
Spei�ations from Soure Code|Alhemists' Dream or Pratial Reality?M.P. WardComputer Siene DepartmentSiene LabsSouth RdDurham DH1 3LE
AbstratWe desribe a method for extrating high-level spe-i�ations from unstrutured soure ode. The methodis based on a theory of program re�nement and trans-formation, whih is used as the bases for the develop-ment of a atalogue of powerful semantis-preservingtransformations. Eah transformation is an opera-tion on a program whih has a mehanially-hekableorretness ondition, and whih has been rigorouslyproved to produe a semantially equivalent result. Thetransformations are arried out in a wide spetrumprogramming language (alled WSL). This languageinludes high-level spei�ations as well as low-levelprogramming onstruts. As a result, the formal re-verse engineering proess (from soure ode to equiva-lent spei�ations) and the redevelopment proess (re-�nement of spei�ations into soure ode) an both bearried out within a single language and transforma-tion theory.We also disuss a tool (FermaT) whih has beendeveloped to support this approah to reengineering.The tool is a program transformation system, largelywritten in an extension to WSL alled METAWSL.Thus it is possible to use the tool in the maintenaneof its own soure ode, and this is starting to be thease.1 IntrodutionThis paper desribes the appliation of formal pro-gram transformations to unover spei�ations fromsoure ode. We take as an example a small reportwriting program. Due to errors in the original design,this program had several bugs whih were graduallyunovered and �xed in the usual way (pathes, �rst-time-through swithes, dupliated ode et. et.). Theresulting program appears to work, but has a omplex

and messy struture whih makes it extremely diÆultto maintain.The aim of our ase study is to restruture the pro-gram and extrat its spei�ation (a onise, high-leveldesription of what the program does whih ignoresthe low-level details of how this result is ahieved). Itshould be noted that our aim is emphatially NOTthat of \Design Reovery" in the sense of \Reoveringthe original design"|the original design is full of bugsand not worth reovering! Instead we aim to transformthe \base metal" of unstrutured ode into the \gold"of a high-level spei�ation. (Stritly speaking, this isreally a mining operation, rather than a transmutationof elements, sine the \gold" is already there|it justneeds to be extrated!)The approah is based on a \Wide SpetrumLanguage" (alled WSL) whih inludes both high-level abstrat spei�ations and low-level program-ming onstruts within the same language. The lan-guage has been developed over the last ten years inparallel with the development of the transformationtheory: the atalogue of proven transformations andtransformation tehniques whih form the basis forboth re�nement and reverse engineering. All thetransformations have been proved orret and havemehanially hekable appliability onditions. Thismakes it possible to \enapsulate" the mathematisin a transformation system: the user does not need tounderstand how to prove the orretness of a transfor-mation, he or she only needs to be able to read WSLand know the sorts of operations that an be appliedto it. Sine eah step in the reverse engineering proessonsists of the appliation of a proven transformation,whose appliability ondition has been mehaniallyheked, the extrated spei�ation is guaranteed tobe a orret representation of the original program.Fundamental to our approah is the use of in�nitary�rst order logi (see [11℄) both to express the weakest

preonditions of programs [6℄ and to de�ne assertionsand guards in the kernel language. Engeler [7℄ wasthe �rst to use in�nitary logi to desribe propertiesof programs; Bak [1℄ used suh a logi to express theweakest preondition of a program as a logial formula.His kernel language was limited to simple iterativeprograms. We use a di�erent kernel language whih in-ludes reursion and guards, so that Bak's language isa subset of ours. We show that the introdution of in-�nitary logi as part of the language (rather than justthe metalanguage of weakest preonditions), togetherwith a ombination of proof methods using both de-notational semantis and weakest preonditions, is apowerful theoretial tool whih allows us to prove somegeneral transformations and representation theorems.The denotational semantis of the kernel languageis based on the semantis of in�nitary �rst order logi.Kernel language statements are interpreted as fun-tions whih map an initial state to a set of �nal states(the set of �nal states models the nondeterminay inthe language: for a deterministi program this set willontain a single state). A program S1 is a re�nementof S2 if, for eah initial state, the set of �nal statesfor S1 is a subset of the �nal states for S2. Bakand von Wright [2℄ note that the re�nement relationan be haraterised using weakest preonditions inhigher order logi (where quanti�ation over formu-lae is allowed). For any two programs S1 and S2,the program S2 is a re�nement of S1 if the formula8R:WP(S1;R)) WP(S2;R). This approah tore�nement has two problems:1. It has not been proved that for all programs S andformulae R, there exists a �nite formula WP(S;R)whih expresses the weakest preondition of S forpostondition R. Can proof rules justi�ed by anappeal to WP in �nitary logi be justi�ably appliedto arbitrary programs, for whih the appropriate�nite WP(S;R) may not exist? This problem doesnot our with in�nitary logi, sine WP(S;R)has a simple de�nition for all programs S and all(in�nitary logi) formulae R;2. Seond order logi is inomplete in the sense thatnot all true statements are provable. So even if there�nement is true, there may not exist a proof of it.Our approah to program re�nement and equivalenesolves both of these problems. Using in�nitary logiallows us to give a simple de�nition of the weakestpreondition of any statement (inluding an arbitraryloop) for any postondition. In addition, we haveproved that for eah pair of statements S1 and S2there is a single postondition R suh that S1 is are�nement of S2 i� WP(S1;R)) WP(S2;R) and

WP(S1; true))WP(S2; true) (see [19℄). Another ad-vantage is that the in�nitary logi we use is omplete,so if there is a re�nement then there is also guaranteedto be a proof of the orresponding formula|althoughthe proof may be in�nitely long! However, it isperfetly pratial to onstrut in�nitely long proofs:in fat the proofs of many transformations involvingreursion or iteration are in�nite proofs onstruted byindution. Thus in�nitary logi is both neessary andsuÆient for proving re�nements and transformations.We onsider the following riteria to be importantfor any pratial wide-spetrum language and trans-formation theory:1. General spei�ations in any \suÆiently preise"notation should be inluded in the language. ForsuÆiently preise we will mean anything whih anbe expressed in terms of mathematial logi withsuitable notation. This will allow a wide rangeof forms of spei�ation, for example Z spei�a-tions [8℄ and VDM [10℄ both use the languageof mathematial logi and set theory (in di�erentnotations) to de�ne spei�ations. The \Represen-tation Theorem" [19℄ proves that our spei�ationstatement is suÆient to speify any WSL program(and therefore any omputable funtion, sine WSLis ertainly Turing omplete);2. Nondeterministi programs. Sine we do not wantto have to speify everything about the programwe are working with (ertainly not in the �rstversions) we need some way of speifying that someexeutions will not neessarily result in a partiularoutome but one of an allowed range of outomes.The implementor an then use this latitude toprovide a more eÆient implementation whih stillsatis�es the spei�ation;3. A well-developed atalogue of proven transforma-tions whih do not require the user to dishargeomplex proof obligations before they an be ap-plied. In partiular, it should be possible to in-trodue, analyse and reason about imperative andreursive onstruts without requiring loop invari-ants;4. Tehniques to bridge the \abstration gap" betweenspei�ations and programs. See [23,30℄ for exam-ples;5. Appliable to real programs|not just those in a\toy" programming language with few onstruts.This is ahieved by the (programming) languageindependene and extendibility of the notation via\de�nitional transformations". See [15,17,24℄ forexamples;

6. Salable to large programs: this implies a languagewhih is expressive enough to allow automatitranslation from existing programming languages,together with the ability to ope with unstruturedprograms and a high degree of omplexity. See [25℄for example.A system whih meets all these requirements wouldhave immense pratial importane in the followingareas:� Improving the maintainability (and hene extend-ing the lifetime) of existing mission-ritial softwaresystems;� Translating programs to modern programming lan-guages, for example from obsolete Assembler lan-guages to modern high-level languages;� Developing and maintaining safety-ritial applia-tions. Suh systems an be developed by trans-forming high-level spei�ations down to eÆientlow level ode with a very high degree of on�denethat the ode orretly implements every part of thespei�ation. When enhanements or modi�ationsare required, these an be arried out on the ap-propriate spei�ation, followed by \re-running" asmuh of the formal development as possible. Alter-natively, the hanges ould be made at a lower level,with formal inverse engineering used to determinethe impat on the formal spei�ation;� Extrating reusable omponents from urrent sys-tems, deriving their spei�ations and storingthe spei�ation, implementation and developmentstrategy in a repository for subsequent reuse. Theuse of the join onstrut as an indexing mehanismis disussed in [22℄.2 The Example ProgramOur example program was seleted to illustratehow design errors and poor design, leads to a buggyprogram with a poor struture. Fixing the bugsin the usual way (pathes, \haks", \programmingtriks" et.) further degrades the struture until theprogram beomes extremely diÆult to understand,despite its short length. We aim to demonstrate the re-sults ahievable by applying program transformations,based on formal logi, to suh unpromising material.The program is a simple report printer whih printsa management report showing the net hanges of stokitems in a warehouse. It reads a sorted transation �le,onsisting of a list of reords, eah of whih ontainsthe name of the stok item, and the amount brought inor taken out of the warehouse. Reeipts are denoted bypositive numbers and dispathes by negative numbers.

The program should print the name and net hangefor eah item whih has experiened a net hange instok, and also note the number of items whose stoklevels have hanged.The (�tional) history of this program, from theinitial impressive-looking �ve-level hierarhial fun-tional deomposition, through four \quik �xes" in-luding a �rst-time-through swith, a path on top ofa path, and an example of \defensive programming"(set the swith twie in a row, just to be sure it isreally set) is eloquently desribed in [3℄, so we willonly present the �nal version:pro Management Report �var SW1 := 0; SW2 := 0 :Produe Heading;read(stu�);while NOT eof(stu�) doif First Reord In Groupthen if SW1 = 1then Proess End Of Prev Group�;SW1 := 1;Proess Start Of New Group;Proess Reord;SW2 := 1elseProess Reord; SW2 := 1�;read(stu�)od;if SW2 = 1 then Proess End Of Last Group�;Produe Summaryend.Although this program is quite small, it is extremelydiÆult to follow the logi and onvine yourself thatit is orret. In the next setion we introdue ourapproah to this sort of problem, whih is based onInverse Engineering.3 Program Re�nementand TransformationThe WSL language inludes both spei�ation on-struts, suh as the general assignment, and program-ming onstruts. One aim of our program transfor-mation work is to develop programs by re�ning aspei�ation, expressed in �rst order logi and settheory, into an eÆient algorithm. This is similar tothe \re�nement alulus" approah of Morgan et al[9,12℄; however, our wide spetrum language has beenextended to inlude general ation systems and loops

with multiple exits. These extensions are essential forour seond, and equally important aim, whih is to useprogram transformations for reverse engineering fromprograms to spei�ations.Re�nement is de�ned in terms of the denotationalsemantis of the language: the semantis of a programS is a funtion whih maps from an initial state to a�nal set of states. The set of �nal states represents allthe possible output states of the program for the giveninput state. Using a set of states enables us to modelnondeterministi programs and partially de�ned (orinomplete) spei�ations. For programs S1 and S2we say S1 is re�ned by S2 (or S2 is a re�nementof S1), and write S1 � S2, if S2 is more de�nedand more deterministi than S1. If S1 � S2 andS2 � S1 then we say S1 is equivalent to S2 andwrite S1 � S2. Equivalene is thus de�ned in termsof the external \blak box" behaviour of the program.A transformation is an operation whih maps anyprogram satisfying the appliability onditions of thetransformation to an equivalent program. See [14℄and [16℄ for a desription of the semantis of WSLand the methods used for proving the orretness ofre�nements and transformations. We use the termabstration to denote the opposite of re�nement: forexample the \most abstrat" program is the non-terminating program abort, sine any program is are�nement of abort.A transformation is an operation whih maps anyprogram satisfying the appliability onditions of thetransformation to an equivalent program. See [14℄and [16℄ for a desription of the semantis of WSLand the methods used for proving the orretness ofre�nements and transformations.4 Inverse EngineeringInverse engineering is the proess of extratinghigh-level abstrat spei�ations from soure ode us-ing program transformations. By developing our pro-gram transformation theory in a wide spetrum lan-guage, we are able to use transformations not only forrestruturing at the same abstration level, but alsofor rossing levels of abstration: transforming fromlow-level ode to high-level abstrat spei�ations (see[23℄). Beause the transformations are proved to beorret, they an be applied without needing to under-stand the program �rst, and with a very high degreeof on�dene that the resulting spei�ations orretlyrepresent the initial program. Similar transformationsan be used to re�ne the spei�ations (either imme-diately or after modi�ations and enhanements) bakto exeutable soure ode, whih may be in a di�erent

programming language. It is therefore possible to usethis method to migrate ode between programminglanguages: inluding migrating from Assembler odeto a high-level language (see [25℄). The re�nementof extrated spei�ations bak to exeutable odean be made largely automati, and this means itis possible to maintain the spei�ations rather thanthe soure ode. Changes and enhanements an beapplied at the right level of abstration, without divinginto details of the implementation.5 FermaT: A tool forInverse EngineeringFermaT is a program transformation system basedon the theory of program re�nement and equivalenedeveloped in [14,19℄ and applied to software develop-ment in [13,24℄ and to reverse engineering in [23,25℄.The transformation system is intended as a pratialtool for software maintenane, program omprehen-sion, reverse engineering and program development.The �rst prototype transformation system, alledthe \Maintainer's Assistant", was written in LISP [5,28℄. It inluded a large number of transformations,but was vey muh an \aademi prototype" whose aimwas to test the ideas rather than be a pratial tool.In partiular, little attention was paid to the time andspae eÆieny of the implementation. Despite thesedrawbaks, the tool proved to be highly suessfuland apable of reverse-engineering moderately sizedassembler modules (up to 80,000 lines) into equivalenthigh-level language programs.The system is based on semanti preserving trans-formations in a wide spetrum language (alled WSL).The language inludes both low-level programmingonstruts and high-level non-exeutable spei�a-tions. This means that re�nement from a spei�a-tion to an implementation, and reverse-engineering todetermine the behaviour of an existing program anboth be arried out by means of semanti-preservingtransformations within a single language.For the next version of the tool (i.e. FermaT itself)we deided to extend WSL to add domain-spei�onstruts, reating a language for writing programtransformations. This was alled METAWSL. Theextensions inlude an abstrat data type for repre-senting programs as tree strutures and onstruts forpattern mathing, pattern �lling and iterating overomponents of a program struture. The \transfor-mation engine" of FermaT is implemented entirelyin METAWSL. The implementation of METAWSL in-volves a parser for METAWSL (written in rdp, apubli domain reursive desent parser pakage), an

interpreter for METAWSL written in C, a translatorfrom METAWSL to C (written in METAWSL and in-terpreted to translate itself), a small C runtime library(for the main abstrat data types) and a WSL runtimelibrary (for the high-level METAWSL onstruts suhas ifmath, foreah, �ll et.). One aim was so that thetool ould be used to maintain its own soure ode:and this has already proved possible, with transfor-mations being applied to simplify the soure ode forother transformations! Another aim was to test ourtheories on language oriented programming (see [18℄):we expeted to see a redution in the total amountof soure ode required to implement a more eÆient,more powerful and more rugged system. We also anti-ipated notieable improvements in maintainability andportability. These expetations have been ful�lled,and we are ahieving a high degree of funtionalityfrom a small total amount of easily maintainable ode:the urrent prototype onsists of around 16,000 linesof METAWSL and C ode, while the previous versionrequired over 100,000 lines of LISP.The FermaT design is based on a reursive applia-tion of language oriented programming, involving two\layers" of domain-spei� languages. These are:1. A fairly high-level, general purpose language, basedon the exeutable onstruts of WSL [14,19℄ to-gether with an abstrat data type (ADT) for reord-ing, analysing and manipulating programs and frag-ments of programs. This is implemented in LISP,using a WSL to LISP translator together with a\LISP runtime library" of funtions and proeduresto implement the ADT. The ADT inludes failitiesfor loading and saving programs, moving around (itreords the \urrent seletion" within the urrentprogram), and editing operations. This onsistsof less than 2000 lines of LISP: the entire rest ofthe transformation engine is written in WSL andMETAWSL ode. Hene porting the system to an-other language (and a C version is urrently underdevelopment) would entail writing at the most afew thousand lines of ode;2. On top of the \base" WSL language we have im-plemented a very high-level, domain-spei� lan-guage for writing program transformations, alledMETAWSL. This inludes high level onstrutswhih do most of the work involved in writing trans-formations: see below for an example. METAWSLis implemented almost entirely in WSL; there are afew extensions to the WSL to LISP translator anda number of WSL libraries whih are ompiled intoLISP and linked to the translated METAWSL.

METAWSL enapsulates muh of the expertise de-veloped over the last 10 years of researh in programtransformation theory and transformation systems.As a result, this expertise is readily available to theprogrammers, some of whom have only reently joinedthe projet. Working in METAWSL, it takes onlya small amount of training before new programmersbeome e�etive at implementing transformations andenhaning the funtionality of existing transforma-tions.6 Inverse Engineeringthe Example ProgramIn this setion we show how FermaT opes with theexample program of Setion 2. The �rst three stageswere arried out on a prototype of FermaT, start-ing with the original program and applying general-purpose transformations. The �nal stage (going toan abstrat spei�ation) was arried out manuallybeause the neessary transformations are still beingimplemented in the tool.6.1 First Stage:Restruture and SimplifyThe �rst stage involves applying some general-purpose restruturing and simpli�ation transforma-tions. The seletion of the transformations by theuser is based on some simple heuristis, developedfrom our experiene of using the tool. It is likelythat these heuristis ould be largely automated inthe future: in fat it is a feature of the developmentof the various prototypes whih led up to FermaTthat experiene with eah version enabled us to eliitmore knowledge about the proess of restruturing andreverse engineering through formal transformations.This knowledge was then inorporated in the nextversion of the tool, in the form of more powerfultransformations and program manipulation funtions.In the �rst stage we are able to remove bothswithes and re-express the onvoluted ontrol owas a simple double-nested loop. It is an importantfeature of our method that the user of the systemdoes not need to understand the purpose of a blokof ode before transforming it. The system takesare of all orretness onditions and lerial details ofapplying the transformation, as well as automatiallypretty-printing the result. The system and support-ing theoretial work together guarantee the semantiequivalene of eah version of the program: thus, onean understandable version has been produed, theuser an understand that version of the program, and

be on�dent that the original program has the samesemantis.pro Management Report �Produe Heading;read(stu�);while NOT eof(stu�) doProess Start Of New Group;do Proess Reord;read(stu�);if eof(stu�) OR First Reord In Groupthen exit�od;Proess End Of Prev Groupod;Produe Summary.6.2 Seond Stage:Abstrat Data TypesThe seond stage, after restruturing, is to examinethe low-level proedures and data strutures and re-express them at a higher level of abstration, makinguse of abstrat data types where appropriate. Thisstep an also be arried out via formal transforma-tions: some human input is required in seleting theabstrat equivalents, though the simpler ases (staks,sequential and random aess �les et.) an be au-tomated. The next version of the program replaeseah proedure all with the abstrat spei�ation ofthe proedure body. This version is therefore moreomplete than the previous one (the \missing" odein the proedure bodies is now inluded):pro Management Report �var i := 0; last := \"; reord := \"; hanged := 0 :write(\Management Report : : : ");last := reord; i := i+ 1; reord := reords[i℄;while i 6 `(reords) dototal := 0;do total := total+ reord:number;last := reord;i := i+ 1; reord := reords[i℄;if i > `(reords) ORlast:name 6= reord:namethen exit�od;if total 6= 0then write(last:name; total);hanged := hanged+ 1�

od;write(\Changed items:"; hanged);end.6.3 Third Stage:Restruture and SimplifyHaving moved to a higher level of abstration, somefurther simpli�ation and restruturing beomes pos-sible. We an get rid of another loal variable, andonvert both loops to while loops. This version is at aintermediate level of abstration, it uses a higher leveldata struture than the original soure ode, but stillarries out roughly the same operations.pro Management Report �var i := 0; hanged := 0 :write(\Management Report : : : ");while i 6 `(reords) dototal := reords[i℄:number;i := i+ 1;while i 6 `(reords) ANDreords[i- 1℄:name = reords[i℄:name dototal := total+ reords[i℄:number;i := i+ 1od;if total 6= 0then write(reords[i- 1℄:name; total);hanged := hanged+ 1�od;write(\Changed items:"; hanged);end.6.4 Fourth Stage:Spei�ation LevelFor the �nal step, we replae the loops by higher-level operators whih desribe the e�et of the doubleloop more learly. Our notation for list operations isbased on [4℄. � is a \map" operator whih takes aunary funtion and applies it to eah element of a list.= is a \redue" operator whih takes a binary funtionand applies it to a list, for example +=l returns thesum of the elements of list l. The split funtion takesa list and a binary ondition and returns a list of lists,formed by splitting the original list into non-emptysetions at the points where the ondition is false.pro Management Report �beginvar q := split(reords; same name?) :q := summarise � q;q := �lter(q; hange?);write(\Management Report : : : ");

write � q;write(\Changed items:"; `(q))endwherefunt same name?(x; y) �x:name = y:name.funt summarise(g) �hg[1℄:name;+=(:number � g)i.funt hange?(g) �g[2℄ 6= 0.endOur spei�ation may therefore be written informallyas follows:1. First split the list of reords into setions, wherethe reords in eah setion all have the same name;2. Then summarise eah setion to produe a list ofsummary pairs. The summarise funtion returns apair onsisting of the name (ommon to all reordsin the setion) and the sum of all the numberomponents of the reords;3. Then �lter out the summaries with zero totals(these should not appear on the report);4. The print a report onsisting of a header, the listof summaries (one per line) and the number ofsummaries listed.This spei�ation illustrates very learly the relation-ship between the input data and the �nal report. Italso shows expliitly that the \Changed items" num-ber is preisely the number of summaries listed, whihin turn is the number of items whose stok has hangedsine the last report. This fat would require a arefulanalysis of the program plus some indutive reasoningif it was to be dedued from the original version of theprogram.7 ConlusionsOur approah to reengineering, based on inverseengineering followed by formal re�nement, has provedvery suessful with a number of hallenging small-sale ase study programs [13,20,21,23,24℄. The the-oretial work has been developed further to aom-modate real time and parallel programs with somesuess [29,30℄. More reently, the development ofindustrial-strength tool support has allowed us totakle large JOVIAL restruturing projets, IBM 370Assembler restruturing projets for modules of upto 20,000 lines, and Assembler to COBOL migrationprojets [26,27℄. Durham Software Engineering Ltdand Durham University are atively developing thetool with translators to and from various languages

(inluding C and COBOL) whih will extend the mi-gration and reengineering apabilities of the tool. Forthe Assembler restruturing and migration projets wehave developed tehniques for unsrambling the (oftenonvoluted) ontrol ow between subroutines: this hasto ope with subroutines whih overwrite or modifythe stored return address, routines whih all othersubroutines diretly (without storing a return address)and so on. In addition, we have developed tehniquesfor hanging the data model from a monolithi blokof memory, aessed via pointers (whih is essentiallyhow assembler ode treats its data) to the equivalenthigh-level data strutures and operations.Referenes[1℄ R. J. R. Bak, Corretness Preserving Program Re-�nements, Mathematial Centre Trats#131, Mathe-matish Centrum, Amsterdam, 1980.[2℄ R. J. R. Bak & J. von Wright, \Re�nement ConeptsFormalised in Higher-Order Logi," Formal Aspets ofComputing 2 (1990), 247{272.[3℄ G. D. Bergland, \A Guided Tour of Program DesignMethodologies," Computer 14, 18{37.[4℄ R. Bird, \Letures on Construtive Funtional Pro-gramming," Oxford University, Tehnial MonographPRG-69, Sept., 1988.[5℄ T. Bull, \An Introdution to the WSL Program Trans-former," Conferene on Software Maintenane 26th{29th November 1990, San Diego (Nov., 1990).[6℄ E. W. Dijkstra, A Disipline of Programming , Pren-tie-Hall, Englewood Cli�s, NJ, 1976.[7℄ E. Engeler, Formal Languages: Automata and Stru-tures, Markham, Chiago, 1968.[8℄ I. J. Hayes, Spei�ation Case Studies, Prentie-Hall,Englewood Cli�s, NJ, 1987.[9℄ C. A. R. Hoare, I. J. Hayes, H. E. Jifeng, C. C. Mor-gan, A. W. Rosoe, J. W. Sanders, I. H. S�rensen, J.M. Spivey & B. A. Sufrin, \Laws of Programming,"Comm. ACM 30 (Aug., 1987), 672{686.[10℄ C. B. Jones, Systemati Software Development usingVDM , Prentie-Hall, Englewood Cli�s, NJ, 1986.[11℄ C. R. Karp, Languages with Expressions of In�niteLength, North-Holland, Amsterdam, 1964.[12℄ C. C. Morgan, Programming from Spei�ations, Pren-tie-Hall, Englewood Cli�s, NJ, 1994, Seond Edition.[13℄ H. A. Priestley & M. Ward, \A Multipurpose Bak-traking Algorithm," J. Symb. Comput. 18 (1994), 1{40, hhttp: // www. dur. a. uk/ �ds0mpw/ martin/papers/baktr-t.ps.gzi.[14℄ M. Ward, \Proving Program Re�nements and Trans-formations," Oxford University, DPhil Thesis, 1989.[15℄ M. Ward, \Derivation of a Sorting Algorithm,"Durham University, Tehnial Report, 1990, hhttp:// www. dur. a. uk/ �ds0mpw/ martin/ papers/sorting-t.ps.gzi.

[16℄ M. Ward, \Spei�ations and Programs in a WideSpetrum Language," Submitted to J. Asso. Comput.Mah., 1991.[17℄ M. Ward, \A Reursion Removal Theorem," Springer-Verlag, Proeedings of the 5th Re�nement Workshop,London, 8th{11th January, New York{Heidelberg{Berlin, 1992, hhttp: // www. dur. a. uk/ �ds0mpw/martin/papers/ref-ws-5.ps.gzi.[18℄ M. Ward, \Language Oriented Programming,"Software|Conepts and Tools 15 (1994), 147{161,hhttp://www.dur.a.uk/�ds0mpw/martin/papers/middle-out-t.ps.gzi.[19℄ M. Ward, \Foundations for a Pratial Theory ofProgram Re�nement and Transformation," DurhamUniversity, Tehnial Report, 1994.[20℄ M. Ward, \Reverse Engineering through Formal Trans-formation Knuths \Polynomial Addition" Algorithm,"Comput. J. 37 (1994), 795{813, hhttp://www.dur.a.uk/�ds0mpw/martin/papers/poly-t.ps.gzi.[21℄ M. Ward, \Program Analysis by Formal Transforma-tion," Comput. J. 39 (1996).[22℄ M. Ward, \Using Formal Transformations to Con-strut a Component Repository," in Software Reuse:the European Approah, Springer-Verlag, New York{Heidelberg{Berlin, Feb., 1991, hhttp://www.dur.a.uk/�ds0mpw/martin/papers/reuse.ps.gzi.[23℄ M. Ward, \Abstrating a Spei�ation from Code," J.Software Maintenane: Researh and Pratie 5 (June,1993), 101{122, hhttp://www.dur.a.uk/�ds0mpw/martin/papers/prog-spe.ps.gzi.

[24℄ M. Ward, \Derivation of Data Intensive Algorithms byFormal Transformation," IEEE Trans. Software Eng.22 (Sept., 1996), 665{686, hhttp: // www. dur. a. uk/�ds0mpw/martin/papers/sw-alg.ps.gzi.[25℄ M. Ward & K. H. Bennett, \A Pratial ProgramTransformation System For Reverse Engineering,"Working Conferene on Reverse Engineering, May 21{23, 1993, Baltimore MA (1993), hhttp://www.dur.a.uk/�ds0mpw/martin/papers/ise.ps.gzi.[26℄ M.Ward & K. H. Bennett, \Formal Methods to Aid theEvolution of Software," International Journal of Soft-ware Engineering and Knowledge Engineering 5 (1995),25{47, hhttp: // www. dur. a. uk/ �ds0mpw/ martin/papers/evolution-t.ps.gzi.[27℄ M. Ward & K. H. Bennett, \Formal Methodsfor Legay Systems," J. Software Maintenane: Re-searh and Pratie 7 (May, 1995), 203{219, hhttp:// www. dur. a. uk/ �ds0mpw/ martin/ papers/legay-t.ps.gzi.[28℄ M. Ward, F. W. Calliss & M. Munro, \The Main-tainer's Assistant," Conferene on Software Mainte-nane 16th{19th Otober 1989, Miami Florida (1989),hhttp://www.dur.a.uk/�ds0mpw/martin/papers/MA-89.ps.gzi.[29℄ E. J. Younger & M. Ward, \Understanding ConurrentPrograms using Program Transformations," Proeed-ings of the 1993 2nd Workshop on Program Com-prehension, 8th-9th July , Capri, Italy (1993), hhttp:// www. dur. a. uk/ �ds0mpw/ martin/ papers/ap.ps.gzi.[30℄ E. J. Younger & M. Ward, \Inverse Engineering asimple Real Time program," J. Software Maintenane:Researh and Pratie 6 (1993), 197{234.

Maintainer

Translator

StrutureEditor

X-WindowsFront End BrowserInterfae

View
ASCII

EditSelet
The

TransformationLibrary Representationof WSL odeProgramTransformer

High-Level SoureWSL toZ WSL toLow-Level

Internal
FileSoure

Blok Diagram of the FermaT tool.

