
A Definition of Abstraction

Martin Ward

Computer Science Dept

Science Labs

South Rd

Durham DH1 3LE

January 17, 2003

Abstract

What does it mean to say that one program is “more abstract” then another? What is
“abstract” about an abstract data type? What is the difference between a “high-level” program
and a “low-level” program? In this paper we attempt to answer these questions by formally
defining an abstraction relation between programs which matches our intuitive ideas about
abstraction. The relation is based on examining the operational semantics of the programs,
expressed as a set of traces (sequences of states) from a given initial state to a possible final
state.

KEY WORDS:

Abstraction, Software Maintenance, Transformations, Refinement, Transformational Programming

1 Introduction

In discussing software development, refinement of specifications into programs, reverse engineering
from programs into specifications, and other related areas, concepts such as “high-level program”
verses “low-level program”, “crossing levels of abstraction”, “abstract data types”, and so on are
bandied about without always being given a clear definition. The concept of “refinement” has
been formally defined: for example in [1,2,3,7]; but as we shall see below, the informal concept of
abstraction would appear to be much sharper than the concept of refinement, since many programs
which we would (informally) regard as very different in their degree of abstraction, are (formally)
equivalent in the sense that each is a formal refinement of the other.

Some of the intuitive ideas about abstraction we would like to capture are listed below. These
are the requirements which we would expect any abstraction relation to satisfy:

1. Abstract specifications say what a program does without necessarily saying how it does it.

2. Abstraction is a process of generalisation, removing restrictions, eliminating detail, removing
inessential information (such as the algorithmic details).

3. Abstract specifications have “more potential implementations”, moving to a lower level means
restricting the number of potential implementations.

2 Examples

Some examples will help to fix our intuitive ideas about the different forms of abstraction:

1. Compare:

(a) Calculate the product of a and b and store the result in c;
(b) Calculate the product of a and b using only addition and store the result in c.

1



2. (a) A specification which assigns any value to x which is larger than the value of y:

〈x〉/〈〉.(x > y)

(b) A refinement of this is: x := y + 1.

3. (a) A recursive function (this form of recursion occurs for example in the solution of the
famous “Towers of Hanoi” problem):

funct F (n, x) ≡ if n > 0 then F (n− 1, φ(n, F (n− 1, x)))
else x fi.

(b) An equivalent iterative form is:

funct F (n, x) ≡
for c := 2n − 1 step − 1 to 1 do

x := φ(ntz(c) + 1, x) od;
x .

funct ntz(c) ≡ “the number of trailing zeros in the binary representation of c”.

4. (a) Some sorting examples: The first is a specification of a program which sorts the segment
a . . b of array A:

SORT(a, b) =
DF

A[a . . b] := A′[a . . b].(sorted(A[a . . b]) ∧ perm(A[a . . b], A′[a . . b]))

Where

sorted(A[a . . b] =
DF

∀i, a 6 i < b.A[i] 6 A[i+ 1]

and
perm(A[a . . b], A′[a . . b]) =

DF
∃π : a . . b½→ a . . b. ∀i, a 6 i 6 b. A[i] = A′[π[i]]

where π : a . . b ½→ a . . b means pi is a bijection (a 1–1 and onto function) from the set
{a, a+ 1, . . . , b} to itself, i.e. π is a permutation of a . . b;

(b) The second is a specification of a quicksort program:

QSORT1(a, b) =
begin p :〈A[a . . b], p〉 := 〈A′[a . . b], p′〉.

(A′[a . . p′ − 1] 6 A′[p′] 6 A′[p′ + 1 . . b] ∧ perm(A[a . . b], A′[a . . b]));
SORT(a, p− 1); SORT(p+ 1, b) end

(c) The third (QSORT2) is a full implementation of the quicksort algorithm (for example
using “median of three” partitioning, see [4,6]). [7] formally proves the equivalence of
this algorithm to the specification SORT(a, b).

Each of these examples illustrates a different aspect of “abstraction”, I would argue that in each
case the first version is the most abstract, with later versions becoming more concrete. However,
with the exception of case (2), all the examples are cases of formal equivalence.

Clearly a proper refinement of a specification (i.e. a refinement which is not equivalent) ought
to be considered as “more concrete” than the specification, not least because some implementation
freedom has been lost (see requirement 3). For similar reasons it is important to restrict the
abstraction relation to programs and specifications which are already related by refinement or
equivalence. However, as already noted, refinement by itself is not a sufficient test for abstraction.

A cursory examination of the examples reveals one obvious common feature: the more abstract
versions are all shorter than the concrete versions. This leads to the following (rather näıve)
definition of abstraction:

2



Definition 1 If S1 and S2 are statements such that S2 refines S1 then we say S1 is more abstract

than S2 if and only if S1 is shorter than S2.

This definition is unsatisfactory for several reasons. First we feel that abstraction is more of a
semantic issue than can be captured in a crude syntactic test: for example, adding a long sequence
of skip statements to an abstract specification does not turn it into a concrete implementation!
This particular failing can be rectified by insisting on the application of a small set of “simplifying”
transformations (such as skip deletion) to the programs before their sizes are compared. A more
substantive counterexample is a program which carries out a fairly complex task with a few short
lines of code. Here the high-level description of “what the program does” could turn out to be
considerably longer than the program itself. For example consider the following graph-marking
algorithm:

begin mark(root) where
proc mark(x) ≡ if m[x] = 0

then m[x] := 1; mark(l[x]); mark(r[x]) fi. end

This program marks all the nodes x reachable from the root node root via unmarked nodes.
For simplicity we assume that any unused pointers point to a special node which is always marked.
The abstract specification involves defining when a node is reachable:

MARK ≡ m := m′.∀x.
(

(x ∈ reachable(root,m)⇒ m′[x] = 1)
∧ (x /∈ reachable(root,m)⇒ m′[x] = m[x])

)

where:

reachable(root,m) =
DF

⋃

n<ω

reachablen(root,m)

reachable0(root,m) =
DF

{root}

reachablen+1(root,m) =
DF

reachablen(root,m)

∪ { y | ∃x ∈ reachablen(root,m). (y = l[x] ∨ y = r[x]) ∧ m[y] = 0 }

i.e. reachablen(root,m) is the set of nodes reachable from root in n or fewer steps through a sequence
of nodes which are unmarked in m.

An alternative definition of reachable which may correspond more closely to the intuitive idea,
is to define a reachable node to be an unmarked node for which there is a path of unmarked nodes
reaching from the root to that node:

reachable(root,m) =
DF

{ x | ∃p ∈ paths(root,m). p[`(p)] = x }

paths(root,m) =
DF

⋃

n<ω

{〈x1, . . . , xn〉 | x1 = root ∧ ∀i, 1 6 i 6 n.m[xi] = 0

∧ ∀i, 1 6 i < n. (xi+1 = l[xi] ∨ xi+1 = r[xi])}

Either of these definitions results in an abstract program which is considerably longer than the
recursive implementation.

We are looking for a semantic definition of abstraction: as discussed above, denotational se-
mantics alone are insufficient to express the relation so we will examine operational semantics.

In [8] and [7] we introduced a wide-spectrum programming and specification language (called
WSL) with its formal syntax and denotational semantics. A proper state s consists of a finite non-
empty set V of variables, each of which is assigned a value taken from the universal set of values,
H. The special state ⊥ is used to denote nontermination or error. VH denotes the set of all state
on V and H (including ⊥). A WSL program S, executing from an initial state s ∈ VH, may either

3



run forever without terminating (in which case the “final state” is ⊥), or must terminate in some
state t ∈ WH for some set of final variables W . (The set W is deducible from V and S). Since
WSL programs may be nondeterministic, there may be a set of possible final states for each initial
state. So the denotational semantics of a WSL program can be given by a state transformation

f , a function from VH to ℘(WH), which maps each initial state s to the set f(s) of possible final
states.

3 Operational Semantics

State transformations are sufficient to express the denotational semantics of programs and specific-
ations. However, to define our abstraction relation we need a more “detailed” semantics, namely
operational semantics. The operational semantics of a program gives for each initial and final state
the set of traces (sequences of intermediate states) which the program passes through.

Definition 2 Traces: A trace from finite non-empty sets of variables V to W on a set H of values
is a finite sequence of states of length > 2 whose first element is in VH and final element inWH. The
length of a trace σ is `(σ), the first element is σ[1] and the last element is σ[`(σ)]. A subsequence
of σ may be denoted σ[a . . b]. The concatenation of two traces ρ and σ is denoted ρ ++ σ

Definition 3 State trace: A state trace T from V to W is a set of traces from V to W on H with
each trace σ ∈ T having its first element in VH and last element in WH. If the trace σ ∈ T includes
⊥ as its nth element (for n > 1) then T must also include all possible ways of extending σ from
the (n− 1)th element onwards. Let TH(V,W ) denote the set of all state traces from V to W on H
and let ΓVWH be the set of all traces from V to W on H. Then:

T ∈ TH(V,W ) ⇐⇒ 〈⊥,⊥〉 ∈ T ∧ ∀σ ∈ T.
(

σ[1] ∈ VH ∧ σ[`(σ)] ∈WH

∧ ∀i, 2 6 i 6 `(σ). (σ[i] = ⊥ ⇒ ∀ρ ∈ ΓVWH. σ[1 . . i− 1] ++ ρ ∈ T )
)

For each state trace T there corresponds a state transformation, fT formed by taking fT (s) to be
the set of final elements of the traces in T whose initial element is s, i.e.

fT (s) =
DF

{ t ∈WH | ∃σ ∈ T. (σ[1] = s ∧ σ[`(σ)] = t) }

In [5,7] the semantics of state transformations are further developed and used to prove various
refinements and transformations of programs.

If we examine the operational semantics of the various examples we note that the more concrete
versions are either proper refinements of the abstract cases, or have more states in their traces
(compare QSORT1 which contains a specification statement where QSORT2 has a loop), or have
more (local) variables in the inner states in their traces (the iterative version of example (3a) uses
the local variable c). The third case is expressed in this definition of abstraction on states:

Definition 4 Abstraction on states: If s ∈ VH and s′ ∈ V ′
H are states where V ⊆ V ′ and ∀x ∈

V. s(x) = s′(x) (i.e. s and s′ have the same values on variables in V ) then we say s is more abstract
than s′ (or s′ is more concrete than s) and write s v s′

We use this relation to define abstraction between sequences of states, where the more concrete
sequence may “fill in” gaps in the abstract sequence:

Definition 5 Abstraction on state sequences: If ρ = 〈s1, . . . , sn〉 and ρ′ = 〈s′1, . . . , s
′
m〉 are se-

quences of states with s1, s
′
1 ∈ VH and sn, s

′
m ∈WH and s1 = s′1 and sn = s′m and n,m > 1 and there

is a 1-1 increasing function π from {2, . . . , n−1} to {2, . . . ,m−1} such that ∀i, 1 < i < n. si v s′
π(i)

then we say that ρ and is more abstract than ρ′ and write ρ v ρ′.

Finally, this extends to a definition of abstraction on state traces:

4



Definition 6 Abstraction on state traces: If T and T ′ are state traces in TH(V,W ) and if ∀ρ ∈
T. ∃ρ′ ∈ T ′. (ρ v ρ′) then we say that T is more abstract than T ′ and write T v T ′.

This definition satisfies the Lemma:

Lemma 1 For any state traces T, T ′ ∈ TH(V,W ) with corresponding state transformation P, P ′ ∈
FH(V,W ):

If T v T ′ then P 6 P ′

In other words, a concrete version of an abstract program is always a refinement of it. The converse
does not hold in general: the sorting programs are all equivalent but clearly at different levels of
abstraction.

The most abstract possible program is also the least refined, namely abort. This fits with our
intuition of abstraction as the removal of information: in some sense abort contains no information
at all and does not restrict the implementor in any way.

3.1 The Replacement Theorem

An important property for any notion of refinement is the replacement property: if any component
of a statement is replaced by any refinement then the resulting statement is a refinement of the
original one. This is easily proved by an induction, on a lexical order of: (i) The depth of recursion
nesting; (ii) The length of the program text.

We have a corresponding theorem for the abstraction relation: if we replace any component of
a program by a more abstract (more concrete) component then the whole program becomes more
abstract (concrete).

4 Non-Semantic Specifications

We have yet to consider in detail the first example which considers the following specifications:

1. Calculate the product of a and b and store the result in c.

2. Calculate the product of a and b using only addition and store the result in c.

The first of these specifications may be expressed as the single atomic specification 〈c〉/〈〉.(c = a.b),
which assigns some value to c such that the condition c = a.b is satisfied. The second specific-
ation says something about the kind of steps allowed in the computation, it cannot therefore be
expressed simply as a specification statement. A specification statement only defines the denota-
tional semantics, but this specification puts a restriction on the operational semantics: in this case
the value of each variable in each state must be either a known constant or a sum or difference of
values of variables in the previous state. One way of expressing this restriction is as follows:

begin a0 := a; b0 := b; n := “some positive integer” :
for i := 1 step 1 to n do

Carry out some addition or subtraction
or assign a constant value to a variable
. . . od;

[c = a0.b0] end

Here the if statement in the loop picks a random addition/subtraction operation between any two
variables and the final guard ensures that the outcome of these operations results in c having the
value a0.b0. (See [7] for a definition of the guard statement). We claim that this correctly expresses
the specification in the sense that this program meets the specification and is more abstract than
any other program which meets the specification. Note however that the following program could
be argued as meeting our specification although it is clearly against the spirit of the informal
specification:

5



begin a0 := a; b0 := b; n := a.b :
c := 0;
for i := 1 step 1 to n do

c := c+ 1 od

5 Conclusion

In this paper we have sought to provide a formal definition of an “abstraction” relation which
corresponds more closely to the intuitive ideas of abstract and concrete programs, and high-level
verses low-level programs. A simple syntactic definition (size) is shown to be inadequate, and any
definition of abstraction which is based only on the denotational semantics of a pair of programs
is also shown to be inadequate. Our definition is therefore based on the operational semantics of
programs: a program S1 is an abstraction of another program S2 if each of the possible execution
sequences for S1 consists of a subsequence of a possible execution sequence for S2.

6 References

[1] R. J. R. Back, Correctness Preserving Program Refinements, Mathematical Centre Tracts#131, Math-
ematisch Centrum, Amsterdam, 1980.

[2] R. J. R. Back & J. von Wright, “Refinement Concepts Formalised in Higher-Order Logic,” Formal Aspects
of Computing 2 (1990), 247–272.

[3] C. C. Morgan, Programming from Specifications, Prentice-Hall, Englewood Cliffs, NJ, 1994, Second
Edition.

[4] R. Sedgewick, Algorithms, Addison Wesley, Reading, MA, 1988.

[5] M. Ward, “Proving Program Refinements and Transformations,” Oxford University, DPhil Thesis, 1989.

[6] M. Ward, “Derivation of a Sorting Algorithm,” Durham University, Technical Report, 1990, 〈http: //
www.dur.ac.uk/∼dcs0mpw/martin/papers/sorting-t.ps.gz〉.

[7] M. Ward, “Foundations for a Practical Theory of Program Refinement and Transformation,” Durham
University, Technical Report, 1994, 〈http: //www.dur. ac. uk/∼dcs0mpw/martin/papers/ foundation2-
t.ps.gz〉.

[8] M. Ward, “Abstracting a Specification from Code,” J. Software Maintenance: Research and Practice 5
(June, 1993), 101–122, 〈http://www.dur.ac.uk/∼dcs0mpw/martin/papers/prog-spec.ps.gz〉.

6


