
Transforming a Program into a Speci�cationM.WardCentre for Software MaintenanceSchool of Engineering and Applied ScienceUniversity of DurhamJuly 16, 1993AbstractThere has been much research in recent years on the problems of program and system development butvery little work has been done on the problems of maintaining developed programs. This is despite thefact that for many years it has been well-known that maintenance consumes the largest percentage of theprogramming budget. We apply the techniques of program transformation to a published program which waswritten in such a way that the structure and e�ect of the program are very hard to discern. This will revealthe true structure of the program and enable its e�ect to be summarised as a speci�cation. The method islanguage-independent and so can be used with a wide variety of programming languages, the same methodcan be used to derive a program from a speci�cation, transform a program from one language to another,and (as illustrated here), to transform a program into a speci�cation.IntroductionIn this paper we examine a published program which was written in such a way that the structure and e�ectof the program are very hard to discern. Various transformations to the program to reveal its structureand enable its e�ect to be summarised as a speci�cation. The method is essentially language-independentwhich is very important, for example, in transforming from one programming language to another. Also intransforming a speci�cation into a program one needs a language in which any speci�cation can be expressed.Naturally, to show the value of these techniques as applied to �real� programs they should be applied to amuch longer example than this one�but that would be far too big to publish in a paper. A compromiseis to choose a small program which still manages to exhibit a lot of complexity due to the convoluted logicand control �ow. Hence the example will look slightly arti�cial but should show that the methods willindeed �scale up� to real sized problems (with the aid of a suitable semi-automatic system for applying thetransformations without introducing clerical errors). Note that it is not necessary to follow exactly how theprogram works in order to follow the transformations since they have been rigorously proved and apply toany program. Indeed, one application of these techniques is for a maintenance programmer to apply themto a program he does not understand to discover what the program does.All the transformations made use of in this paper are proved in the author's DPhil thesis [Ward 87]. Theproof method is based on �weakest preconditions�, invented by Dijkstra in [Dijkstra 76]. For a givenprogram S and condition on the �nal state R the weakest precondition WP(S,R) is the weakest conditionon the initial state such that the program will terminate in a state satisfying condition R. It is possible toexpress the weakest precondition of any program or speci�cation as a single formula in in�nitary logic (anextension of �rst order logic which allows in�nitely long formulae). It was shown in [Ward 87] that twoprograms S1 and S2 are equivalent if and only if the corresponding weakest preconditions WP(S1,R) andWP(S2,R) are equivalent formulas for any formula R. This reduces the problem of proving two programs tobe equivalent to a problem in logic to which all the standard methods and techniques of theorem provingcan be applied. The success of this technique may be judged by the large number of useful transformationswhich have been proved and the wide range of problems to which they can be applied�of which the problemin this paper is a small example.Program transformations are used in program development in [Gri�ths 76], [Gri�ths 79], [Bauer 76]and [Bauer 79]. However their methods cannot cope with general speci�cations or with transformingprograms into speci�cations.The next section gives some examples of transformations which will be used later in the paper; then the1



program is presented and various transformations are appled to reveal its structure. The e�ect of a typicalprogram modi�cation is discussed with respect to the two versions of the program. Finally these ideas arerelated to the practical problems of program maintenance and the current work at the Centre for SoftwareMaintenance at Durham.ExamplesThis section describes some examples of the kinds of transformations used in the rest of the paper.Assignment mergingSuppose we have the sequence: x:=x�2; x:=x+1 where we want to merge the two assignments. The weakestprecondition is:WP(x:=x�2; x:=x+1, R) , WP(x:=x�2, WP(x:=x+1, R)), WP(x:=x�2, R[x+1/x])where R[x+1/x] is R with x replaced by x+1., R[x+1/x][x�2/x], R[(x�2)+1/x], WP(x:=(x�2)+1, R)This has shown that x:=x�2; x:=x+1 is equivalent to x:=x�2+1.In addition to the usual while loops we will be using loops of the form: do S od where S is the body ofthe loop. When a statement exit(n) is encountered (where n is an integer constant) then the nth do-loopenclosing the statement will be terminated with execution continuing after the loop. exit(1) is written exitand exit(0) is equivalent to skip, as might be expected. Such loops have been used in program transformationsin [Arsac 79] and [Arsac 82]. [Peterson et al 73] showed how these statements can be used to removegoto statements from a program without increasing the size of the text or introducing �ag variables.Loop InversionWe de�ne a �proper sequence� to be a statement which contains no exit statements which would leave aloop enclosing the sequence. Suppose S1 is a proper sequence and S2 is any statement. Then the followingprograms are equivalent:do S1;S2 odS1;do S2;S1 odThis is often described as �moving the statement S1 to the end/beginning of the loop�: it is a special caseof a transformation proved in [Ward 87]. It can be useful in the reverse direction for removing duplicatecopies of a statement and in the forward direction for converting a loop of the form:2



do S1;if B then exit �;S2 odwhere S1 and S2 are proper sequences to the while loop:S1;while �B doS2;S1 odAbsorptionBy �absorption� we mean moving a statement inside a compound statement which preceds it, for example:if B then S1 else S2 �;S3is equivalent to:if B then S1; S3 else S2; S3 �If this results in an exit statement followed by another statement then the subsequent statement can beremoved as it cannot be reached, for example:if B then exit �;S1is equivalent to:if B then exit else S1 �Statements can also be absorbed into a loop, the absorbed statement must be incremented according to thenumber of nested loops it is moved into. By �incrementation� we mean that exit is replaced by exit(2) etc.For example:do S1;if B then exit �;S2 od;if Q then S3 �is equivalent to:do S1;if Bthen if Q then S3; exitelse exit � �;S2 od;False LoopAny statement can be converted to a loop if all the statements which cause termination of that statementare incremented and the statement is enclosed in do
..od brackets. This can be combined with the inverse ofabsorption to �factor out� multiple copies of a statement. For example:3



if B then if B1 then S1else S �else if B2 then S2else S � �becomes:do if B then if B1 then S1; exit �else if B2 then S2; exit � �;S; exit odwhere the two copies of S have been combined into one. To see that these are equivalent, absorb the singleS into the preceding if statement and remove the false loop.The ProgramThe program was originally written in DataFlex but has been transcribed into C which is a more familiarlanguage to many programmers. The programwas published in [Fenton 86]. Note that the variable morenumis used to control the execution �ow; note also that the statement goto inhere jumps into the middle of anif statement that appears in the middle of a loop. (See Figure 1).The program reads the �le �DIDB�, a sorted text �le which consists of a number of lines each containinga page number followed by a word. It produces an output �le listing each word followed by a list of thecorresponding page numbers. Examining the operations applied to the text �le suggests that we can representthe ��le� data structure as a sorted array item[1..n] and a corresponding array page[1..n] (where n>0 is thenumber of records in the �le) together with an index variable i which represents the current position in the�le (ie the position of the next record to be read). With this representation:fp_in = fopen("DIDB","r") becomes i:=1filestat = fscanf(fp_in,"%s%s",page,item) becomes i:=i+1The variable filestat is set to EOF when we attempt to read past the end of the �le, ie when i reachesthe value n+1, thus we can replace the test (filestat == EOF) by (i=n+1). Replacing theline by line,lastitem by last, page by p, morenum by the Boolean variable m (for brevity), the program becomes: (whereprocedure L represents the for(;;) loop and PROG the whole program):PROG � line:=""; m:=false; i:=1; INHERE.L � i:=i+1;if i=n+1 then ALLDONE �;m:=true;if item[i]6=last then write(line); line:=""; m:=false; INHERE �;MORE.INHERE � p:=number[i]; line:=item[i]; line:=line+" "+p; MORE.MORE � if m then p:=number[i]; line:=line+", "+p �;last:=item[i]; L.ALLDONE � write(line); Z.Here the procedure Z causes termination of the whole program.4



#include <stdio.h>main() /* DataFlex transcription */{int morenum, filestat;char page[6], theline[51], item[31], lastitem[31];FILE *fopen(), *fp_in, *fp_out;fp_in = fopen("DIDB","r");fp_out = fopen("DID2INX.TXT","w");theline[0] = '\0';morenum = 0;filestat = fscanf(fp_in,"%s%s",page,item);goto inhere;for(;;) {filestat = fscanf(fp_in,"%s%s",page,item);if (filestat == EOF) goto alldone;morenum = 1;if (strcmp(item,lastitem)) {fprintf(fp_out,"%s\n",theline);theline[0] = '\0';morenum = 0;inhere:strcpy(theline,item);strcat(theline," ");strcat(theline,page);}if (morenum) {strcat(theline,", ");strcat(theline,page);}strcpy(lastitem,item);}alldone:fprintf(fp_out,"%s\n",theline);close(fp_in);close(fp_out);} Figure 1: The Original C Program
5



Applying the TransformationsThis shows the true structure of the original program (which at �rst glance may have looked quite struc-tured!). We can now apply our transformations to simplify this structure without changing the e�ect of theprogram. First copy INHERE into L and then copy MORE into L (twice) to obtain:L � i:=i+1;if i=n+1 then ALLDONE �;m:=true;if item[i]6=lastthen write(line); line:=""; m:=false;p:=number[i]; line:=item[i]; line:=line+" "+p;if m then p:=number[i]; line:=line+", "+p �;last:=item[i]; L �;if m then p:=number[i]; line:=line+", "+p �;last:=item[i]; L.The �rst test of m is redundant as we know that m has just been assigned the value true. Note that everyprocedure call results in a call to another procedure and the program terminates immediately when theprocedure Z is called. Thus the �procedure calls� are really goto statements as the execution will neverreturn from a procedure to the procedure which called it. This means that the second test of m is alsoredundant as it can only be reached when item[i]=last. Removing these tests gives:L � i:=i+1;if i=n+1 then ALLDONE �;m:=true;if item[i]6=lastthen write(line); line:=""; m:=false;p:=number[i]; line:=item[i]; line:=line+" "+p;last:=item[i]; L �;p:=number[i]; line:=line+", "+p;last:=item[i]; L.Absorbing the last two lines into the preceding if statement makes the procedure L tail-recursive; this isbecause the sequence L; p:=number[i];... can be replaced by L because we know that the procedure L canonly be terminated by a call to Z which causes immediate termination of the program so any statementsafter L will never be executed so can be ignored. The tail-recursive procedure L can now be transformedinto a loop:L � do i:=i+1;if i=n+1 then exit �;m:=true;if item[i]6=lastthen write(line); line:=""; m:=false;p:=number[i]; line:=item[i]; line:=line+" "+p;last:=item[i]else p:=number[i]; line:=line+", "+p;last:=item[i] � od;ALLDONE.We can merge some of the assignments (eg. line:="" followed by line:=item[i]) and take common statementsout of the two arms of the if to obtain: 6



L � do i:=i+1;if i=n+1 then exit �;m:=true;p:=number[i];if item[i]6=lastthen write(line); m:=false;line:=item[i]; line:=line+" "+pelse line:=line+", "+p �;last:=item[i] od;ALLDONE.Copy ALLDONE into L, L into MORE, MORE into INHERE and INHERE into PROG to get the (iterative)version of the whole program:PROG � line:=""; m:=false; i:=1; p:=number[i];line:=item[i]; line:=line+" "+p;if m then p:=number[i]; line:=line+", "+p �;last:=item[i];do i:=i+1;if i=n+1 then exit �;m:=true;p:=number[i];if item[i]6=lastthen write(line); m:=false;line:=item[i]; line:=line+" "+pelse line:=line+", "+p �;last:=item[i] od;write(line); Z.The remaining test of m is now redundant so can be removed. We then �nd that m is only assigned and neveraccessed so it can be removed altogether (it is a �dead variable�). The call Z at the end can be removed sincethe procedure is not recursive so will terminate at the end of the �rst call anyway. Now merge assignmentsas above:PROG � i:=1; p:=number[i]; line:=item[i]; line:=line+" "+p;last:=item[i];do i:=i+1;if i=n+1 then exit �;p:=number[i];if item[i]6=lastthen write(line);line:=item[i];line:=line+" "+pelse line:=line+", "+p �;last:=item[i] od;write(line).The two statements: line:=line+� �+p and line:=line+�, �+p are almost the same, they can be made thesame by adding another variable sep (separator) which is set to � � or �, � as appropriate. Then the (com-mon) statement line:=line+sep+p can be taken out of the if statement and then moved with the statementlast:=item[i] to the beginning of the loop: 7



PROG � i:=1; p:=number[i]; line:=item[i];sep:=" ";do line:=line+sep+p; last:=item[i];i:=i+1;if i=n+1 then exit �;p:=number[i];if item[i]6=lastthen write(line);line:=item[i];sep:=" "else sep:=", " � od;write(line).We want to take the second occurrence of sep:=� � to the end of the loop (so we can move it to the beginningof the loop and remove the �rst occurrence). We can do this by converting the loop to a double loop andthen taking some statements out of the inner loop:PROG � i:=1; p:=number[i]; line:=item[i];sep:=" ";do do line:=line+sep+p; last:=item[i];i:=i+1;if i=n+1 then exit(2) �;p:=number[i];if item[i]6=lastthen exitelse sep:=", " � od;write(line);line:=item[i];sep:=" " od;write(line).Now move the last two statements of the outer loop to the beginning:PROG � i:=1; p:=number[i];do line:=item[i];sep:=" ";do line:=line+sep+p; last:=item[i];i:=i+1;if i=n+1 then exit(2) �;p:=number[i];if item[i]6=lastthen exitelse sep:=", " � od;write(line) od;write(line).Now we want to remove one of the copies of p:=number[i] so we move the second copy to the end of the innerloop, the statement sep:=�, � can also be moved out of the if statement:
8



PROG � i:=1; p:=number[i];do line:=item[i];sep:=" ";do line:=line+sep+p; last:=item[i];i:=i+1;if i=n+1 then exit(2) �;if item[i]6=last then p:=number[i]; exit �;sep:=", ";p:=number[i] od;write(line) od;write(line).Take the copy of p:=number[i] before the exit out of the inner loop. We can then remove the outer copy andmove the statements to the beginning of the outer loop:PROG � i:=1;do p:=number[i];line:=item[i]; sep:=" ";do line:=line+sep+p; last:=item[i];i:=i+1;if i=n+1 then exit(2) �;if item[i]6=last then exit �;sep:=", ";p:=number[i] od;write(line) od;write(line).Insert last:=item[i] before the inner loop and move it to the end of the inner loop, then use the fact thatlast=item[i] is true at the end of the inner loop to remove that statement. Also absorb the two write(line)sinto their loops:PROG � i:=1;do last:=item[i]; line:=item[i]; sep:=" ";p:=number[i];do line:=line+sep+p;i:=i+1;if i=n+1 then write(line); exit(2) �;if item[i]6=last then write(line); exit �;sep:=", ";p:=number[i] od od.Now the statement p:=number[i] can be moved to the beginning of the inner loop. Also both exit and exit(2)can be replaced by:if i=n+1 then exit(2) else exit �This is because we know i=n+1 is true when exit(2) is executed and false when exit is executed. Thisstatement and write(line) can be taken out of the inner loop, note that the if statement must be decrementedto:if i=n+1 then exit else exit(0) �which is the same as:if i=n+1 then exit �The program becomes: 9



PROG � i:=1;do last:=item[i]; line:=item[i]; sep:=" ";do p:=number[i]; line:=line+sep+p;i:=i+1;if i=n+1 then exit �;if item[i]6=last then exit �;sep:=", " od;write(line);if i=n+1 then exit � od.#include <stdio.h>main() /* DataFlex transcription */{ int filestat;char page[6], theline[51], item[31], lastitem[31], sep[3];FILE *fopen(), *fp_in, *fp_out;fp_in = fopen("DIDB","r");fp_out = fopen("DID2INX.TXT","w");filestat = fscanf(fp_in,"%s%s",page,item);do {strcpy(lastitem,item);strcpy(theline,lastitem);strcpy(sep," ");for(;;) {strcat(theline,sep);strcat(theline,page);filestat = fscanf(fp_in,"%s%s",page,item);if (filestat == EOF) break;if (strcmp(item,lastitem)) break;strcpy(sep,", ");}fprintf(fp_out,"%s%s",theline,"\n");} while (filestat != EOF);} Figure 2: The Transformed C ProgramFinally line:=item[i] can be replaced by line:=last since we have just assigned item[i] to last. This gives the�nal version of the program:PROG � i:=1;do last:=item[i]; line:=last; sep:=" ";do p:=number[i]; line:=line+sep+p;i:=i+1;if i=n+1 then exit �;if item[i]6=last then exit �;sep:=", " od;write(line);if i=n+1 then exit � od.Transcribing this back into C we obtain Figure 2. 10



DiscussionAs can be seen, the transformations have revealed the �true� structure of the program�which involves adouble loop. The program scans through the sorted �le DIDB each line of which contains an item and a pagereference. The outer loop scans through the distinct items and for each distinct item the inner loop stepsthrough the page references for each item. Writing the program as a single loop, whose body must distinguishthe two cases of a new item and a repeated item, obscures the simple basic structure. The transformationshave revealed this structure, and because they have all been rigorously proved (see [Ward 87] for proofs)they can be applied without having to understand the program �rst.This kind of transformation has important applications in program maintenance. The second version of theprogram is far easier to understand and modify�there is only one copy of the statement which writes tothe output �le for example. However, it is obtained from the �rst by applying a set of general rules whichindicate which transformations to apply, without having to understand the program �rst.#include <stdio.h>main() /* DataFlex transcription */{ int filestat;char page[6], theline[51], item[31], lastitem[31], sep[3];FILE *fopen(), *fp_in, *fp_out;{fp_in = fopen("DIDB","r");fp_out = fopen("DID2INX.TXT","w");filestat = fscanf(fp_in,"%s%s",page,item);while(filestat != EOF) {strcpy(lastitem,item);strcpy(theline,lastitem);strcpy(sep," ");for(;;) {strcat(theline,sep);strcat(theline,page);filestat = fscanf(fp_in,"%s%s",page,item);if (filestat == EOF) break;if (strcmp(item,lastitem) != 0) break;strcpy(sep,", ");} fprintf(fp_out,"%s%s",theline,"\n");}} } Figure 3: The modi�ed ProgramThe transformations have also revealed a bug in the program�the outer loop is in the form of a repeat...untilloop and hence will always be executed at least once. Hence the program will not work correctly whenpresented with an empty �le. This bug is not immediately obvious in the �rst version of the program. Forthe �rst version a typical solution is to add the line:if (filestat == EOF) goto finish;after the �rst fscanf and add another label finish just before the close statements. This is typical in thatit makes a large change in the program structure which is only re�ected in a small change in the program text(which incidentally gets longer). To carry out the same modi�cation to the second version of the programwe merely change the outer loop to a while loop: 11



PROG � i:=1;while i6=n+1 dolast:=item[i]; line:=last; sep:=" ";do p:=number[i]; line:=line+sep+p;i:=i+1;if i=n+1 then exit �;if item[i]6=last then exit �;sep:=", " od;write(line) od.This then transcribes to Figure 3.Future WorkAt Durham we are currently researching into a semi-automatic program transforming system which couldcarry out the transformation from the �rst version to the second with very little human assistance. Weregard this as an essential step that should be performed before modi�cations which change the programe�ect are carried out. The system will also assist in the process of further transforming a program toextract its speci�cation. This will generally involve the use of operations which, although precisely de�nedin mathematical terms, are not generally available as primitive operations in programming languages.Deriving a Speci�cationWe will now carry out some further transformations in order to demonstrate how to produce the speci�cationof this program. The �rst stage is to collapse the inner loop into a single statement. The �rst line of theinner loop plays two roles�adding a space and the �rst number to line and adding subsequent numbers toline separated by commas. Expressing a loop as a single statement is easier if each execution of the loopdoes a �similar� job�this suggests taking out the �rst step of the loop and moving it to the end of the loop.PROG � i:=1;while i6=n+1 dolast:=item[i]; line:=last; sep:=" ";p:=number[i]; line:=line+sep+p;i:=i+1;do if i=n+1 then exit �;if item[i]6=last then exit �;sep:=", "p:=number[i]; line:=line+sep+p;i:=i+1; od;write(line) od.Now we can remove the variable sep and if item[n+1] is accessible with some arbitrary value we can writethe inner loop as a while loop as follows:PROG � i:=1;while i6=n+1 dolast:=item[i]; line:=last+" "+number[i];i:=i+1;while (i6=n+1) ^ (item[i]=last) doline:=line+", "+number[i];i:=i+1; od;write(line) od. 12



Consider the inner loop. Add the assignments i0:=i and line0:=line just before the loop. Then we see thatthe condition:line = line0 + Pi0<j�ih", "+number[j]iis preserved by the loop body. Here the P indicates concatenation of the sequence of strings. Hence thecondition will be true after the loop and we can add the assignment line:=line0 +Pi0�j�ih", " + number[j]iafter the loop. Then the assignments to line inside the loop are redundant and can be removed. The loopbecomes:while (i6=n+1) ^ (item[i]=last) doi:=i+1; odThis loop can be replaced by the assignment i:=�i0.(i0�i ^ (i0=n+1 _ item[i0]6=last))which is read as �i becomes the smallest i0 greater than or equal to i such that i0=n+1 or item[i0]6=last.The program becomes:PROG � i:=1;while i6=n+1 dolast:=item[i]; line:=last+" "+number[i];i:=i+1;i0:=i;line0:=line;i:=�i0.(i0�i ^ (i0=n+1 _ item[i0]6=last));line:=line0+Pi0<j�ih", "+number[j]iwrite(line) od.This can be simpli�ed to:PROG � i:=1;while i6=n+1 doi0:=i;i:=�i0.(i0>i ^ (i0=n+1 _ item[i0]6=item[i]));line:=item[i0]+" "+number[i0]+Pi0<j�ih", "+number[j]iwrite(line) od.After the assignment to i we have either i=n+1 or item[i]6=item[i0]. We also have:8j.(i0 �j<i ) item[j]=item[i0]).So the outer loop steps through the distinct items in the item array and for each distinct item writes aline consisting of the item followed by a comma-separated list of the numbers in the number array whichcorrespond to that item.
13



References[Arsac 79] J.Arsac Syntactic Source to Source ProgramTransformations and Program Manipulation.Comm. A.C.M. 1979 P.43-54.[Arsac 82] J.Arsac Transformation of Recursive Procedures.in [Neel 82] P.211-265 1982.[Bauer 76] F.L.Bauer Programming as an Evolutionary Process.in [LNCS v46] P.153-182 1976.[Bauer 79] F.L.Bauer Program Development By Stepwise Transformations -the Project CIP.in [LNCS v69] P.237-266 1979.[Dijkstra 76] E.Dijkstra A Discipline of Programming.Prentice�Hall 1976.[Fenton 86] M.Fenton Developing in DataFlex, Book 2,Reports and other outputs.B.E.M. Microsystems 1986.[Gri�ths 76] M.Gri�ths Program Production by Successive Transformation.in [LNCS v.46] P.125-152 1979.[Gri�ths 79] M.Gri�ths Development of the Schorr-Waite Algorithm.in [LNCS v.69] P.464-471 1979.[Neel 82] D.Neel (Ed) Tools and Notations for Program Construction.Cambridge University Press 1982.[Peterson et al 73] W.W.Peterson, On the Capabilities of While, Repeat and Exit Statements.T.Kasami, Comm. A.C.M. 16,8, Aug 1973, P.503-512.N.Tokura[LNCS v.46] F.L.Bauer Language Hierarchies and Interfaces.K.Samelson Lecture Notes in Computer Science. Volume 46.(Eds) Springer Verlag 1976.[LNCS v.69] G.Goos Program Construction.H.Hartmanis Lecture Notes in Computer Science. Volume 69.(Eds) Springer Verlag 1979.[Ward 87] M.Ward Proving Program Re�nements and TransformationsD.Phil Thesis, Oxford University, 1987.
14


