘passed through’ the program in the
same order that the program would have been executed. Once again, if as a result
of conditioning, both parts of the sequence reduce to SKIP then they will both be
removed by the post-processing phase.

3.2.6 Conditioning Guarded Commands

In WSL, a generalised form of conditional known as guarded command is used. A
guarded command has concrete syntax of the form

IF # � THEN � ELSIF $%$%$ ELSIF # � THEN � FI.

Unlike the semantics of Dijkstra’s guarded commands [59], these are deterministic
in the sense that the guards are evaluated from left to right and when a true one is
found the corresponding body is executed. If none of the guards evaluates to true
then the program aborts. Although WSL has conventional IF THEN ELSE FI

17

statement, these are implemented as a guarded command whose last guard is iden-
tically TRUE. An IF THEN statement is also implemented as a guarded command
whose last guard is identically TRUE and whose corresponding body is SKIP. For
the purposes of describing conditioning guarded commands, it is convenient to rep-
resent a guarded command as

� I ��� T�T�T � # �
I � T

Using WSL terminology, each # h I h is known as a guarded. Conditioning a
guarded command is defined in terms of conditioning a guarded, # I

so that is
defined first.

When conditioning a guarded, like in the case of the Assert statement, there are
three possibilities:

Case Condition Meaning

1 AllImply ;w:�>"#cB The guard # will always be true

2 AllImply ;k:�> NOT #JB The guard # will always be false

3 None of the above Nothing can be inferred

In cases 1 and 3,
state ;k:�>"# I B\{ state ;w: > B

statement ;k:�>"# I Be{|# I
statement ;w: > B

where

: � �ghji � � ;k< h AND @ h #O>�@ h B"�uT
In case 2, the guarded can be removed and the resulting state will simply be : :

state ;w:�>"# I Be{|:

statement ;w:�>"# I Be{ SKIP

Having defined how ConSUS conditions a single guarded, we now return to define
how ConSUS conditions a complete guarded command. As already explained, a
guarded command is a sequence of guardeds:

� I ��� T�T�T � # �
I � T

18

When conditioning a guarded command in : , the guardeds are conditioned, as
described above, from left to right. The � th guarded is conditioned in conditioned
state :�� where : � ��:
and

:��A� � � �gh�i � � ;k< h AND @ h #��s>A@ h Bl�uT
For each guarded, #y� I � , ConSUS decides:

(a) Whether to keep or remove it.
(b) Whether to continue processing the next guarded in this guarded command or

to move on to the next statement after the guarded command.

Conditioning proceeds as follows:

& If AllImply ;k:e�?>"#��UB this implies that the � th guard will be chosen in all paths
where the previous guards have not been chosen. The resulting statement will be
statement ;w:��%>"#�� I �UB . Conditioning of the guarded command can stop at this
point since none of the guardeds to the right of this one will ever be executed in: .& If AllImply ;k:e�?> NOT #��]B this implies that the � th guard will never be chosen. This
guarded can, therefore, be removed without conditioning it, and processing can
continue with the conditioning of the next guarded, #R�A� � I ��� � in conditioned
state :e��� � ��:�� .& If neither AllImply ;k:e�?>"#��]B nor AllImply ;k:e�?> NOT #��]B then it cannot said for
certain whether #�� will be chosen or not. This is represented by keeping the
guarded, statement ;w:e�?>"# I �]B , and again moving on to process the next
guarded in conditioned state :e�A� � .

Processing continues in this way from left to right until there are no more guard-
eds to consider. The resulting final conditioned state of the guarded command is
the union of all the conditioned states of the guardeds that were processed. The
resulting final statement of the guarded command is either:

(1) A guarded command consisting of the guardeds that were kept in by the above
process, in the same order (This rule only applies if more than one guarded
was kept in by the above process.) or

(2) The body of the only guarded that was kept in. (This rule only applies if ex-
actly one guarded was kept in by the above process.) or

(3) ABORT (This rule only applies if no guardeds were kept in by the above pro-
cess.)

Since, as described above, not all guardeds need necessarily be processed, this al-
gorithm is, in effect, pruning infeasible paths ‘on the fly’. This is a much more

19

efficient approach than that of ConSIT [10], where all paths were fully expanded
before any simplification took place.

3.2.7 Conditioning Loops

Before the result of conditioning WHILE # DO

OD, in conditioned state : is
defined, some preliminary definitions are required.

Definition 1 : true is the initial state : with the added constraint that the guard, # ,
is initially true in all pairs of : .

: true � g
 ¢¡w£ ¤M¥§¦�¨ � ;=< AND ;=@©#JBl>D@CB"�uT

Similarly,

Definition 2 : false is the initial state : with the added constraint that the guard,# , is initially false in all pairs of : .

: false � g
 ª¡w£ ¤]¥§¦%¨ � ;k< AND ;«@ NOT #JBl>D@CBl��T

Definition 3 (The Skolemised Conditioned State, :)
The skolemised conditioned state

: � g
 ª¡w£ ¤]¥�¦�¨

true

� ;k<%>D@ Bl�uT

where the symbolic stores, @ h , are the skolemised versions of the @ h with respect to
S, as described in Subsection 3.1.

Definition 4 (:¬ �):R¬ � is the conditioned state after at least one execution of loop in state : .

: ¬ � � state ;k: > BUT
where the symbolic stores, @ h , are the skolemised versions of the @ h with respect to
S.

Definition 5 (: final): final is the final conditioned state after at least one execution of the loop in state: assuming that the loop terminates.

: final � g
 ª¡w£ ¤]¥§¦%¨V®v¯ � ;=< AND @\; NOT #JBU>D@©Bl�uT

20

AllImply �«°�± NOT ²�� AllImply �«°�±³²�� AllImply �«° ¬ � ± NOT ²�� AllImply �«° ¬ � ±³²��
Case 1 ´
Case 2 µ µ µ µ
Case 3 µ µ µ ´
Case 4 µ µ ´ µ
Case 5 µ ´ µ µ
Case 6 µ ´ µ ´
Case 7 µ ´ ´ µ

Fig. 8. WHILE loop possibilities

When conditioning a loop of the form WHILE # DO

OD, in conditioned state: , ConSUS checks all the seven conditions in the table in Figure 8.

Each case in Figure 8 has the following implications:

Case 1 Loop not executed

Case 2 Nothing known

Case 3 If loop executed once, then it does not terminate

Case 4 If loop executed once, then it executes exactly once

Case 5 Loop executes at least once

Case 6 Loop non-terminates

Case 7 Loop executes exactly once

Blank entries in the table mean we do not care about these values. The other com-
binations not considered are all impossible. For each of these cases,

state ;w:�> WHILE # DO

OD B
and

statement ;w:�> WHILE # DO

OD B
will have different values (Figures 9 and 10). Each is now considered in turn.

Case 1: the loop is not executed. There is no change to the final conditioned state
and loop can be removed.

Case 2: nothing is known about the loop. The final conditioned state is the union of
the final conditioned states corresponding to not executing the loop at all and to ter-
minating after at least one execution. It is not necessary to consider non-termination

21

Final State

Case 1 (Loop not executed) °
Case 2 (Nothing known) ° false ¶ ° final

Case 3 (If once, non-termination) ° false

Case 4 (If once, exactly once) state �«°�± IF ² THEN · FI �
Case 5 (At least once) ° final

Case 6 (Non-termination) ¸
Case 7 (Exactly once) state �«°�±�·¹�

Fig. 9. WHILE loop final states in each case

Final Statement

Case 1 (Loop not executed) SKIP

Case 2 (Nothing known) WHILE ² DO statement �«° ±�·C� OD

Case 3 (If once, non-termination)
'
NOT B (

Case 4 (If once, exactly once) statement �«°�± IF ² THEN · FI �
Case 5 (At least once) WHILE ² DO statement �«° ±�·C� OD

Case 6 (Non-termination) ABORT

Case 7 (Exactly once) statement �«°�±�·C�

Fig. 10. WHILE loop resulting statements in each case

as no states after non-termination are reachable. The resulting statement is the while
loop with its body conditioned in : where : is the skolemised state.

Case 3: if the loop is executed at least once then it non terminates. The final con-
ditioned state corresponds to not executing the loop, since this is the only way
termination can occur. The loop can be replaced with an assertion of the negation
of the guard.

Case 4: if the loop is executed once then it executes at most once. This is equivalent
to conditioning the corresponding conditional statement in state : .

Case 5: the loop is executed at least once. The final conditioned state is the : final,
corresponding to the loop terminating after at least one execution. It is not necessary
to consider non-termination as no states after non-termination are reachable. The
resulting statement is the while loop with its body conditioned in skolemised state,: .

22

WHILE x<1 WHILE x<1
DO x:=x+1 DO x:=x+1
OD; OD
WHILE x<1
DO x:=x+1
OD

Original Program Output from ConSUS

Fig. 11. Conditioning a WHILE loop (Case 1)

x:=p; x:=p;
WHILE x>0

'
NOT x > 0 (;

DO x:=1
OD;
IF x=p
THEN y:=2 y :=2
ELSE y:=1
FI

Original Program Output from ConSUS

Fig. 12. Conditioning a WHILE loop (Case 3)

Case 6: the loop does not terminate. The final state is z and the loop can be replaced
with ABORT.

case 7: The loop executes exactly once. This is equivalent to conditioning

in: . Since AllImply ;k:�>"#JB and AllImply ;w: ¬ � > NOT #JB we do not need to add the
constraints that the loop guard is initially true and finally false.

3.3 Examples

This section gives examples of the output of ConSUS for a variety of small exam-
ples in order to demonstrate its behaviour

The program in Figure 11 is an example with two consecutive identical while loops.
ConSUS removes the second loop since its guard can never be true after completing
execution of the first loop. This is true even if the first loop is not executed or if it
non-terminates.

23

WHILE x=1 IF x=1
DO x:=2 THEN x:=2
OD FI

Original Program Output from ConSUS

Fig. 13. Conditioning a WHILE loop (Case 4)

x:=1; x:=1;
WHILE x>0 WHILE x>0
DO x:=x+y; DO x:=x+y;

y:=2 y:=2
OD; OD;
IF (y=2)
THEN x:=1 x:=1
ELSE x:=2
FI

Original Program Output from ConSUS

Fig. 14. Conditioning a WHILE loop (Case 5)

In Figure 12 there is a loop which if executed once never terminates. ConSUS re-
places this loop with an Assert statement that asserts that the guard of the loop is
false. ConSUS also recognised that to ‘get past’ the loop, it must not be executed
and therefore the initial assignment to � is not overwritten and therefore the follow-
ing IF statement can be simplified.

The program in Figure 13 has a while loop which is either not executed at all or
exactly once. ConSUS replaces it with an IF. In the current implementation, if the
2 was replaced by � [K

, say, no simplification would take place. This is because
the ConSUS infers that only a single loop iteration is possible by analysing the loop
guard in the skolemised state and not in the state after a single execution.

In Figure 14, although the loop itself cannot be simplified, ConSUS recognises that
the loop must be executed at least once and hence the later IF can be simplified.

In Figure 15, ConSUS recognises that the program does not terminate and therefore
everything apart from the initial Assert can be discarded since these statements are
not reachable.

24

'
x>1 (; '

x>1 (;
WHILE x>0
DO y:=x+y;
OD;
IF (x>0)
THEN x:=1
ELSE x:=2
FI

Original Program Output from ConSUS

Fig. 15. Conditioning a WHILE loop (Case 6)

x=1; x;=1
WHILE x=1
DO x:=x+1;

'
x>1 (x:=x+1;

'
x>1 (

OD;
IF (x=1)
THEN x:=1
ELSE x:=2 x:=2
FI

Original Program Output from ConSUS

Fig. 16. Conditioning a WHILE loop (Case 7)

In Figure 16 we have ‘helped’ the theorem prover with some knowledge that in
this loop, � will always be greater than zero. From this, ConSUS has inferred that
the loop will terminate after exactly one execution. As the implementation stands,
without this human intervention, ConSUS would not produce simplification. As in
Case 4, this is because the ConSUS infers that only a single loop iteration is possible
by analysing the loop guard in the skolemised state and not in the state after a single
execution. The algorithm could very straightforwardly be changed to consider one
iteration of the loop as a special case. In this example, we see that slicing on �
at the end of the program before conditioning yields no simplification. But after
conditioning, slicing on � at the end of the program give us the single statement
x:= 2.

25

4 The Implementation

4.1 WSL and FermaT

The ConSUS system is implemented using WSL, the Wide Spectrum Language,
introduced by Ward [51] for reverse engineering [52–54]. There were two main
reasons why WSL was chosen as the basic language for this project:

(1) Unlike conventional languages, WSL contains its own built in program trans-
formation system FermaT. The FermaT Simplify transformation could be
used as the basis for a light-weight validity checker as described earlier.

(2) Within WSL is another language MetaWSL [51], which facilitates parsing and
manipulation of syntax trees. This would allow us to express the transforma-
tions used in conditioning in a high level and fairly natural way.

4.1.1 Theoretical Foundations of FermaT

The theoretical work on which FermaT is based originated in research on the devel-
opment of a language in which proofs of equivalence for program transformations
could be achieved as easily as possible for a wide range of constructs.

The WSL language was developed in parallel with the development of a transfor-
mation theory and proof methods. During this time the language has been extended
from a simple and tractable kernel language [51] to a complete and powerful pro-
gramming language. At the ‘low-level’ end of the language there exists automatic
translators from IBM assembler, TPF assembler, a proprietary 16 bit assembler, x86
assembler and PC code into WSL, and from a subset of WSL into C, COBOL and
Jovial. At the ‘high-level’ end it is possible to write abstract specifications, similar
to Z and VDM.

Much work on WSL has been motivated by transformation-based reverse engineer-
ing, where it is essential to be able to represent in WSL the original legacy code,
no matter how unpleasant. A state-based approach has meant that representation of
low level constructs typical of such code has been tractable directly. More recent
work [53] has demonstrated the benefits for representing PLC (programmable logic
controller) code and migrating x86 embedded systems to generic C code.

4.1.2 Description of the FermaT Simplify Transformation

The source code for the FermaT Simplify transformation is very simple: it
just calls the @Simplify function on the current item, then it invokes the Sim-

plify Item transformation on each component statement for which it is valid,

26

then it invokes Delete Item on every component statement for which it is valid
(other than assertions and comments). Finally it deletes SKIP statements within
the current item:

All the real work of FermaT Simplify is carried out by the @Simplify func-
tion. This takes a syntactic item and a ‘budget’ (an integer value which indicates
how much effort should be expended in trying to simplify the item) and returns a
new item.

The requirements for an expression and condition simplifier were:

(1) Efficient execution: especially on small expressions. This implies a short start
up time;

(2) Easily extensible. It would be impossible to attempt to simplify all possible
expressions which are capable of simplification. For example, it is known,
now that Fermat’s Last Theorem has been proved, that the integer formulaº �P�», � �e[¼)t���/0q� can be simplified to false, but it cannot be expected that
an automated procedure should be able to prove it. Since we must be content
with a less-than-complete implementation, it is important to be able to add
new simplification rules as and when necessary;

(3) Easy to prove correct. Clearly a faulty simplifier will generate faulty transfor-
mations and incorrect code. If the simplifier is to be easily extended, then it is
important that extended simplifier can be proved correct equally easily.

In order to meet requirement (2) the heart of the simplifier is table-driven, consist-
ing of a set of pattern match and replacement operations. For example, the condition� [.)¾½d0�[W) can be simplified to � ½/0 whatever expressions are represented by� ,) and 0 . This pattern match and replacement can be coded as a simple ifmatch
and fill in MetaWSL. To reduce the number of patterns required, the simplifier
first normalises the expression as follows:

(1) If the current item is neither an expression nor a condition, then @Simplify
is invoked recursively on all its components;

(2) Otherwise, the first step is to push down negation operations by applying De
Morgan’s Laws. For example QX;=¿OÀÁ#JB is transformed to Q�¿3,ÂQe# and QX; G �<]B becomes

G }�/< ;
(3) Then the function flattens any associative operators by removing nested paren-

theses, for example ;A; G [Ã<]Bv[Äx]B becomes ; G [Ã<V[ÃxMB . Subtraction and division
operators are replaced by the equivalent negation and invert constructs, for
example

G�Å < becomes
G [/; Å <UB .

(4) The next step is to evaluate any components which consist entirely of con-
stants;

(5) Then sort the components of commutative operations and merge repeated
components using the appropriate power operator. For example,

G [`<�[G
becomes ��Æ G [4< while

G Æy<eÆ G becomes
G
 Æy< ;

27

(6) Multiplication is expanded over addition, for example
G ÆO;=<R[`x]B becomesG Æ�<e[G Æyx and AND is expanded over OR;

(7) The steps from step 3 are repeated until the result converges

The next step is to check each pattern in the list. If any of the patterns matched, then
repeat from step 2 with a reduced budget until the result converges or the budget
is exhausted. Finally expressions are factorised where possible and then some final
cosmetic cleanup rules are applied: for example, people usually write �\Æ � (putting
the number first in a multiplication operation), but � [d� (putting the number last
in an addition).

4.2 Implementation Details

Details of the WSL implementation of ConSUS are now provided. In particular we
concentrate on aspects of the code which demonstrate how WSL facilitates the im-
plementation. The basic data structure for conditioned state is a list of symbolic
store, path condition pairs as described in Section 3. A store is represented as a
list of variable name, expression pairs. Expressions and all other syntactic compo-
nents are stored using MetaWSL’s internal representation thus enabling them to be
accessed and constructed naturally in MetaWSL. A good example is the function
@Subst, given in Figure 17, which evaluates an expression in a symbolic store.
This function is now explained in detail. The line

MW FUNCT @Subst(store,exp) ==

is a function heading. The name of the function is @Subst. @Subst has two
formal parameters store and exp. (Variables are not typed in WSL).

VAR <R := < > > :

is a declaration of a local variable R, whose initial value is the empty list. Unfor-
tunately, in WSL, local variables cannot be declared without giving them an initial
value. The structure,

@Edit;

@New Program(exp);

$%$%$
@Undo Edit;

is typical in MetaWSL, the @Edit command has the effect of putting the current
value of the special global variable, @I on to the stack and temporarily assigning
@I, to the syntax tree corresponding to the expression exp. The @Undo_Edit

28

MW FUNCT @Subst(store,exp) ==
VAR <R := < > > :
@Edit;
@New Program(exp);
FOREACH Variable
DO

IF @N String(@V(@I)) IN @Domain(store)
THEN @Paste Over(@ValueOf(store,@N String(@V(@I))))
FI;

OD;
R := @I;
@Undo Edit;
(R) . ;

Fig. 17. Evaluating an Expression in a Symbolic store

command pops of the previously stacked value into @I. This useful technique can
be used for all elements of abstract syntax: expressions, statements, sequences of
statements etc.

The foreach construct is an example of a high-level construct in MetaWSL. A
foreach is used to iterate over all those components of the currently selected
syntactic item which satisfy certain conditions, and apply various editing operations
to them. Within the body of the foreach it appears as if the current syntactic
item is the whole program. The construct takes care of all the details, when for
example, components are deleted, expanded or otherwise edited. The code fragment
in Figure 17

@Edit;

@New Program(exp);

FOREACH Variable

DO

$%$%$
OD;

R := @I;

@Undo Edit;

will, thus, have the effect of repeating the action between the DO and OD for each
variable in the expression exp and storing the resulting transformed in R. This code
does not change the values of exp or of @I. The return value of a function in WSL

29

is the final bracketed expression, (R), in the function body.

All that is left to explain is the code that is repeated for each variable in the expres-
sion exp.

IF @N String(@V(@I)) IN @Domain(store)

THEN @Paste Over(@ValueOf(store,@N String(@V(@I))))

Each time this point is entered @I will be pointing at the abstract syntax tree corre-
sponding to a different variable instance in exp. The expression

@N String(@V(@I))

selects to the name of the current variable from the abstract syntax tree. The func-
tions @Domain and @ValueOf used in @Subst are not part of MetaWSL but
are user defined functions in ConSUS. @Domain(s) returns the set of variables
which have been assigned values in the symbolic store, s.

@Domain(s), and

@ValueOf(s,name)

return the value of variable name in symbolic store, s. @Paste_Over(x) is a
MetaWSL function , which will actually overwrite @I with x. In this case, this will
cause the current variable to be overwritten by its current value in the current sym-
bolic store as required. The return value of a function in WSL is the final bracketed
expression, (R), in the function body.

5 Empirical Validation

There are two sections to the empirical validation. First, measurements of the ef-
fectiveness of ConSUS when applied to small but realistic programs are performed.
The reduction in program size produced both by conditioning alone and also pro-
duced by combining conditioning with slicing are given. It is demonstrated that in
both cases conditioning using ConSUS produces a considerable reduction in pro-
gram size.

Secondly, the scalability of ConSUS is examined. Programs are constructed using
multiple repetitions of one of some fixed program fragments. This enables arbi-
trarily large programs to be generated using these fragments. ConSUS is timed on
successive instances of various combinations of these fragments. Graphs of Con-
SUS execution time against program size are produced and analysed. It is shown

30

that the technique employed by ConSUS appears to scale well at least at the unit
level.

5.1 Effectiveness

In this section, the behaviour of ConSUS when applied to more realistic applica-
tions written in WSL is analysed. Examples of the decrease in program size when
ConSUS is used on its own and also when it is combined with a slicer are given for
a variety of slicing criteria. The programs Ç considered are:

(1) Student Marks Processor
(2) A Calendar Program
(3) Tax Allowance Calculator

As with other work on empirical aspects of slicing [60–63], the slicing criteria are
developed to be realistic criteria for the programs selected to typical the kinds of
query a user of a slicing system might present for the programs under consideration.

5.1.1 Student Marks Processor

The student marks processor is a 230 line WSL program which allows the user to
enter marks for three courses for an arbitrary number of students. It outputs a variety
of statistics including the final degree classification for each student, the average,
highest and lowest marks for each course and the number of students receiving each
degree classification. The program has error checking in the sense that it uses loops
to force the user to input marks in the correct range (0-100).

The program is ‘decorated’ with a number of ASSERT statements of the form
{read>=0 AND read<=100}. These correspond to the assumption that all in-
puts to the program are correct at the first attempt. When conditioned with respect
to these criteria ConSUS reduces the original 230 line program to 132 lines. All the
unnecessary loops that force input to be in the correct range are correctly removed
by ConSUS. This corresponds to a reduction in size as a result of conditioning of
almost 43%.

In the next set of experiments, the original program is first sliced with respect to
a number of different criteria and then each of these slices is further conditioned.
This reduction in size produced by conditioning after slicing is then recorded.

For example, the original program, was first sliced at the end with respect to the
variable numfirsts to give rise to a 31 line program. The resulting slice was

Ç All the examples can be found at http://www.doc.gold.ac.uk/˜mas01sd/consus/.

31

Conditioning Slice Size of Size Size Reduction
Criterion Variable Original after after due to

slicing conditioning ConSUS

Inputs correct No slicing 230 lines 230 lines 123 lines 43%
Inputs correct numfirsts 230 lines 31 lines 21 lines 32%
Inputs correct average3 230 lines 29 lines 19 lines 34%
Inputs correct numstudents 230 lines 5 lines 3 lines 40%
Inputs correct averagegrade1 230 lines 41 lines 32 lines 22%
Inputs correct lowest1 230 lines 39 lines 24 lines 38%

Fig. 18. Size of Student Marks program after first slicing and then conditioning

then conditioned with respect to the same conditioning criterion. Again, all the
unnecessary loops that force input to be in the correct range were removed by
ConSUS. The resulting conditioned slice, thus, has the same effect as the original
on the variable numfirsts assuming the all inputs are correct first time. In this
example there was almost a 1/3 reduction in the size of the slice as a result of
conditioning after slicing.

Similarly, slicing with respect to variable average3 leaves a 29 line program
which is further reduced to 19 by conditioning. Figure 18 shows the results of these
experiments.

5.1.2 The Calendar Program

The input to this 123 line WSL program is any day since first of January, 1 A.D.
The output is the number of days since the first of January 1 A.D. together with the
day of the week of the input date. The program takes account of the 11 ‘lost days’
between 2 and 14 September 1752 [64] and the new rules for deciding on leap years
that came into effect around 1800.

Again, measurements of the decrease in program size when ConSUS is used on its
own and also when it is combined with a slicer were made.

The conditioning criteria are:

(1) that all inputs are first time correct (as in the Student Marks Processor Pro-
gram) and

(2) that all inputs are first time correct and that the year is after the dreaded 1752.

and the slices were taken at the end of the program with respect to variables:

(1) leap
(2) dayofweek
(3) month

32

Conditioning Slice Size of Size Size Reduction
Criterion Variable Original after after due to

slicing conditioning ConSUS

1 No Slicing 123 lines 123 lines 100 lines 19%
2 No Slicing 123 lines 123 lines 95 lines 23%
1 leap 123 lines 36 lines 32 lines 11%
2 leap 123 lines 36 lines 32 lines 11%
1 dayofweek 123 lines 90 lines 79 lines 12%
2 dayofweek 123 lines 90 lines 78 lines 13%
1 month 123 lines 21 lines 13 lines 38%
2 month 123 lines 21 lines 13 lines 38%

È Conditioning Criterion 1 corresponds to all inputs being initially in the correct range.È Conditioning Criterion 2 corresponds to all inputs being initially in the correct range and
the input year being after 1752.

Fig. 19. Size of Calendar program after first slicing and then conditioning

Without first slicing, using the first conditioning criterion, ConSUS successfully
removes all the ‘force input loops’ as before, reducing the program from 123 to
100 lines and using the second conditioning criterion, ConSUS also removes the
code that specifically checks whether the date falls within the ‘lost eleven days’,
reducing the original from 123 to 95 lines.

Slicing the program with respect to the variables above and then conditioning pro-
duces a further reduction in program size as can be seen in Figure 19.

5.1.3 The Tax Allowance Calculator

The Tax Allowance Calculator is a 129 line program which asks the user a number
of questions from which it then calculates the income tax allowance, tax code etc.
for the user. It is an encoding of the UK Tax rules as they were between April
1998 and April 1999. Tax codes and allowances vary depending on the state of an
individual. Important criteria include marital status, age and sex. A blind person
gets at a different allowance from a sighted person. This program is first sliced with
respect to variables

(1) code
(2) pc10
(3) personal

Each slice was then conditioned with respect to the criteria:

(1) age > 65
(2) blind = 1

33

Conditioning Slice Size of Size Size Reduction
Criterion Variable Original after after due to

slicing conditioning ConSUS

1 No Slicing 129 lines 129 lines 71 lines 45 %
2 No Slicing 129 lines 129 lines 71 lines 45 %
3 No Slicing 129 lines 129 lines 69 lines 47 %
1 code 129 lines 48 lines 24 lines 50 %
2 code 129 lines 48 lines 18 lines 63 %
3 code 129 lines 48 lines 24 lines 50 %
1 pc10 129 lines 42 lines 27 lines 36 %
2 pc10 129 lines 42 lines 26 lines 38 %
3 pc10 129 lines 42 lines 19 lines 55%
1 personal 129 lines 37 lines 27 lines 27%
2 personal 129 lines 37 lines 26 lines 30%
3 personal 129 lines 37 lines 24 lines 35%

È Conditioning Criterion 1 corresponds to the input age being greater than 65.È Conditioning Criterion 2 corresponds to the input person being blind.È Conditioning Criterion 3 corresponds to the input person being not married.

Fig. 20. Size of the Tax program after first slicing and then conditioning

(3) married = 0

As in the other examples, figure 20 shows a significant reduction in program size
results from both from just conditioning and also conditioning after slicing.

5.1.4 Summary

Conditioning the ‘small but realistic’ programs in our study using ConSUS resulted
in an average reduction in program size of approximately 35%. The maximum
reduction 63% and the minimum reduction was 11%. The average reduction in non-
sliced programs was 37% whereas the average for sliced programs was 34%. The
conditioning criteria were not arbitrary but represented ‘meaningful’ properties of
the input state of the programs. These figures show that conditioning can produce a
considerable reduction in program size when applied to realistic programs. Clearly
more work is required to scale the application of conditioning to larger programs.
however, it should be stressed that conditioning is inherently harder than traditional
static slicing due to the requirement of symbolic execution and theorem proving and
so the authors believe that these initial results on small programs are encouraging,
going some way to demonstrating the ‘proof of concept’ for conditioned slicing.

34

5.2 Scalability

Six classes of programs called F, T, SN, NSN, SSC, and NSSC are considered. The
programs in each class are formed from ‘generative’ program fragments with mul-
tiple repetitions of one of these fragments. The classes F, T, SN, NSN are generated
from the ‘base’ programs given in Figure 21. The SSC and NSSC are generated
from fragment given in Figure 22. This gives us a systematic approach to testing
the scalability of ConSUS.

The programs of class F are generated from the fragments shown in Figure 21 with
multiple repetitions of the second fragment.

y:=1; x:=0;

IF x=0
THEN IF y=2

THEN n:=3
ELSE n:=5
FI

ELSE n:=5
FI;
IF n=3
THEN a:=4
ELSE a:=5
FI;

y:=0; x:=1;
c:=2; b:=c+1;

IF b > c
THEN x:=x+1; y:=y+2;

b:=b+1; c:=c+2
ELSE x:=x+2; y:=y+1;

b:=b+2; c:=c+1
FI;
IF (b > c) OR (x > y)
THEN x:=x+2; y:=y+1;

b:=b+2; c:=c+1
ELSE x:=x+1; y:=y+2;

b:=b+1; c:=c+2
FI ;

x:=0;
b:=1;
c:=2;

IF x ��� b
THEN

x:=x+1;
b:=b+1;
c:=c+1;
IF b ��� c
THEN

y:=1

FI
ELSE y:=2
FI;

F-Style Program T-Style Program SN-Style program

Fig. 21. The three considered classes of program

This set of programs tests the conditioning process of ConSUS on sequential IF
statements where the predicates are testing equality of arithmetic expressions (as
opposed to inequalities). Here the paths through the repetitions of the second frag-
ment are always the same.

The T-class of programs is generated in the same manner using the fragments in
Figure 21, again repeating the second fragment. The conditions of the IF state-
ments involve inequalities and a logical OR. Furthermore, this class of programs
involves greater symbolic evaluation than the F-class, as the program variables get
updated continually (for example, <ÂÉª��<�[K

) whereas in the F-class, the variables
are assigned constant numeric values (for example, º Éª��Ê). Here the paths through
the repetitions of the second fragment alternate for each repetition; with <Á�Px true
and ;=<��Px]B OR ; � �W)ËB false first, and then vice-versa.

The SN-class of programs are generated from the SN-Style program in Figure 21

35

by inserting multiple copies of the middle program fragment into the THEN branch
of the previous IF statement, and adding an appropriate number of FIs in the third
fragment. This produces an arbitrarily large nesting of IF statements.

The NSN-class is generated from the SN-Style program in Figure 21 in exactly the

'
(x>y) AND (y>z) (;
IF (x>y) AND (y>z)
THEN IF (x>z)

THEN x:=x+1;
y:=y+1;
z:=z+1

ELSE a:=2
FI

ELSE IF (x ��� y) OR (y ��� z)
THEN x:=x+1;

y:=y+1;
z:=z+1

ELSE a:=4
FI

FI;

Fig. 22. Fragment for generating SSC and NSSC classes

same way except the initial fragment is excluded. The difference between these two
program classes is that, in NSN, no simplification is possible using any conditioning
process, whereas, in SN class of programs, the path through the program is uniquely
determined.

The SSC-class of programs are generated from the fragments shown in Figure 22
with multiple repetitions of the second fragment. The NSSC class is formed in
exactly the same way except the initial fragment is excluded. The results of running
ConSUS on a set of programs from each class are shown in Figures 23, 24, 25, 26,
27 and 28. These results were obtained on a Dual Pentium III with �3Ì�Í�Í�Î MHz
and 512MB RAM running Linux. The graphs show the time taken in seconds by
ConSUS to condition a program of a given class, plotted against the size of the
program in lines of code.

Least squares regression was performed on the data sets for the following models:

& linear model)Ï� G [4< � ;& exponential model)Ï� G � ¡§Ð ;& power law model)J� G � ¡ ;& quadratic model)Ï� G [W< � [4x �
 .
36

The quadratic model (with two degrees of freedom) gave the best fit to the data. The
other models were significantly worse even for models of one degree of freedom.
The least squares quadratic polynomials are given below each figure along with the
coefficient of determination Ñ
 .
Conditioning and conditioned slicing are typically applied to programs at the unit
level, for example, as a support for detailed understanding [8], as a unit level testing
aid [31] or as a unit level reuse and code extraction tool [43,42,6]. For these appli-
cations, quadratic performance is acceptable and the technique therefore appears to
scale well, at least at the unit level.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 100 200 300 400 500 600 700 800 900 1000 1100

Tim
e (

in
se

co
nd

s)

Size of program (in LoC)

"fermat_F1_Style.data"

Using FermaT– Least squares quadratic polynomial:����ÒvÓÔ�%Õ%�%Ò�ÖÄ�"×vØ �¹Ù¾Ú ÓÔÛ�×?Õ�×�ÖÄ�"×vØ � �Á� Ú ÓH×?Ü Ú Ò�ÖÃ�"×vØ E �
 with Ý
 ��×�ÓÔÕ%Õ Ú Ü%Ü .
Fig. 23. Performance for F-class programs

 0

 1

 2

 3

 4

 5

 6

 7

 0 100 200 300 400 500 600 700 800 900 1000 1100

Tim
e (

in
se

co
nd

s)

Size of program (in LoC)

"fermat_T1_Style.data"

Using FermaT – Least squares quadratic polynomial:��� Ú ÓÞ��ß?��Ü�ÖÄ�"×vØ �¹Ù ��ÓÔÜ�×s��Ü�ÖÄ�"×vØ � �Á�àÒvÓÔÒ Ú Ò%Ü�ÖÃ�"×vØ � �
 with Ý
 ��×�ÓÔÕ%Õ��l�%� .
Fig. 24. Performance for T-class programs

37

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 100 200 300 400 500 600 700 800 900 1000

Tim
e (

in
se

co
nd

s)

Size of program (in LoC)

"fermat_SN_Style.data"

Using FermaT– Least squares quadratic polynomial:�Â� Ú ÓÔÜ Ú Ü%Õ�ÖÃ�"× � Ù¾Ú Ój� Ú ß%Û�ÖÃ�"× Ø � �Â�àÛvÓÞ�%�v�lÜ�ÖÃ�"× Ø 9 �
 with Ý
 ��×�ÓÔÕ%Û��lÜ%Õ .
Fig. 25. Performance for SN-class programs

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 100 200 300 400 500 600 700 800 900

Tim
e (

in
se

co
nd

s)

Size of program (in LoC)

"fermat_NSN_Style.data"

Using FermaT – Least squares quadratic polynomial:�Â� Ú ÓÔß%Ò Ú ��ÖÃ�"× �áÙ �vÓH×?Ò%Ò�×�ÖÃ�"×vØ � �Â����ÓÞ�%����×�ÖÃ�"×vØ � �
 with Ý
 ��×�ÓÔÕ%Õ%Ò%�%Ü .
Fig. 26. Performance for NSN-class programs

6 Conclusions

The main contributions of this paper are:

(1) To define a new more efficient algorithm and implementation for program
conditioning which uses on-the-fly pruning of symbolic execution paths.

(2) To report on empirical studies which demonstrate that
(a) On small ‘real programs’ this algorithm produces a considerable reduction

in program size when used with and without a program slicer.
(b) The ConSUS algorithm when used in conjunction with WSL’s FermaT Simplify

has the potential for ‘scaling up’ for use on larger systems.

38

 0

 10

 20

 30

 40

 50

 60

 0 100 200 300 400 500 600 700 800

Tim
e (

in
se

co
nd

s)

Size of program (in LoC)

"fermat_SSC_Style.data"

Using FermaT – Least squares quadratic polynomial:���P�l�vÓÔÕ%Ò��U� Ù ×�Ój� Ú Õ%ÛM����ÜvÓÞ��Õ�ÖÃ�"×vØ 9 �
 with Ý
 ��×�ÓÔÕ?�%� .
Fig. 27. Performance for SSC-class programs

 0

 20

 40

 60

 80

 100

 120

 140

 0 100 200 300 400 500 600 700 800

Tim
e (

in
se

co
nd

s)

Size of program (in LoC)

"fermat_NSSC_Style.data"

Using FermaT –Least squares quadratic polynomial:�Â�P�l�vÓÔÒ%Û%��� Ù ×�Ój�lÛ��%�D��� Ú Ó Ú Û�ÖÃ�"× Ø 9 �

with Ý
 ��×�ÓÔÕ%Û%Û .

Fig. 28. Performance for NSSC-class programs

The algorithm defined in this paper is at the heart of ConSUS, a light-weight pro-
gram conditioner for WSL. ConSUS prunes symbolic execution paths based on the
validity of path conditions, thereby removing unreachable code. Unlike previous
approaches, the ConSUS system integrates the reasoning and symbolic execution
within a single system. The symbolic executor can eliminate paths which can be
determined to be unexecutable in the current symbolic state. This pruning effect
makes the algorithm more efficient. Furthermore, the reasoning is achieved, not
using theorem proving, but rather using the in-built expression simplifier of Fer-
maT. This is a super-lightweight approach that may be capable of scaling to large
programs.

39

In the worst case, there is no doubt that the time to perform ‘best possible’ program
conditioning will be exponential in the size of program being conditioned. This
fact is inherent to the problem of conditioning. As in the case of theorem provers,
this worst case scenario does not imply that implementations of conditioners are
infeasible. The reasons for this are twofold:

(1) In conditioning, any resulting reduction in program size represents progress.
Even if the best possible results require exponential time, it is possible that
significant reductions will be performed more quickly.

(2) In many cases conditioning may be performed in low order polynomial or
even quadratic time as suggested by the empirical study in this paper. In such
cases conditioning may be applicable to unit level applications at least.

A ‘budget’ system similar to that used by FermaT Simplify (Section 4.1.2) is
envisaged whereby conditioning is performed relative to a budget. The budget is
reduced as processing takes place. When the budget expires further conditioning
ceases.

Clearly more work is required to scale the application of conditioning to larger pro-
grams. However, it should be stressed that conditioning is inherently harder than
traditional static slicing due to the requirement of symbolic execution and theorem
proving and so the authors believe that these initial results on small programs are
encouraging, going some way to demonstrating the ‘proof of concept’ for condi-
tioned slicing.

It is possible that the performance achieved using a more powerful theorem prover,
in some cases may outweigh the light-weight approach when combined with ‘prun-
ing on the fly’. This is because powerful reasoning power may result in ‘early prun-
ing’ which may be missed by a less powerful theorem prover. An example of a
more powerful theorem prover is the Co-operating Validity Checker(CVC) [49],
the successor to the Stanford Validity Checker (SVC) [65]. CVC is a high perfor-
mance system for checking the validity of formulæ in a relatively rich decidable
logic. CVC is applicable to boolean expressions made from these atoms.

Very recently, CVC has also been incorporated into ConSUS. Early results do, in-
deed, show that the program in Figure 6 is simplified when using the ConSUS
algorithm in conjunction with CVC in place of FermaT Simplify which fails
to remove any statements since it is unaware of the transitivity of â . Figure 30
illustrates the result of conditioning the second code fragment in Figure 22 using
both FermaT and CVC. Figure 29 illustrates the result of conditioning the code
fragments in Figure 22 using both FermaT and CVC. Future work will investigate
the resulting trade off between speed and precision. Future work will also investi-
gate whether it is possible to harness more of the power of a theorem prover like
CVC in conditioning programs, for example performing induction on loop invari-
ants. Other areas of interest include the development of heuristics that allow both

40

'
(x>y) AND (y>z) (;

IF (x>y) AND (y>z)
THEN IF (x>z)

THEN x:=x+1 ;

y:=y+1 ;

z:=z+1

ELSE a:=2
FI

ELSE IF (x ��� y) OR (y ��� z)
THEN x:=x+1;

y:=y+1;
z:=z+1

ELSE a:=4;
FI

FI;

'
(x>y) AND (y>z) (;

IF (x>y) AND (y>z)

THEN IF (x>z)

THEN x:=x+1 ;

y:=y+1 ;

z:=z+1

ELSE a:=2

FI

ELSE IF (x ��� y) OR (y ��� z)
THEN x:=x+1;

y:=y+1;
z:=z+1

ELSE a:=4
FI

FI;

Conditioning using CVC Conditioning using Simplify

Fig. 29. Conditioning The SSC-Style program

IF (x>y) AND (y>z)

THEN IF (x>z)

THEN x:=x+1 ;

y:=y+1 ;

z:=z+1

ELSE a:=2
FI;

ELSE IF (x ��� y) OR (y ��� z)
THEN x:=x+1 ;

y:=y+1 ;

z:=z+1

ELSE a:=4
FI

FI ;

IF (x>y) AND (y>z)

THEN IF (x>z)

THEN x:=x+1 ;

y:=y+1 ;

z:=z+1

ELSE a:=2

FI

ELSE IF (x ��� y) OR (y ��� z)
THEN x:=x+1 ;

y:=y+1 ;

z:=z+1

ELSE a:=4
FI;

FI ;

Conditioning using CVC Conditioning using Simplify

Fig. 30. Conditioning The NSSC-Style program

41

heavy and light weight approaches to be combined within the same conditioner and
applications of this approach to backward conditioning [33].

References

[1] M. Weiser, Program slices: Formal, psychological, and practical investigations of
an automatic program abstraction method, PhD thesis, University of Michigan, Ann
Arbor, MI (1979).

[2] M. Weiser, Program slicing, IEEE Transactions on Software Engineering 10 (4) (1984)
352–357.

[3] B. Korel, J. Laski, Dynamic program slicing, Information Processing Letters 29 (3)
(1988) 155–163.

[4] A. P. Ershov, On the essence of computation, North–Holland, 1978, pp. 391–420.

[5] Y. Futamura, Partial evaluation of computation process – an approach to a compiler
compiler, Systems, Computers, Controls 2 (5) (1971) 721–728.

[6] G. Canfora, A. Cimitile, A. De Lucia, G. A. D. Lucca, Software salvaging based on
conditions, in: International Conference on Software Maintenance (ICSM’96), IEEE
Computer Society Press, Los Alamitos, California, USA, Victoria, Canada, 1994, pp.
424–433.

[7] J. Field, G. Ramalingam, F. Tip, Parametric program slicing, in: Ü%Ü ��ã ACM
Symposium on Principles of Programming Languages, San Francisco, CA, 1995, pp.
379–392.

[8] A. De Lucia, A. R. Fasolino, M. Munro, Understanding function behaviours through
program slicing, in:

Úsäjå
IEEE Workshop on Program Comprehension, IEEE Computer

Society Press, Los Alamitos, California, USA, Berlin, Germany, 1996, pp. 9–18.

[9] G. Canfora, A. Cimitile, A. De Lucia, Conditioned program slicing, in: M. Harman,
K. Gallagher (Eds.), Information and Software Technology Special Issue on Program
Slicing, Vol. 40, Elsevier Science B. V., 1998, pp. 595–607.

[10] S. Danicic, C. Fox, M. Harman, R. M. Hierons, ConSIT: A conditioned program
slicer, in: IEEE International Conference on Software Maintenance (ICSM’00), IEEE
Computer Society Press, Los Alamitos, California, USA, San Jose, California, USA,
2000, pp. 216–226.

[11] S. Danicic, C. Fox, M. Harman, R. M. Hierons, The ConSIT conditioned slicing
system, Software Practice and Experience Accepted for publication.

[12] J. C. King, Symbolic execution and program testing, Communications of the ACM
19 (7) (1976) 385–394.

[13] A. Coen-Porisini, F. De Paoli, SYMBAD: A symbolic executor of sequential Ada
programs, in: IFAC SAFECOMP’90, London, 1990, pp. 105–111.

42

[14] A. Coen-Porisini, F. De Paoli, C. Ghezzi, D. Mandrioli, Software specialization via
symbolic execution, IEEE Transactions on Software Engineering 17 (9) (1991) 884–
899.

[15] J. Krinke, G. Snelting, Validation of measurement software as an application of slicing
and constraint solving, in: M. Harman, K. Gallagher (Eds.), Information and Software
Technology Special Issue on Program Slicing, Vol. 40, Elsevier, 1998, pp. 661–675.

[16] R. A. DeMillo, A. J. Offutt, Experimental results from an automatic test generator,
acm Transactions of Software Engineering and Methodology 2 (2) (1993) 109–127.

[17] K. N. King, A. J. Offutt, A FORTRAN language system for mutation-based software
testing, Software Practice and Experience 21 (1991) 686–718.

[18] A. J. Offutt, An integrated system for automatically generating test data, in: R. T.
Ng, Peter A.; Ramamoorthy, C.V.; Seifert, Laurence C.; Yeh (Ed.), Proceedings of the
First International Conference on Systems Integration, IEEE Computer Society Press,
Morristown, NJ, 1990, pp. 694–701.

[19] B. Korel, J. Rilling, Dynamic program slicing methods, in: M. Harman, K. Gallagher
(Eds.), Information and Software Technology Special Issue on Program Slicing,
Vol. 40, Elsevier, 1998, pp. 647–659.

[20] F. Tip, A survey of program slicing techniques, Journal of Programming Languages
3 (3) (1995) 121–189.

[21] D. W. Binkley, K. B. Gallagher, Program slicing, in: M. Zelkowitz (Ed.), Advances in
Computing, Volume 43, Academic Press, 1996, pp. 1–50.

[22] A. De Lucia, Program slicing: Methods and applications, in: �?æ ä IEEE International
Workshop on Source Code Analysis and Manipulation, IEEE Computer Society Press,
Los Alamitos, California, USA, Florence, Italy, 2001, pp. 142–149.

[23] M. Harman, R. M. Hierons, An overview of program slicing, Software Focus 2 (3)
(2001) 85–92.

[24] D. W. Binkley, M. Harman, A survey of empirical results on program slicing,
Advances in Computers To appear.

[25] M. Harman, R. M. Hierons, S. Danicic, J. Howroyd, C. Fox, Pre/post conditioned
slicing, in: IEEE International Conference on Software Maintenance (ICSM’01), IEEE
Computer Society Press, Los Alamitos, California, USA, Florence, Italy, 2001, pp.
138–147.

[26] J. R. Lyle, M. Weiser, Automatic program bug location by program slicing, in: Ü ��ã
International Conference on Computers and Applications, IEEE Computer Society
Press, Los Alamitos, California, USA, Peking, 1987, pp. 877–882.

[27] M. Weiser, Programmers use slicing when debugging, Communications of the ACM
25 (7) (1982) 446–452.

[28] D. W. Binkley, The application of program slicing to regression testing, in: M. Harman,
K. Gallagher (Eds.), Information and Software Technology Special Issue on Program
Slicing, Vol. 40, Elsevier, 1998, pp. 583–594.

43

[29] M. Harman, S. Danicic, Using program slicing to simplify testing, Software Testing,
Verification and Reliability 5 (3) (1995) 143–162.

[30] R. M. Hierons, M. Harman, S. Danicic, Using program slicing to assist in the detection
of equivalent mutants, Software Testing, Verification and Reliability 9 (4) (1999) 233–
262.

[31] R. M. Hierons, M. Harman, C. Fox, L. Ouarbya, M. Daoudi, Conditioned slicing
supports partition testing, Software Testing, Verification and Reliability 12 (2002) 23–
28.

[32] D. W. Binkley, M. Harman, L. R. Raszewski, C. Smith, An empirical study
of amorphous slicing as a program comprehension support tool, in: Û äjå IEEE
International Workshop on Program Comprehension (IWPC 2000), IEEE Computer
Society Press, Los Alamitos, California, USA, Limerick, Ireland, 2000, pp. 161–170.

[33] C. Fox, M. Harman, R. M. Hierons, S. Danicic, Backward conditioning: a new
program specialisation technique and its application to program comprehension, in:Õ äjå IEEE International Workshop on Program Comprenhesion (IWPC’01), IEEE
Computer Society Press, Los Alamitos, California, USA, Toronto, Canada, 2001, pp.
89–97.

[34] J. Rilling, A.Seffah, J.Lukas, MOOSE – a software comprehension framework, in:� äjå World Multi-Conference on systemics, cybernetics and informatics (SCI 2001), to
appear.

[35] K. B. Gallagher, J. R. Lyle, Using program slicing in software maintenance, IEEE
Transactions on Software Engineering 17 (8) (1991) 751–761.

[36] D. W. Binkley, S. Horwitz, T. Reps, Program integration for languages with procedure
calls, ACM Transactions on Software Engineering and Methodology 4 (1) (1995) 3–
35.

[37] S. Horwitz, J. Prins, T. Reps, Integrating non–interfering versions of programs, ACM
Transactions on Programming Languages and Systems 11 (3) (1989) 345–387.

[38] J. M. Bieman, L. M. Ott, Measuring functional cohesion, IEEE Transactions on
Software Engineering 20 (8) (1994) 644–657.

[39] L. M. Ott, J. J. Thuss, The relationship between slices and module cohesion, in:
Proceedings of the �%� äjå ACM conference on Software Engineering, 1989, pp. 198–
204.

[40] H. D. Longworth, L. M. Ott, M. R. Smith, The relationship between program
complexity and slice complexity during debugging tasks, in: Proceedings of the
Computer Software and Applications Conference (COMPSAC’86), 1986, pp. 383–
389.

[41] G. Canfora, A. Cimitile, M. Munro, RE

: Reverse engineering and reuse re-

engineering, Journal of Software Maintenance : Research and Practice 6 (2) (1994)
53–72.

44

[42] A. Cimitile, A. De Lucia, M. Munro, Identifying reusable functions using specification
driven program slicing: a case study, in: Proceedings of the IEEE International
Conference on Software Maintenance (ICSM’95), IEEE Computer Society Press, Los
Alamitos, California, USA, Nice, France, 1995, pp. 124–133.

[43] A. Cimitile, A. De Lucia, M. Munro, Qualifying reusable functions using symbolic
execution, in: Proceedings of the Ü �Mã working conference on reverse engineering,
IEEE Computer Society Press, Los Alamitos, California, USA, Toronto, Canada,
1995, pp. 178–187.

[44] Grammatech Inc., The codesurfer slicing system (2002).
URL www.grammatech.com

[45] D. W. Binkley, M. Harman, A large-scale empirical study of forward and backward
static slice size and context sensitivity, in: IEEE International Conference on Software
Maintenance (ICSM 2003), IEEE Computer Society Press, Los Alamitos, California,
USA, Amsterdam, Netherlands, 2003, to Appear.

[46] L. Ouarbya, S. Danicic, D. M. Daoudi, M. Harman, C. Fox, A denotational
interprocedural program slicer, in: IEEE Working Conference on Reverse Engineering
(WCRE 2002), IEEE Computer Society Press, Los Alamitos, California, USA,
Richmond, Virginia, USA, 2002, pp. 181 – 189.

[47] P. A. Hausler, Denotational program slicing, in: Ü%Ü ��ã , Annual Hawaii International
Conference on System Sciences, Volume II, 1989, pp. 486–495.

[48] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, S. Malik, Chaff: Engineering an
efficient SAT solver, in: 39th Design Automation Conference, 2001, las Vegas.

[49] A. Stump, C. W. Barrett, D. L. Dill, CVC: a cooperating validity checker, in: J. C.
Godskesen (Ed.), Proceedings of the International Conference on Computer-Aided
Verification, Lecture Notes in Computer Science, 2002.

[50] L. Zhang, S. Malik, The quest for efficient boolean satisfiability solvers, in:
Proceedings of 14th Conference on Computer Aided Verification (CAV 2002), 2002,
copenhagen, Denmark.

[51] M. Ward, Proving program refinements and transformations, DPhil Thesis, Oxford
University (1989).

[52] M. Ward, Reverse engineering through formal transformation, The Computer Journal
37 (5).

[53] M. Ward, Assembler to C migration using the FermaT transformation system, in:
IEEE International Conference on Software Maintenance (ICSM’99), IEEE Computer
Society Press, Los Alamitos, California, USA, Oxford, UK, 1999.

[54] M. Ward, The formal approach to source code analysis and manipulation, in: �qæ ä IEEE
International Workshop on Source Code Analysis and Manipulation, IEEE Computer
Society Press, Los Alamitos, California, USA, Florence, Italy, 2001, pp. 185–193.

[55] J. E. Stoy, Denotational semantics: The Scott–Strachey approach to programming
language theory, MIT Press, 1985, third edition.

45

[56] P. D. Coward, Symbolic execution systems - a review, Software Engineering Journal
3 (6) (1988) 229–239.

[57] P. D. Coward, Symbolic execution and testing, Information and Software Technology
33 (1) (1991) 53–64.

[58] M. R. Girgis, An experimental evaluation of a symbolic execution system, Software
Engineering Journal 7 (4) (1992) 285–290.

[59] E. W. Dijkstra, A discipline of programming, Prentice Hall, 1972.

[60] M. J. Harrold, N. Ci, Reuse-driven interprocedural slicing, in: Proceedings of the
20th International Conference on Software Engineering, IEEE Computer Society
Press, 1998, pp. 74–83.

[61] D. Liang, M. J. Harrold, Reuse-driven interprocedural slicing in the presence of
pointers and recursion, in: IEEE International Conference of Software Maintenance,
IEEE Computer Society Press, Los Alamitos, California, USA, Oxford, UK, 1999, pp.
410–430.

[62] M. Mock, D. C. Atkinson, C. Chambers, S. J. Eggers, Improving program slicing
with dynamic points-to data, in: W. G. Griswold (Ed.), Proceedings of the �"× äjå ACM
SIGSOFT Symposium on the Foundations of Software Engineering (FSE-02), ACM
Press, New York, 2002, pp. 71–80.

[63] A. Nishimatsu, M. Jihira, S. Kusumoto, K. Inoue, Call-mark slicing: An efficient
and economical way of reducing slices, in: Proceedings of the 21st International
Conference on Software Engineering, ACM Press, 1999, pp. 422–431.

[64] Calendar Act, Calendar Act, Anno vicesimo quarto George II, cap. xxiii. (1751).

[65] C. Barrett, D. Dill, J. Levitt, Validity checking for combinations of theories with
equality, in: M. Srivas, A. Camilleri (Eds.), Formal Methods In Computer-Aided
Design, Vol. 1166 of Lecture Notes in Computer Science, Springer-Verlag, 1996, pp.
187–201, palo Alto, California, November 6–8.

46

