
Assembler Restructuring in FermaT

Martin Ward
Software Technology Research Lab

De Montfort University
Bede Island Building,

Leicester LE1 9BH, UK
martin@gkc.org.uk

Abstract—The FermaT transformation system has proved to
be a very successful tool for migrating from assembler to high
level languages, including C and COBOL. One of the more
challenging aspects facing automated migration, specifically when
the aim is to produce maintainable code from unstructured
“spaghetti” code, is to restructure assembler subroutinesinto
semantically equivalent high level language procedures. In this
paper we describe some of the many varieties of assembler
subroutine structures and the techniques used by the migration
engine to transform these into structured code. These transfor-
mations require a deep analysis of both control flow and data
flow in order to guarantee the correctness of the result.

Two separate case studies, involving over 10,000 assem-
bler modules from commercial systems, demonstrate that these
techniques are able to restructure over 99% of hand-written
assembler, with no human intervention required.

I. I NTRODUCTION

According to IDC research, much of the world’s informa-
tion still resides on mainframe systems [1] with some estimates
claiming that over 70% of all business critical software runs
on mainframes [5]. In industries such as banking, transporta-
tion, finance, insurance, government, and utilities, mainframe
systems continue to run critical business processes. The most
commonly used language in these systems is COBOL, but a
significant proportion of systems are implemented in Assem-
bler: amounting to a total of around 140 – 220 billion lines
of assembler code [3]. The percentage of assembler varies in
different countries, for example, in Germany it is estimated that
about half of all data processing organizations uses information
systems written in Assembler [6]. A typical large organisation
will have several million lines of assembler code in operation:
for example, the US Inland Revenue Service has over ten
million lines of assembler currently in use.

In a recent survey of 520 CIOs internationally [2], more
than half (56%) said that mainframe developers were strug-
gling to meet the needs of the business and 78% stated that
the mainframe will remain a key business asset over the
next decade. 71% of CIOs are concerned that the looming
mainframe skills shortage will hurt their business.

Analysing assembler code is significantly more difficult
than analysing high level language code. With a typical well-
written high level language program it is fairly easy to see the
top-level structure of a section of code at a glance: conditional
statements and loops are clearly indicated, and the conditions
are visible. A programmer can glance at a line of code and

see at once that it is, say, within a double-nested loop in the
else clause of a conditional statement.

Assembler code, on the other hand, is simply a list
of instructions with labels and conditional or unconditional
branches. A branch to a label does not indicate whether it is a
forwards or backwards branch: and a backwards branch does
not necessarily imply a loop. Simply finding all the branch
instructions which lead to a particular label involves scanning
the whole program: and this does not take into account the
possibility of “relative branch” instructions where the target of
a branch is an offset from a label, or from the current location.
An unlabelled instruction can therefore still be the targetof a
branch: so simply determining the “basic blocks” of assembler
code is far from trivial.

As well as being more difficult to analyse, for a given
functionality there is more code to analyse. A single function
point, which requires 220 lines of C or COBOL to implement,
will need about 400 lines of macro assembler or 575 lines of
basic assembler to implement. On the other hand, a higher level
language such as perl will require only 50 lines on average to
implement one function point [4].

Assembler systems are also more expensive to maintain
than equivalent systems written in high level languages. Capers
Jones Research computed the annual cost per function point
as follows:

Assembler £48.00
PL/1 £39.00
C £21.00
COBOL £17.00

Many of these systems were originally implemented in
Assembler due to the need to maximise the limited memory,
CPU and disk capacity of the systems available at that time.
Today, the greatest need is for flexibility: the ability to update
systems to meet new business challenges. There is thereforea
great need to migrate from assembler to more modern high-
level languages, and to move from the mainframe to more
cost-effective hardware platforms.

In previous papers [7,8,9,10,11] we have described the ap-
plication of program transformation technology to automated
migration from assembler to a high level language. The basic
approach follows three stages:

1) Translate the assembler into our internal Wide Spec-
trum Language (called WSL);

2) Apply correctness-preserving WSL to WSL transfor-
mations to the code to restructure, simplify, raise the978-1-4673-5739-5/13/$31.00c© 2013 IEEE

abstraction level, etc. These may include syntactic
and/or semantic code slicing;

3) Translate the high-level WSL directly into the target
language (currently either C or COBOL).

Since these papers were published there have been many
improvements made to FermaT including:

• Improved detection and translation of self-modifying
code;

• Extensive jump table detection;

• Improved dataflow analysis;

• Array detection and analysis (including detection of
arrays of structures);

• Implementation of program slicing for WSL (our
internal Wide Spectrum Language) and assembler;

• Static Single Assignment computation;

• Improvements in subroutine restructuring.

In this paper we focus on the last of these improvements,
which tackles one of the more challenging aspects of assembler
restructuring: extracting self-contained procedures from a mass
of spaghetti code containing subroutine calls and returns.

First, a note on the terminology we use:

Module A module is assembled from a single source file plus
associated copybooks and macros and generates a single
listing and object file. FermaT processes each module in
an assembler program separately and generates a target
language file for each assembler module;

Assembler Program An assembler program consists of one
or more modules which are assembled separately into
object files which in turn are linked together to form an
executable file;

Subroutine A subroutine is a group of assembler instructions
which can be called from within the same module via
an instruction which saves the return address (the address
of the instruction following the call) in a register and
branches to the start of the subroutine. A subroutine
returns by branching to the saved return address;

Return Register The register in the subroutine call instruc-
tion in which the return address is stored;

Procedure A procedure is a WSL programming construct
which can be called and which always returns to the
statement after the call. The aim of assembler restructur-
ing is to convert subroutines to procedures, and thereby
eliminate the use of code addresses in the program.

II. A SSEMBLER TOWSL TRANSLATION

A WSL action system consist of a collection of parame-
terless procedures with a starting action name and takes the
form:

actions A1 :
A1 ≡

S1 end
. . .
An ≡

Sn end endactions

Within each action bodySi, an action call of the formcall Aj

acts as a procedure call which results in the execution of the
body Sj . If execution reaches the end ofSj then it continues
with the statement after thecall . There may also be a special
action Z such thatcall Z causes termination of the whole
action system: in this case control flow is passed directly to
the statement following the action system. If every execution
of an action leads to an action call (i.e. control can never
directly reach the end of the action body), then the action is
called regular. If every action in the action system is regular
then no action call will return and the action system can only
be terminated by acall Z. In this case, actions are similar to
labels and action calls are similar togoto statements.

The FermaT assembler to WSL translator translates each
assembler module to a regular action system: so an uncon-
ditional branch translates directly to an action call, and a
conditional branch translates to anif statement containing an
action call. Any instruction or macro which causes the module
to return to the caller, or to terminate abnormally, is translated
using acall Z.

The translator works from the listing produced by the IBM
assembler, rather than the collection of source files. This has
the disadvantage that the translator has to be able to recog-
nise and parse the many different listing formats produced
by different versions of the assembler and different option
settings. To do this, the translator is table driven: a text file
listings.tab contains information about all the recognised
listing formats (including the Tachyon assembler, Siemens
assembler, Amdahl Personal Assembler, CA-Realia 370 Macro
Assembler, MicroFocus Assembler, and z390 assembler). In
all, there are a total of 38 different listing formats currently
recognised.

Despite this disadvantage, there are several advantages to
working from the assembler listing:

1) With a fully expanded listing, all information includ-
ing copybooks and macro expansions is known to be
present;

2) Object code data, instruction addresses and branch
target addresses are available;

3) The cross reference listing gives the length, type,
location and value of each assembler symbol.

The above information is, of course, implicitly present in the
source code, but deriving it requires duplicating much of the
functionality of the assembler. In addition, the translator would
need to know exactly which options were used to assemble the
production module: and the most accurate source ofthis piece
of information is the listing itself.

The 16 general purpose registers are translated to the
special variablesr0 to r15 and the condition code is translated
to the special variablecc which can take one of the three values
0, 1, 2 or 3. Each instruction or macro is translated to a single
action whose body consists of WSL code which implements all
the behaviour of the instruction (including side-effects such as
setting the condition code). The action name is either the label
on the instruction or macro or a name of the formA hexloc
wherehexloc is the six or eight digit hex representation of the
current location (as provided in the listing).

As well as IBM mainframe assembler, WSL translators for
other languages including Intel x86 assembler and a propri-
etary 16 bit embedded systems processor have been developed.

A. Subroutines in IBM Assembler

The IBM 370 and z/OS mainframes do not have a hardware
stack. Inter-module calls are handled via a linked list of save
areas. Each save area stores copies of all register values
together with pointers to the next and previous save areas,
and it is standard for every module to save and restore all
registers in its savearea. So a caller can assume that register
values are preserved over calls to an external module. Note that
some non-standard code will pass parameters in non-standard
registers, and even return results in registers: the migration
engine can detect and process this non-standard code. Within
a single module (which may consist of many thousands of lines
of code) a different mechanism is used for subroutine call and
return:

• A subroutine call is implemented as a BAL (Branch
And Link) or BAS (Branch And Save) instruction.
This stores the return address (the address of the
next instruction in the sequence) in the indicated
register and then branches to the indicated label. The
subroutine body is responsible for storing the return
address elsewhere, if the register is needed within the
subroutine (or any of the subroutines it calls) for some
other purpose.

• A subroutine return is implemented by reloading a
register with the return address (if necessary) and then
executing a BR (Branch to Register) instruction which
branches to the address in the register.

Return addresses may be saved and restored in various
places, loaded into a different register, overwritten, or simply
ignored. Also, a return address may be incremented, or the
return instruction may branch to an offset of the given return
address. This feature might be used to branch over parameter
data which appears after the BAL instruction, or to branch
to one of several different return points. Merely determining
which instructions form the body of the subroutine can be a
major analysis task: there is nothing to stop the programmer
from branching from the middle of one subroutine to the mid-
dle of another routine, or sharing code between subroutines,
or branching directly out of a subroutine instead of doing a
normal return to the stored address.

B. WSL Translation of BAL and BR

The WSL language does not have the concept of a “code
address”: so the assembler to WSL translator has to use some
mechanism to emulate the BAL and BR instructions. A return
address is represented as the integer value of the location of
the instruction (this is the offset of the instruction from the
start of the module).

A branch to register (BR) instruction is translated into
WSL code to copy the register value to the special variable
destination, and then call thedispatch action. Thedispatch
action testsdestination against all the possible return addresses
(these are all the possible return addresses which are en-
countered during the translation of the module). If the value

matches, then we call the corresponding action. These return
addresses are called “dispatch codes”.

A branch and link instruction (BAL, BALR, BAS, BASR
etc.) is translated to code which stores the dispatch code of
the return point in the register indicated in the instruction, and
then calls the action specified by the label in the instruction.
The translator ensures that this dispatch code will be included
in the dispatch action.

As an example, the following fragment of an assembler
listing starts at location0x0002F6

CONVNX3 DS 0H
* LINK TO CONVERSION RTN

BAL R14,MM2MTH
* MOVE MMM TO OUTPUT

MVC DDO2M,WRKMTH

It translates to the following three WSL actions:

CONVNX3 ≡

call A 0002F6 end
A 0002F6 ≡

C : LINK TO CONVERSION RTN;
r14 := 762;
call MM2MTH end

A 0002FA ≡

C : MOVE MMM TO OUTPUT;
DDO2M := WRKMTH;
call A 000300 end

Note that each action ends with acall to the next action in
the sequence. The value 762 is the decimal equivalent of the
hex location0x0002FA for the return address. Code to test
detination against the value 762 is also added to the dispatch
action:

dispatch ≡

if destination = 0 then call Z
. . .
elsif destination = 762 then call A 0002FA
. . .
fi end

The body of subroutineMM2MTH ends with a BR instruction to
return from the subroutine:

MM2MTH EQU *
* CONVERT MM TO MMM (ALPHA)
...
MM2MTHX EQU *
* RETURN FROM SUB ROUTINE

BR R14

This translates to the WSL code:

MM2MTH ≡

C : CONVERT MM TO MMM (ALPHA) ;
call A 000374 end

. . .
MM2MTHX ≡

call A 0003D0 end
A 0003D0 ≡

C : RETURN FROM SUB ROUTINE;
destination := r14;
call dispatch end

So, the code atA 0002F6 sets r14 to the value 762 and
branches toMM2MTH. When actionMM2MTHX is called, the
value in r14 is copied todestination and dispatch is called.
Sincedestination has the value 762, thedispatch action will
call A 0002FA and the code following the subroutine call is
executed.

III. WSL TO WSL TRANSFORMATION

Stage two in the migration process is the automated ap-
plication of WSL to WSL program transformations. Space
precludes a full discussion of all the transformations applied in
the migration process: since are 156 different transformations
currently implemented in the engine, of which around 50
are used in a typical assembler to COBOL migration. The
process is controlled by the transformationFix Assembler
which analyses the module at each stage and determines the
next transformation to apply. Many transformations are applied
repeatedly: typically a module has several thousand trans-
formations applied before translation to the target language,
although large and complex modules can require more than
one million transformations!

In this paper we will focus on the transformations which
convert assembler subroutine code to inline code or WSL
procedures. These transformations come under the general
heading of “dispatch removal” since the aim is to eliminate
calls to thedispatch action, and ultimately eliminate the action
itself.

A. Single Call

The simplest case is where a subroutine is only called
from one place in the program. In this situation, the value of
the return address at the start of the subroutine is a known
constant: provided the start of the subroutine can only be
reached from the single call. (In other words, there are no direct
branches to the subroutine entry point or to labels inside the
subroutine body, and control flow cannot “fall through” intothe
body of the subroutine). If this is the case, then the Constant
Propagation transformation will replace references to thereturn
register, which appear in the body of the subroutine, by the
actual dispatch code. For example, if the call toMM2MTHX at
A 0002F6 in our example were the only call to that subroutine
(and there was no other way to reach the subroutine body),
then Constant Propagation would replace references tor14 by
the dispatch code 762. When Constant Propagation encounters
a call to dispatch it checks if destination contains a known
dispatch code: which is true in this case. If so, then the call
to dispatch is expanded (the call is replaced by the body of
the action) and simplified. The result is that thecall dispatch
statement is replaced bycall A 0002FA.

A dispatch call has been eliminated and further restructur-
ing of the action system will have the effect of “inlining” the
procedure body. In the case of a simple subroutine, there is
an option in FermaT which will allow the subroutine body to
be recovered and converted to a WSL procedure just before
translation to the target language. It is still important toinline

subroutines wherever possible since this can allow FermaT to
unscramble some unstructured code around the module. For
example, a branch out of the middle of the subroutine does
not cause problems if the subroutine has been inlined.

Constant Propagation can also determine when a branch to
register is actually a return from the module itself to the calling
module. Registers are initialised with a special dispatch code
which indicates a return from the module when branched to
(i.e. the WSL program should terminate). If dataflow analysis
shows that this dispatch code reaches a branch to register, then
thecall dispatch is replaced by acall Z. Similarly, a branch to
register which is applied to the address of an external module
is converted to a call to the module. If there is a valid dispatch
code in another register, then the called module is assumed to
return to this address.

B. Multiple Calls to a Simple Subroutine

A simple subroutine is one with the following characteris-
tics:

1) It has a single entry point;
2) It only returns directly to the caller: e.g. it does not

branch to the middle of another subroutine;
3) It contains no calls to other subroutines.

This last restriction might appear to be rather severe: but note
that once a subroutine has been inlined or transformed into
a WSL procedure, there are no longer anysubroutine calls
to that code. Once all the subroutines called by a subroutine
have been processed, the transformed subroutine body will no
longer containsubroutine calls, and requirement (3) is satisfied.

The FermaT transformation engine therefore processes sub-
routines in a “bottom up” order as they appear in the subroutine
call graph: “leaf” nodes which contain no subroutine calls are
processed first, followed by the next higher “layer” in the call
graph, and so on.

Therefore, provided all subroutines satisfy requirements(1)
and (2), and there are no recursive calls, then there will be
subroutines which satisfy requirement (3), and by processing
the call graph in a “bottom up” order,all subroutines can be
handled by this method.

Transforming a simple subroutine into a WSL procedure
takes these stages:

1) Control Flow Analysis: Starting with the subrou-
tine entry point, FermaT traces forwards through the
action system call graph to find the actions which
compose the body of the subroutine. The analysis
stops at any call todispatch. When the analysis
is complete, each of the actions in the proposed
procedure body is checked to see if it is reachable
from outside the subroutine without going through
the entry action. This may be due to a branch into
the middle of the subroutine body, or a branch out of
the subroutine body (for example, into a generic error
handler). Since there is no way of determining, in
advance of the analysis, which instructions comprise
the subroutine body, a branch out of the body will
initially cause the external code to be included in the

proposed body. See below for how these situations
are dealt with.

2) Data Flow Analysis: Once a suitable procedure
body has been determined, FermaT carries out a data
flow analysis on the proposed procedure body. This
analysis checks that the value assigned to the return
register on entry to the subroutine will be propagated
to thedestination variable for every call todispatch.
The analysis needs to track the return address through
any assignments which save and restore the return
register. Note that some subroutines may increment
the return address before returning (see below);

3) Create a New Procedure: If the above tests are
successful then the set of actions composing the body
of the subroutine are extracted from the main action
system and composed into a new (sub) action system
with the subroutine entry point as the entry action.
Within this new action system calls todispatch are
replaced bycall Z. This action system forms the
body of a new WSL procedure. Calls to the original
subroutine in the main action system are replaced by a
call to the WSL procedure followed bycall dispatch;

4) Constant Propagation: The dispatch calls introduced
in step (3) can now be eliminated via constant propa-
gation. Since the subroutine call has been converted to
a procedure call, the return address can be propagated
over the procedure body and used to eliminate the call
to dispatch. Note that if control flow falls through
into the subroutine body from the body of another
subroutine, or if there is a branch to the subroutine
entry point from another subroutine, then there may
be dispatch calls which cannot be removed at this
stage.

Each time a simple subroutine is successfully converted to a
procedure, one or more calls todispatch (the return points of
the original subroutine) are eliminated from the program.

In our example, it turns out that the subroutineMM2MTHX
is a simple subroutine which does not call any other subrou-
tines, so it can be converted to a WSL procedure. The result
is:

CONVNX3 ≡

call A 0002F6 end
A 0002F6 ≡

C : LINK TO CONVERSION RTN;
r14 := 762;
MM2MTH();
call dispatch end

A 0002FA ≡

C : MOVE MMM TO OUTPUT;
DDO2M := WRKMTH;
call A 000300 end

where:

proc MM2MTH() ≡

actions MM2MTH :
MM2MTH ≡

C : CONVERT MM TO MMM (ALPHA) ;
call A 000374 end

. . .
MM2MTHX ≡

call A 0003D0 end
A 0003D0 ≡

C : RETURN FROM SUB ROUTINE;
destination := r14;
call Z end

We have removed the singlecall dispatch at the end of the
subroutine and inserted calls todispatch at each of the original
subroutine calls (which are now procedure calls). However,
constant propagation can remove these calls. For example,
the call dispatch above transforms tocall A 0002FA. The
assignmentr14 := 762 can also be deleted, since we know
that this dispatch code has been accounted for. If there are
no other references to this dispatch code, then we know that
a call dispatch can no longer lead tocall A 0002FA, so the
call to A 0002FA can be removed fromdispatch. In turn, this
allows the call to be restructured: for example, if the call
in A 0002F6 is the only call toA 0002FA, then it can be
expanded and the action deleted from the action system.

This algorithm will handle any simple subroutine. Once all
the subroutine calls in a subroutine body have been converted
to procedures, then the subroutine itself can be converted.So,
if an assembler module consist entirely of simple subroutines,
it can be fully restructured using these techniques: regardless
of the degree of subroutine call nesting present. However, in
practice, there are many modules which do not keep to the
constraints of a simple subroutines. The exceptions include:

• Subroutines which exit abnormally from the middle
(for example, branching directly to common error han-
dling code). This is extremely common in assembler
programs;

• Falling through from one subroutine into the start of
another;

• Branching from the middle of one subroutine into the
middle of another subroutine;

• Returning directly to the caller’s caller (instead of via
the immediate caller);

• Multiple entry points to a subroutine, or equivalently,
having a section of common code shared by several
subroutines;

• Multiple return points: either returning to the given
return address or to an offset on the return address;

• Passing parameters as inline data after the subroutine
call. Here the subroutine uses the return register to
address data, then increments it to get the actual return
address;

• Sometimes saving the return address and sometimes
not;

All the above exceptional cases appear so regularly that any
automated assembler migration solution needs to be able to
handle them. Each of these will be discussed in more detail in
subsequent subsections.

In addition to the above, there are also frequently “bugs”
in the assembler code which can prevent the module from
restructuring. The code might be a genuine bug in the sense

that the module would crash or give incorrect results under
certain circumstances, or it might be a highly convoluted way
of coding something which happens to give the correct results
but is very difficult to analyse and understand. Such highly
convoluted code may only work “by accident” in the sense
that a small and apparently innocuous change to the program
may cause it to stop working correctly.

The most common bugs which prevent a module from
restructuring are:

• Recursive subroutines, or mutually recursive sets of
subroutines. Since assembler calls do not use a stack
(unless explicitly programmed to do so), but store the
return address in a fixed memory location, a direct or
indirect recursive call will cause the original return
address to be overwritten. A common example of this
is when an error handler needs to write to a file or
write a message to the operator, and the file operation
or message handler itself checks for errors and calls
the error handling routine. This may not be discovered
in testing if it is unlikely for an error to occur
while displaying a message during error handling.
However, the fact that this control flow path appears
may well prevent the module from restructuring. It is
also regarded as a bad programming practice.

• Returning from a subroutine before it has been called.
This can occur when there is a control flow path from
a module entry point to the code which loads a saved
return address and then executes a BR instruction to
return from a subroutine, and where there is no call
to the subroutine along the path. If this path is taken,
then the program will either crash (if nothing has been
saved in the return address) or branch to the return
point taken in the last call to the subroutine (which
may have occurred in a previous call to this module);

• Restoring the return address for a different subroutine:
for example, subroutine A stores the return address
in ASAVE, subroutine B stores the return address in
BSAVE but then when B returns it loads the address in
ASAVE and branches to it.

• Not restoring the return register on every path through
the subroutine: there may be a path on which the return
register’s value is corrupted (e.g. by being used as the
return register for another subroutine call), but is not
restored. If this path can be taken, then it is clearly a
bug, but if the path is not taken in normal processing
its presence will still impede the restructuring process;

Less common bugs include calling a subroutine and pass-
ing the return address in the wrong register, eg calling via
BAL R15,SUBR when SUBR expects a return address inR14!
Another example is a branch back to the instruction which
saves the return address: if this branch is taken after the return
address register has been modified, then the corrupted value
will overwrite the correct value in the save area.

All the above bugs (and many others!) have been found in
production code.

C. Subroutine With Exit

The most common way in which a subroutine fails to be a
simple subroutine is for there to be a branch out of the middle
of the subroutine: typically this branch will be to error handling
code. The subroutine has detected an error: so it is no longer
interested in returning but branches directly to an appropriate
error handling routine.

If all simple subroutines in a module have been processed,
but there are still subroutines remaining, then another level of
analysis is triggered:

• Any call to Z or to a label which is also reachable
from outside the subroutine body is treated as an
“abnormal exit” from the subroutine. The labelled
action is not included in the procedure body, instead
code is generated to store a value in the special
variable exit flag and the subroutine then returns to
the caller. This flag is set to 0 for a normal return, a
value of 1 means that the subroutine terminated by
a call Z, each higher value (if any) indicates that
the subroutine terminated by calling a distinct label
outside the subroutine body;

• A dataflow analysis is then carried out on this modified
subroutine body. If the analysis succeeds, then the
subroutine is converted to a procedure.

• Subroutine calls are replaced by the following WSL
code:
SUBR();
if exit flag = 0 then call dispatch
elsif exit flag = 1 then call Z
elsif exit flag = 2 then call A
. . . fi
whereSUBR is the name of the new procedure.

• Constant propagation will now eliminate the dispatch
call, as in Section III-B

If the subroutine body executes code which causes an abnormal
exit or a return from the whole module, then this code will be
translated to WSL statements ending in acall Z. This can be
handled as an exit from the subroutine, as above. In our case
studies, over 21% of modules neededexit flag before they
could be restructured (see Section V).

D. Returning to the Caller’s Caller

Suppose subroutineSUB1, which has a return address inR1
calls subroutineSUB2 which has a return address inR2. The
WSL code for a return fromSUB2 will therefore be:

destination := r2; call dispatch

However, SUB2 might also decide to return to the caller’s
caller: i.e. to the address inR1 which is the return address
for SUB1:

destination := r1; call dispatch

If this is the case, then the dataflow analysis will fail: since the
value ofdestination on this call todispatch is not the value in
r2 on entry toSUB2.

To handle this situation, if the dataflow analysis fails then
FermaT will check that:

• There are calls todispatch wheredestination is loaded
from the return register; and

• There are other calls todispatch wheredestination is
loaded from adifferent register.

If this is the case, then the second set of calls are treated
as subroutine exits (as in Section III-C) and the dataflow
analysis is re-computed. Note that this rule only applies when
the original dataflow analysis failed: since it is possible for
a subroutine to save the return register and reload it into a
different register.

E. Fall Through into a Subroutine

Another common case is where a subroutine consists
of some initial code followed by the execution of another
subroutine, which uses the same return register. Instead of
implementing a call to the second subroutine, a parsimonious
programmer might just branch directly to the start of the
second subroutine, or even arrange the code so that execution
“falls through” into the top of the second subroutine. For
example:

SUB1 ...
body of SUB1

SUB2 ...
body of SUB2
BR R14

where bothSUB1 and SUB2 take a return address inR14. If
SUB2 can be converted to a WSL procedure, then the resulting
WSL code is:

SUB1 ≡

. . . body of SUB1. . .; SUB2(); call dispatch end

Now it should be possible to processSUB1.

Note that if the initialisation code inSUB1 includes a
subroutine return, then the branch (or fall through) toSUB2
can be mistakenly identified as an exit fromSUB1. This does
not necessarily prevent restructuring, but may cause problems
later.

F. Multiple Entry Points

Section III-E is an example of a more general problem: a
subroutine which has multiple entry points, or, equivalently,
multiple subroutines which share a section of code. (These
issues illustrate our comment in Section II-A that it can be
difficult to determine which instructions form the body of a
subroutine).

If the common code can be restructured into a single action
which callsdispatch (or dispatch and Z only), then FermaT
can create a WSL procedure out of the common code. In this
case, the two subroutines can be “disentangled” since each
includes a call to the common code.

G. Branch to the Middle of a Subroutine

A subroutineSUBX may include in its body a direct branch
(conditional or unconditional) into the middle of another
subroutineSUBY. This includes two common cases (among
others):

1) SUBY may be the subroutine which calledSUBX,
or may be the caller’s caller. In this case, instead
of returning normally, we have an abnormal exit
(Section III-C). If it is possible to callSUBX without
having previously calledSUBY, then there is a bug in
the program: since whenSUBY tries to return, there
will be no valid return address.

2) SUBY may be using the same return register asSUBX.
In this case, we have code which is common to both
SUBX andSUBY. Instead of creating a new subroutine
to share this common code, the programmer has made
use of the fact that both subroutine use the same
return register.

For correct restructuring, these cases may need to be handled
differently. Case (1) is an exit from the middle of a subroutine
(Section III-C), so the branch should be translated into code
which sets a flag and returns. Case (2) is an example of
shared code: the code we branch to needs to be converted
to a procedure which can be called from bothSUBX andSUBY.

FermaT can usually distinguish between these two situa-
tions due to a careful ordering of the application of restructur-
ing heuristics.

H. Multiple Return Points

If a subroutine is carrying out a test, whose result needs to
be returned to the caller, then the usual way to handle this is
either:

1) Set a flag in the subroutine which is tested in the
caller; or

2) Execute a test (eg a compare instruction) in the
subroutine just before returning. The test will set
the condition code, and the condition code is not
modified by the Branch to Register instruction, so
the condition code can be tested by the caller.

However, some programmers eschew these methods and in-
stead make use of the fact that an unconditional branch in-
struction is exactly four bytes long. If an unconditional branch
is inserted immediately after the call (BAL) instruction, then
the called subroutine can choose to return to the instruction
immediately after the branch, by incrementing the return
address by four. The code to call the subroutine is:

BAL SUBR,R14
B SUBERR

NORM ... normal return

In this case, the code labelledNORM may appear to be unreach-
able (typically, it is not even labelled): but it can be reached
if SUBR increments the value inR14 by four before returning.
Note that it is quite common for aBAL to be followed by
an unconditional branch (which may in turn be followed by
unreachable code) when the subroutine doesnot increment its

return address: so the two situations must be distinguishedby
the migration engine.

The body ofSUBR may contain code like this:

SUBR ...
CLC WRKMM,=CL2’12’
BH SUBRERR
B 4(R14)

SUBRERR BR R14

If the month number (inWRKMM) is greater than 12, then we flag
the error by returning to the return address passed by the caller
(the caller will then execute the branch toSUBERR). Otherwise,
we return to the address four bytes on from the given return
address (which leads to the code labelledNORM).

The instructionB 4(R14) translates to WSL as:

destination := r14 + 4; call dispatch

The same effect could be achieved viaLR R14,4(R14) fol-
lowed byBR R14, which will translate as:

r14 := r14 + 4; destination := r14; call dispatch

More generally, the subroutine call can be followed by two
or more unconditional branches:

BAL SUBR,R14
B RET1
B RET2
... more branches
B RETn

FINAL ... final return point is here

To select the return point,SUBR can incrementR14 by the
appropriate multiple of 4 (0, 4, 8, 12 etc.).

This will have the effect of preventing the dataflow analysis
from succeeding: we cannot prove that the original value in the
return register ends up in the variabledestination, if the value
has been incremented by 4 (or more) in between. To handle
this case, the dataflow analysis needs to be more subtle:

• Any increment of the return address (by a multiple of
4) is noted, by setting the flagIncremented Return;

• An increment of the return address by a multiple of 4
is treated as a copy, as far as the dataflow analysis is
concerned.

With these modifications, the dataflow analysis will succeed
but will note that the return address may be incremented. since
the increment may be inside a loop, it may not be possible
(via static analysis of the subroutine body) to determine the
exact set of possible increments for the return address: and
therefore the number of return points. Instead, the migration
engine looks at the set of calls and checks for a sequence of
one or more unconditional branch instructions after the call to
determine the set of return points.

Note that there may also be abnormal exits from the
subroutine: so we choose not to use the variableexit flag to
determine the required return point. Instead, we use the return

register to indicate which return point the subroutine selected.
The migration engine generates code which sets the return
register to zero, then calls the procedure (generated from the
subroutine body), then tests the return register to see which
return point is required:

r14 := 0;
SUBR();
if r14 = 0 then call RET1
elsif r14 = 4 then call RET2

. . .
elsif r14 = 4 ∗ (n − 1) then call RETn

else call FINAL fi

I. Inline Parameters Passed to Subroutine

Usually, parameters are passed to a subroutine in named
data areas, or in registers or via a pointer in a register. However,
some programmers have noticed that the return register can
serve two purposes: if we include inline data immediately after
the subroutine call, then this data can be accessed via the return
register.

This situation is particularly tricky because a single register
is, in effect, being used to store two pieces of information:(a)
a pointer to the parameters; and (b) an offset from the return
address. In the assembler, the code is arranged so that these
two values are the same, but in the WSL translation the values
are distinct. Therefore, the assembler to WSL translator has
to detect when parameters are being passed as inline data and
generate specific code to handle this. Just because a subroutine
call is followed by data does not necessarily mean that this
data is being used as parameters: for example an error routine
might be called viaBAL, even though it does not return. In
this case, the data could be the start of a data area used by
the module. The assembler to WSL translator therefore checks
that the following three conditions all hold:

1) The subroutine is called via aBAL or BALR which
is followed by data declarations, which in turn are
followed by more executable code;

2) The subroutine body uses the return register to ad-
dress data, eg via a Load orMVC (Move Characters)
instruction;

3) The subroutine return is to an offset on the return
register.

If all these conditions hold, then the subroutine call is trans-
lated as follows:

1) Ensure that the first inline parameter (the first data
declaration after the call) has a label;

2) Generate the following code for the call:
rn := !XF inline par(code, ADDRESS OF(par));
call SUBR
wherecode is the dispatch code for the return address
(the address of the code following the inline data),
andpar is the name of the first data area;

3) Change any branch to the return address plus an
offset, where the offset equals the length of the inline
data, to a direct return.

The transformations which scan WSL code looking for sub-
routine calls are modified to check for WSL code of the form

rn := !XF inline par(code, ADDRESS OF(par));
call SUBR

as well asrn := code; call SUBR.

Once a subroutine has been detected and the control flow
and dataflow analysis confirmed that it can be converted to a
procedure, the statement

rn := !XF inline par(code, ADDRESS OF(par))

is converted torn := ADDRESS OF(par). The converted
subroutine body (which is now a WSL procedure) can now
treat rn as a simple data pointer from which the parameters
can be addressed: in other words, the code in the subroutine
which accesses the parameters requires no special handling.

This approach can also handle cases where a subroutine
has both inline parametersand multiple return points.

J. Inline Code Converted to a Subroutine

One day a programmer wanted to re-use a section of inline
code which appeared elsewhere in the program. Instead of
going to all the trouble of extracting this section of code and
turning it into a subroutine, he or she realised that by inserting
a suitable Load Address instruction just before the block of
code, and a Branch to Register instruction just after it, the
block of code could be used as a subroutine without moving
it out of place. The modified code looks like this:

LA R14,RETLAB
SUBR . . .

block of code is here
. . .
BR R14

RETLAB . . .

Elsewhere, the block of code can now be called as a subroutine
via: BAL SUBR,R14

This form of subroutine causes no difficulty to FermaT
because the Load Address instruction, followed by falling
through to theSUBR label generates the following WSL:

r14 := 1234; call SUBR

where 1234 is the offset of the labelRETLAB. The dispatch
code 1234 is also added to thedispatch action with correspond-
ing labelRETLAB. This is identical to the code generated by a
normal subroutine call. The code betweenSUBR andRETLAB
is converted to a WSL procedure, called as follows:

SUBR(); call RETLAB

and theRETLAB action is then restructured in the usual way.

IV. WSL TO TARGET LANGUAGE TRANSLATION

Once the automated WSL to WSL transformation stage is
complete, the final stage in the migration process is translation
from WSL to the target language. However, this is preceded
by a further transformation stage in which the WSL code is
manipulated to bring it closer to the target language. This
stage is particularly important for migration to COBOL since

the COBOL programming language has many restrictions and
limitations which must be accommodated in order to generate
compilable and executable COBOL.

A major limitation with some COBOL compilers is a
lack of bit manipulation functions. Although bit fields and bit
operations were introduced to the language in the ISO/IEC
1989:2002 standard, which was published in 2002, with a
CS (Committee Draft) available in 1997, current mainframe
compilers do not have native support for these operations.
The WSL to COBOL translator can generate code for several
targets including the following:

1) If the target is for Microfocus COBOL, then calls are
generated to the built-in bit operations in Microfocus;

2) If the target is for IBM mainframe COBOL, then calls
are generated to assembler support functions which
implement the bit operations. These can process the
bit operation at full speed, albeit with the overhead
of a call.

Pack and unpack instructions (which convert string data to
packed decimal and vice versa) can usually be implemented as
a COBOL MOVE. For example, moving from a decimal field
to a packed field will convert the string of decimal digits to
a packed decimal value. However, the assembler instructions
do not check the validity of the data, so a pack or unpack
from a one byte source to a one byte target simply reverses
the nybbles in the source field. This operation is frequently
applied to general hex data, so has to be translated as a call
to a support function.

Pointers are available in COBOL via theSET ADDRESS
OF ... and SET ... TO ADDRESS OF statements but many
COBOL programmers are unfamiliar with pointers, so the
transformations attempt to eliminate as many pointer opera-
tions as possible via dataflow analysis and converting pointers
to array indices.

The actual translation step is then a simple line-by-line
translation of the “COBOL-like” WSL into a COBOL source
file. This is followed by a further conversion of the COBOL
source which handles formatting details such as indentation
levels, spacing, and coping with the COBOL file format. A
COBOL source line has a fixed format, dating back to the
punched card era. The on-line card readers for the IBM 704,
709, 7090 and 7094 computers (introduced between 1954 and
1964) operated only in ‘row binary’ format: reading cards row-
by-row into 12 pairs of 36-bit words (2×36 = 72). The reader
was not capable of reading more than 72 of the 80 columns
of a card, so early compilers and assemblers could only ‘see’
those 72 columns. All COBOL compilers, including the most
recent versions, therefore ignore columns 73–80 in order tobe
compatible with existing source code.

V. CASE STUDIES

To test the effectiveness of the FermaT migration engine at
restructuring commercial assembler modules, we took a copy
of an assembler system currently in production in a large
American insurance company. The system consists of over
3,000 programs and 8,991 assembler modules (many of which
are used in more than one program). The FermaT migration
engine was able to restructure all but 84 out of the 8,991

modules for a success rate of 99.07%. A significant number
of the failures turned out, on analysis, to be due to bugs in
the code or to code which would only work “by accident”
(in the sense that an apparently innocuous change to the
code would cause an error elsewhere in the program). Of the
modules which were able to be restructured, 1,953 (21.9%) had
subroutines with unstructured exits: these needed theexit flag
variable to be added before they could be restructured (see
Section III-C).

A second case study involved 1,822 modules from an
employee management system. After fixing all bugs uncovered
by the migration process, all but seven modules could be
restructured automatically, for a success rate of 99.62%. Of
the modules which were restructured, 368 (21.3%) needed the
exit flag variable.

A major requirement is for the migrated COBOL to be
maintainable. All modules which restructure will be converted
into a hierarchy of single-entry single-exit procedures consist-
ing of structured code with no GO TO statements. In addition,
the McCabe cyclomatic complexity is typically reduced by at
least 25%.

An example of a bug uncovered by the failure to restructure
is the following code:

BAS R04,S00100
...

S00100 do some processing
...
L R04,S00R04
BR R04

Elsewhere in the module,S00R04 is used to save and restore
the return address inR4, but in this subroutine the register is
“restored” without having been saved. The return address will
be overwritten by the contents ofS00R04, which might be
zero, or the return address left over from a previous call to a
different subroutine.

Another example:

LA R15,4 IT CAME FROM VIM

BAL R10,SUBR020 GO DECIDE WHICH ONE

LTR R5,R5 DID WE FIND ANYTHING

BZ ERROR040 NO, SO ERROR CONDITION

...

ERROR040 EQU * ERROR CONDITION IF WE GET HERE

ST R15,ERRPECD2 SAVE ERROR CODE

LA R15,252 MAJOR ERROR CODE

ICM R15,12,ERRMODID INDICATE THE MODULE

BR R10 AND RETURN

Here, this code was called with a return address inR10.
The error handler atERROR040 stores some information and
then attempts to return. But when we branch toERROR040
after calling SUBR020, R10 now contains the return address
that was passed in the call toSUBR020 soBR R10 will branch
back to theLTR instruction and loop endlessly.

A. Performance

Performance of the migrated code depends somewhat on
the type of code and also depends on the target platform.
Typically, there is little degradation in performance when
the COBOL is running in the mainframe environment: one
test reported a 4% decrease in performance. In some cases,
the COBOL can perform better than the original assembler:
for example, the COBOL compiler can make use of newer
and faster instructions than were available to the original
assembler programmers. Also, self-modifying code can cause
a severe performance hit on modern machines since the whole
instruction cache is flushed when any instruction is modified.

VI. CONCLUSION

Despite the enormous technical and theoretical challenges
presented by the analysis of assembler code: totally automated
migration of assembler to a high-level language such as C or
COBOL is feasible with complete restructuring achieved for
over 99% of assembler modules.

REFERENCES

[1] Robert Amatruda, “The Critical Need to Protect Mainframe Business-
Critical Applications,” IDC, White Paper, Jan., 2012.

[2] Compuware Corporation, “Mainframe Succession: Long Live the Main-
frame,” Compuware, White Paper, 2012.

[3] Capers Jones,The Year 2000 Software Problem — Quantifying the Costs
and Assessing the Consequences., Addison Wesley, Reading, MA, 1998.

[4] Capers Jones, “Backfiring: Converting Lines of Code to Function Points,”
IEEE Computer28 #11 (Nov., 1995), 87–88.

[5] J. Scott, “The e-Business Hat Trick — Adaptive Enterprises, Adaptable
Software, Agile IT Professionals,”Cutter IT Journal13 #4 (Apr. 2000),
7–12.

[6] Harry Sneed & Chris Verhoef, “Reengineering the Corporation–A Man-
ifesto for IT Evolution,” 〈http: //www.cs.vu.nl/∼x/br/br.html〉.

[7] M. Ward, “Assembler to C Migration using the FermaT Transformation
System,” International Conference on Software Maintenance, 30th Aug–
3rd Sept 1999, Oxford, England(1999).

[8] Martin Ward, “Pigs from Sausages? Reengineering from Assembler to
C via FermaT Transformations,”Science of Computer Programming,
Special Issue on Program Transformation52 #1–3 (2004), 213–255,〈http:
// www. cse. dmu. ac. uk/∼mward/ martin/ papers/ migration-t.ps.gz〉
doi:dx.doi.org/10.1016/j.scico.2004.03.007.

[9] Martin Ward & Hussein Zedan, “Combining Dynamic and Static Slic-
ing for Analysing Assembler,”Science of Computer Programming75 #3
(Mar., 2010), 134–175,〈http: // www. cse. dmu. ac. uk/∼mward/ martin/
papers/combined-slicing-t.pdf〉 doi:10.1016/j.scico.2009.11.001.

[10] Martin Ward, Hussein Zedan & Tim Hardcastle, “Legacy Assembler
Reengineering and Migration,”20th IEEE International Conference on
Software Maintenance, 11th-17th Sept Chicago Illinois, USA. (2004).

[11] Martin Ward, Hussein Zedan, Matthias Ladkau & Stefan Natelberg,
“Conditioned Semantic Slicing for Abstraction; Industrial Experiment,”
Software Practice and Experience38 #12 (Oct., 2008), 1273–1304,〈http:
// www. cse. dmu. ac. uk/∼mward/ martin/ papers/ slicing-paper-final.pdf〉
doi:doi.wiley.com/10.1002/spe.869.

