
Combining Dynamic and Static Slicing for Analysing Assembler

Martin Ward and Hussein Zedan

Software Technology Research Lab

De Montfort University

The Gateway,

Leicester LE1 9BH, UK

martin@gkc.org.uk and zedan@dmu.ac.uk

Abstract

One of the most challenging tasks a programmer can face is attempting to analyse and
understand a legacy assembler system. Many features of assembler make analysis difficult, and
these are the same features which make migration from assembler to a high level language
difficult. In this paper we describe some of the methods used in the FermaT transformation
system for analysing and migrating assembler systems. One technique we discuss in detail
is to combine a simple dynamic slice, computed with virtually no overhead, and a static
slice implemented using program transformation technology, to generate very concise high-level
descriptions of the sliced code.
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1 Introduction

Over 70% of all business critical software runs on mainframes [25]. If we examine the global
distribution of language use, we find that over 10% of all code currently in operation is implemented
in Assembler. This amounts to 140–220 billion lines of assembler code [18], much of which is
running business critical and safety critical systems. The percentage varies in different countries,
for example, in Germany it is estimated that about half of all data processing organizations uses
information systems written in Assembler [26].

Analysing assembler code is significantly more difficult than analysing high level language code.
With a typical well-written high level language program it is fairly easy to see the top level structure
of a section of code at a glance: conditional statements and loops are clearly indicated, and the
conditions are visible. A programmer can glance at a line of code and see at once that it is, say,
within a double-nested loop in the ELSE clause of a conditional statement. Assembler code, on the
other hand, is simply a list of instructions with labels and conditional or unconditional branches. A
branch to a label does not indicate whether it is a forwards or backwards branch: and a backwards
branch does not necessarily imply a loop. Simply finding all the branch instructions which lead to
a particular label involves scanning the whole program (and just because an instruction does not
have a label, does not mean that it cannot be branched to!)

As well as being more difficult to analyse, for a given functionality there is more code to analyse.
A single function point requires on average, about 575 lines of basic assembler or 400 lines of macro
assembler to implement, while only 220 lines of C or COBOL are needed. A higher level language
such as perl will require only 50 lines on average to implement one function point [19].

Assembler systems are also more expensive to maintain than equivalent systems written in high
level languages. Caper Jones Research computed the annual cost per function point as follows:

Assembler £48.00
PL/1 £39.00
C £21.00
COBOL £17.00

In previous papers [32,39,42] we have described the application of program transformation
technology to automated migration from assembler to a high level language. The basic approach
follows three stages:

1. Translate the assembler into our internal Wide Spectrum Language (called WSL);

2. Apply correctness-preserving WSL to WSL transformations to the code to restructure, sim-
plify, raise the abstraction level, etc. These may include syntactic and/or semantic code
slicing [41];

3. Translate the high-level WSL directly into the target language (currently either C or COBOL).

Since these papers were published there have been many improvements made to FermaT in-
cluding:

• Improved detection and translation of self-modifying code;

• Extensive jump table detection (see Section 2.2);

• Improved dataflow analysis;

• Array detection and analysis (including detection of arrays of structures);

• Implementation of program slicing for WSL (our internal Wide Spectrum Language) and
assembler;

• Static Single Assignment computation.
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This paper describes some of the recent developments in the technology, focusing on the specific
task of extracting a high-level abstract description of the semantics of an assembler module when
executed on a specific input state, or a finite set of different input states.

2 The Challenge for Automated Assembler Analysis

The technical difficulty of generating a high-level abstract description of assembler code should not
be underestimated. Translating assembler instructions to the corresponding HLL code, and even
unscrambling spaghetti code caused by the use of labels and branches, is only a very small part of
the analysis task. Other technical problems include:

• Register operations: registers are used extensively in assembler programs for intermediate
data, pointers, return addresses and so on. The high-level code should eliminate the use of
registers where possible;

• Condition codes: test instructions set a condition code or flags which can then be tested
by conditional branch instructions. These need to be combined into structured branching
statements such as if statements or while loops: note that the condition code may be tested
more than once, perhaps at some distance from the instruction which sets it. So it is not
sufficient simply to look for a compare instruction followed by a conditional branch;

• Subroutine call and return: in IBM 370 assembler a subroutine call is implemented as a BAL
(Branch And Link) instruction which stores the return address in a register and branches to
the subroutine entry point (there is no hardware stack). To return from the subroutine the
program branches to the address in the register via a BR (Branch to Register) instruction.
Return addresses may be saved and restored in various places, loaded into a different register,
overwritten, or simply ignored. Also, a return address may be incremented (to branch
over parameter data which appears after the BAL instruction). Merely determining which
instructions form the body of the subroutine can be a major analysis task: there is nothing
to stop the programmer from branching from the middle of one subroutine to the middle of
another routine, for example;

• The 370 instruction set includes an EX (EXecute) instruction which takes a register number
and the address of another instruction. The referenced instruction is loaded and then modified
by the value in the register, and then the modified instruction is executed. This can be
used to implement a “variable length move” instruction, by modifying the length field of a
“move characters” instruction, but any instruction can be EXecuted. EXecuting another EX
instruction causes an ABEND: some programmers write “EX R0,*” (where the instruction
executes itself) precisely to achieve an ABEND: so the translator has to take this into account;

• Jump tables: these are typically a branch to a computed address which is followed by a
table of unconditional branch instructions. The effect is a multi-way branch, similar to the
“computed GOTO” in FORTRAN. There are many ways to implement a jump table in
assembler: often the branch into the table will be a “branch to register” instruction which
must be distinguished from a “branch to register” used as a subroutine return;

• Self-modifying code: a common idiom is to implement a “first time through switch” by
modifying a NOP instruction (NOP is a “branch never” instruction) into an unconditional
branch, or modifying an unconditional branch into a NOP. Less commonly a conditional
branch can be modified or created. Overwriting one instruction with a different one is not
uncommon, but more general self-modifying code (such as dynamically creating a whole block
of code and then executing it) is rare in 370 assembler systems;

• System macros: the macro expansion for a system macro typically stores values in a few
registers and then either executes an SVC call (a software interrupt which invokes an operating
system routine) or branches to the operating system. It does not make sense to translate the
macro expansion to HLL, so the macros should be detected and translated separately. Some
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macros may cause “unstructured” transfer of control: for example the system GET macro
(which reads a record from a file) will branch to a label on reaching the end of the file. The
end of file label is not listed in the macro, but in the DCB (Data Control Block) which itself
may only be indirectly indicated in the GET macro line. The DCB itself may refer to a
DCBE macro which records the EODAD (end of file) address label;

• User macros: users typically write their own macros, and these may include customised
versions of system macros. The translation technology needs to be highly customisable to
cope with these and to decide in each case whether to translate the macro directly, or translate
the macro expansion;

• Structured macros: in the case of so-called “structured macros” (IF, WHILE etc.) it is best
simply to translate the macro expansion because there are no restrictions on using structured
macros in unstructured ways. The simplest solution is to translate the macro expansion and
use standard WSL to WSL transformations to restructure the resulting code.

• Data translation: all the assembler data declarations need to be translated to suitable HLL
data declarations. Assembler imposes no restrictions on data types: a four byte quantity can
be used interchangeably as a 32 bit integer, a floating point number, a seven digit packed
decimal number, a four digit zoned decimal number, a pointer, a pair of 16 bit integers, an
array of four characters, or 32 separate one-bit flags. Ideally, the HLL data should be laid out
in memory in precisely the same way as the assembler data: so that accessing one data element
via an offset from the address of another data element will work correctly. Reorganising the
data layout (if required) is a separate step that should be carried out after migration, rather
than attempting to combine two complex operations (migration and data reorganisation) into
a single process. Symbolic data names and values should be preserved where possible, for
example:

RECLEN EQU *-RECSTART

should translate to code which defines RECLLEN in terms of RECSTART;

• Pointers: these are used extensively in many assembler programs. If the HLL is C then
pointers and pointer arithmetic are available. For COBOL it is still possible to emulate the
effect of pointer arithmetic, but the code is less intuitive and less familiar to many COBOL
programmers. With COBOL, more work is required to eliminate pointers where possible by
accessing data directly (possibly via an index);

• Memory addressing: DSECT data in a 370 assembler program is accessed via a base register
which contains the address of the start of the block of data. This is added to a symbolic offset
to compute the memory address. If the base register is modified, then the same symbolic
data name will now refer to a different memory location;

• Packed Decimal Data: 370 assembler (and COBOL also) have native support for packed
decimal data types. IBM’s mainframe C compiler also supports packed decimal data, but
if the migration is to C code on a non-IBM platform then either the data will need to be
translated, or the packed decimal operations will have to be emulated;

• Pointer lengths may be different in the source and target languages. Note that this may con-
flict with the requirement to preserve the memory layout. It may be necessary to implement
a pointer stored in memory as a 32 bit offset from a 64 or 128 bit base pointer.

• “Endianness”: when migrating to different hardware platforms, the two systems might store
multi-byte integers in different orders (most significant byte first vs least significant byte
first). For example, the IBM 370 is a “big endian” machine with the most significant byte
of a number stored first. The Intel PC architecture is “little endian”. So suppose that the
assembler program loads the forth byte of a four byte field. If this field contains an integer,
then we want to load the low order byte (which is the first byte on a little endian machine).
But if this field contains a string, then we want the forth character, not the first. There is
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nothing to stop the assembler programmer from using a four byte character field as an integer,
and vice-versa!

Describing how all these challenges are met would take far more space than a single paper, so
we focus on two examples in the next two sections.

2.1 Condition Codes

The condition codes are implemented in the initial translation as the variable cc: this is a special
variable which can only take one of the four values 0, 1, 2 or 3. An instruction, such as COMPARE,
which sets the condition code is translated to WSL code to assign to cc. For example CR R1,R2 is
translated:

if r1 = r2 then cc := 0
elsif r1 < r2 then cc := 1

else cc := 2 fi

A conditional branch instruction is translated into code which tests cc, for example, BNH FOO

(branch on not high) becomes:

if cc <> 2 then call FOO fi

After the first statement, FermaT knows the condition under which cc is set to each of the possible
values. These are listed in Table 1.

Value Condition

0 r1 = r2

1 r1 < r2

2 r1 > r2

3 false

Table 1: Conditions for each cc value

The Constsnt Propagation transformation scans forwards through the control flow of the program
looking for references to cc. Each condition on cc is replaced by the appropriate set of conditions
from the table. In our example, cc <> 2 is the same as cc = 0 ∨ cc = 1 ∨ cc = 3 so the condition
is replaced by the formula r1 = r2 ∨ r1 < r2 ∨ false which simplifies to r1 6 r2. So the code
becomes:

if r1 = r2 then cc := 0
elsif r1 < r2 then cc := 1

else cc := 2 fi

if r1 6 r2 then call FOO fi

In most cases, the conditional branch immediately follows the condition-setting instruction, but
this cannot be relied upon. In some cases the two instructions may be some distance apart, and
further transformations are needed to bring them together. Also, note that the assignments to cc

have not (yet) been deleted: there may be further references to these cc values elsewhere in the
program. Once all references to cc have been replaced in this way, all assignments to cc can be
deleted.

2.2 Jump Tables

To find jump tables the translator looks for various “candidate” instructions. Among other cases,
these include:

• A LOAD instruction which loads from a memory location which contains the address of a
code line, where the instruction includes an index register;
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• A branch instruction which has a code label and an index register: if the branch is to the
start of a sequence of branch instructions, then these are the entries in the table. The index
register determines which branch instruction will be executed;

• A LOAD or LOAD ADDRESS of a code label, followed by a branch to register or subroutine
call, which uses that register plus an index register;

• A LOAD ADDRESS instruction which adds the address of a code label to the value in a
register, and which is followed by a branch to register instruction on that register;

In each case, when a jump table has been detected then a multi-way IF statement is constructed
from the list of target addresses.

2.3 Assembler Slicing

The authors are not aware of any practical tools, other than FermaT, which are capable of static
or dynamic slicing of IBM assembler modules.

Commercial assembler systems can be very large: applications which comprise of several million
lines of code and many thousands of modules are not uncommon. The systems have grown over
many years and are highly interdependent, so that it is difficult or impossible to decompose a large
system into a number of smaller self-contained subsystems.

The assembler modules are usually “algorithmically straightforward” (compared, for example,
to a typical scientific program) but it is hard to see the wood for the trees with lots of code to handle
different types of input, many special cases, and thorough error checking and sanity checking of all
inputs. There may also be obsolete and redundant code which has been left in because nobody is
quite sure what the code does or why it was there in the first place.

2.4 Embedded Systems

A major application for assembler code is in embedded systems. Many embedded systems were
developed for processors with limited memory and processing capability, and were therefore imple-
mented in tightly coded hand written assembler. Modern processors are now available at a lower
cost which have much more processing and memory capacity and with efficient C compilers. To
make use of these new processors the embedded system needs to be re-implemented in a high level
language in order to reduce maintenance costs and enable implementation of major enhancements.
Many of the challenges with 370 assembler (such as the EXecute instruction and self-modifying
code) are not relevant to embedded systems processors, but other challenges become important
(such as 16 bit addresses and 8 or 16 bit registers). See [39] for a description of a major migration
project where over half a million lines of 16 bit assembler, implementing the core of an embedded
system, were migrated to efficient and maintainable C code.

3 Our Approach

Our approach to understanding and migrating assembler code involves the following stages:

1. Execute the assembler program on sample inputs, recording a trace of which basic blocks
were executed;

2. Translate the assembler to WSL;

3. Insert abort statements in the basic blocks which were never executed;

4. Apply semantics-preserving WSL to WSL transformations to simplify the WSL code using
the abort statements and raise the abstraction level;

5. Apply semantic slicing on the outputs of interest to generate a high-level abstract represen-
tation of the semantics of the program for the given inputs and outputs.
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Final program
states

Initial program
states

Non-terminating
or error states

Figure 1: The semantics of a program

We will first describe WSL and the transformation theory, next we will describe how program
slicing can be defined as a transformation within the theory. This mathematical approach to
program slicing lends itself naturally to several generalisations, the most important and general of
which is conditioned semantic slicing. We describe the main transformations related to assembler
analysis, including abort processing and loop unrolling.

Finally, we present two case studies each consisting of an assembler module which is analysed
via combined (dynamic plus static) slicing and transformation to determine a high-level abstract
description of the semantics of the module for a given set of inputs and outputs.

4 WSL AND PROGRAM TRANSFORMATION THEORY

The way to get a rigourous proof of the correctness of a transformation is to first define precisely
when two programs are “equivalent”, and then show that the transformation in question will turn
any suitable program into an equivalent program. To do this, we need to make some simplifying
assumptions: for example, we usually ignore the execution time of the program. This is not
because we don’t care about efficiency but because we want to be able to use the theory to prove
the correctness of optimising transformations: where a program is transformed into a more efficient
version.

More generally, we ignore the internal sequence of state changes that a program carries out: we
are only interested in the initial and final states.

Our mathematical model is based on denotational semantics. We define the semantics of a
program as a function from states to sets of states. A state is simply a function which gives a value
to each of the variables in a given set V of variables. The set V is called the state space: a program
may have different initial and final state spaces. For each initial state s, the function f returns
the set of states f(s) which contains all the possible final states of the program when it is started
in state s. A special state ⊥ indicates nontermination or an error condition. If ⊥ is in the set of
final states, then the program might not terminate for that initial state. If two programs are both
potentially nonterminating on a particular initial state, then we consider them to be equivalent on
that state. (A program which might not terminate is no more useful than a program which never
terminates: we are just not interested in whatever else it might do). So we define our semantic
functions to be such that whenever ⊥ is in the set of final states, then f(s) must include every
other state.

This restriction also simplifies the definition of semantic equivalence and refinement. If two
programs have the same semantic function then they are said to be equivalent.

A transformation is an operation plus a set of conditions, called the applicability conditions.
The operation takes any program satisfying the applicability conditions and returns an equivalent
program. In the literature, “program transformation” has a very broad and varied meaning: it can
be used to refer to just about any operation which takes a program, or program fragment in some
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language and returns another program or program fragment in the same or a different language. In
the context of this paper, a “transformation” is a denotational semantics preserving WSL to WSL
transformation.

A generalisation of equivalence is the notion of refinement : one program is a refinement of
another if it terminates on all the initial states for which the original program terminates, and for
each such state it is guaranteed to terminate in a possible final state for the original program. In
other words, a refinement of a program is more defined and more deterministic than the original
program. If program S1 has semantic function f1 and S2 has semantic function f2, then we say
that S1 is refined by S2 (or S2 is a refinement of S1), and write:

S1 ≤ S2

if for all initial states s we have:

f2(s) ⊆ f1(s)

If S1 may not terminate for a particular initial state s, then by definition f1(s) contains ⊥ and every
other state, so f2(s) can be anything at all and the relation is trivially satisfied. The program abort

(which terminates on no initial state) can therefore be refined to any other program. Insisting that
f(s) include every other state whenever f(s) contains ⊥ ensures that refinement can be defined as
a simple subset relation.

A transformation is any operation which takes a statement S1 and transforms it into a seman-
tically equivalent statement S2. A transformation is defined in the context of a set of applicability
conditions, denoted ∆. This is a (possibly empty) set of formulae which give the conditions under
which the transformation is valid. If S1 is equivalent to S2 under applicability conditions ∆ then
we write:

∆ ⊢ S1 ≈ S2

An example of an applicability condition is a property of the function or relation symbols which a
particular transformation depends on. For example, the statements x := a ⊕ b and x := b ⊕ a are
equivalent when ⊕ is a commutative operation. We can write this transformation as:

{∀a, b. a ⊕ b = b ⊕ a} ⊢ x := a ⊕ b ≈ x := b ⊕ a

An example of a transformation which is valid under any applicability conditions is reversing an if

statement:
∆ ⊢ if B then S1 else S2 fi ≈ if ¬B then S2 else S1 fi

More examples can be found in [41].

4.1 WSL

Over the last twenty years we have been developing the WSL language, in parallel with the
development of a transformation theory and proof methods. In this time the language has been
extended from a simple and tractable kernel language to a complete and powerful programming
language. At the “low-level” end of the language there exists automatic translators from IBM
Assembler, Intel x86 Assembler, TPF Assembler, a proprietory 16 bit assembler and PLC code into
WSL, and from a subset of WSL into C, COBOL and Jovial. At the “high-level” end it is possible
to write abstract specifications, similar to Z and VDM. WSL and the transformation theory has
been discussed in other papers before (see [24,31,36]). A description of WSL can also be found
in [46].

The main goals of the WSL language are:

• Simple, regular and formally defined semantics

• Simple, clear and unambiguous syntax
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• A wide range of transformations with simple, mechanically-checkable correctness conditions

• The ability to express low-level programs and high-level abstract specifications

The WSL language and the WSL transformation theory is based on infinitary logic: an extension
of first order logic which allows infinitely long formulae. These infinite formulae are very useful
for describing properties of programs: for example, termination of a while loop can be defined as
“Either the loop terminates immediately, or it terminates after one iteration or it terminates after
two iterations or ...”. With no (finite) upper bound on the number of iterations, the resulting
description is an infinite formula. (Note that the formula which defines the statement “the loop
terminates after n iterations” is a different formula for each n, not a formula with n as a free
variable. So it is not possible to combine these into a finitary first order logic formula of the form:
“∃n. the loop terminates after n iterations”).

The use of first order logic means that statements in WSL can include existential and universal
quantification over infinite sets, and similar (non-executable) operations. The language includes
constructs for loops with multiple exits, action systems, side-effects etc. while the transformation
theory includes a large catalogue of proven transformations for manipulating these constructs,
most of which are implemented in a transformation system, called FermaT. See [39] for a detailed
description of the WSL language and transformation theory.

The transformations can be used to derive a variety of efficient algorithms from abstract speci-
fications or the reverse direction: using transformations to derive a concise abstract representation
of the specification for several challenging programs.

4.1.1 Syntax of the Kernel Language

A WSL statement is a syntactic object: a collection of symbols structured according to the syntactic
rules of infinitary first order logic, and the definition of WSL. There may be infinite formulae as
components of the statement. The WSL language is built on a simple and tractable kernel language
which is extended into a powerful programming language by means of definitional transformations.
These are transformations which define the meaning of new programming constructs by expressing
them in terms of existing constructs.

The WSL kernel language requires just four primitive statements and three compound state-
ments. Let P and Q be any infinitary logical formulae and x and y be any finite, non-empty lists
of variables. The primitive statements are:

1. Assertion: {P} is an assertion statement which acts as a partial skip statement. If the
formula P is true then the statement terminates immediately without changing any variables,
otherwise it aborts (we treat abnormal termination and non-termination as equivalent, so a
program which aborts is equivalent to one which never terminates);

2. Guard: [Q] is a guard statement. It always terminates, and enforces Q to be true at this point
in the program without changing the values of any variables. It has the effect of restricting
previous nondeterminism to those cases which will cause Q to be true at this point. If this
cannot be ensured then the set of possible final states is empty, and therefore all the final
states will satisfy any desired condition (including Q);

3. Add variables: add(x) first ensures that the variables in x are in the state space (by adding
them if necessary) and then assigns arbitrary values to the variables in x. The arbitrary
values may be restricted to particular values by a subsequent guard;

4. Remove variables: remove(y) ensures that the variables in y are not present in the state
space (by removing them if necessary).

The compound statements are:

1. Sequence: (S1; S2) executes S1 followed by S2;
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2. Nondeterministic choice: (S1 ⊓ S2) chooses one of S1 or S2 for execution, the choice
being made nondeterministically;

3. Recursion: (µX.S1) where X is a statement variable (a symbol taken from a suitable set of
symbols). The statement S1 may contain occurrences of X as one or more of its component
statements. These represent recursive calls to the procedure whose body is S1.

A WSL program S is always interpreted in the context of an initial state space V and a final
state space W . We define the trinary relation S : V → W on S, V and W to be true whenever V
and W are valid initial and final state spaces for S.

4.1.2 Language Extension by Definitional Transformations

The full WSL language is built up from the kernel by defining new constructs in terms of existing
constructs, and ultimately in terms of kernel constructs. It includes low-level statements such as
assignments, if statements, while loops and local variables. The deterministic if statement

if B then S1 else S2 fi

is defined as:
(([B]; S1) ⊓ ([¬B]; S2))

The nondeterministic if statement (Dijkstra’s “guarded command” [12]):

if B1 → S1 ⊓⊔ B2 → S2 fi

is defined as:
({B1 ∨ B2}; (([B1]; S1) ⊓ ([B2]; S2)))

There are other, more unusual statement types which include the following:

• An external procedure call is written:
!P foo(e1, e2, . . . en var v1, v2, . . . , vm)

The expressions ei are value parameters and the lvalues vj are value-result parameters. An
external procedure is assumed to always return and to only affect the values of the var

parameters.

• Similarly, the condition !XC foo(e1, . . . , en) is an external boolean function call.

• An assertion statement: {Q} where Q is any formula, acts as a partial skip statement. If
Q is true then the statement has no effect, while if Q is false then the statement aborts.
A transformation which inserts an assertion into a program must therefore prove that the
corresponding condition is always true at that point in the program. Conversely, deleting an
assertion is always a valid program refinement since the resulting program can only be more
well-defined. (It will be defined on an identical or larger set of initial states, compared to the
original program).

• A loop of the form: do S od is an unbounded loop which can only be terminated by execution
of a statement exit(n). This statement will immediately terminate the n enclosing loops. Here
n must be a simple integer, not a variable or an expression, so that it is immediately obvious
which statement is executed following the exit(n).

• An action system is a collection of mutually-recursive parameterless procedures:
actions A1 :
A1 ≡

S1 end

. . .
An ≡

Sn end endactions
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Here, Ai are the action names and Si are the corresponding action bodies. Each Si is a
statement and the whole action system is also a statement: so it can be a component of an
enclosing statement. The action system is executed by executing the body of the starting
action (A1 in this case). A statement call Ai executes the corresponding body Si. A special
call call Z causes the whole action system to terminate immediately. A regular action is one
in which every execution of the action eventually leads to another action call. An action
system is regular if every action is regular. Such an action system can only be terminated
by a call Z. Since no action call can ever return, an action call in a regular action system is
equivalent to a goto. The assembler to WSL translator generates a regular action system in
which each action contains a complete translation of a single assembler instruction, or macro.

4.2 The Specification Statement

For our transformation theory to be useful for both forward and reverse engineering it is important
to be able to represent abstract specifications as part of the language and this motivates the
definition of the Specification statement. Then the refinement of a specification into an executable
program, or the reverse process of abstracting a specification from executable code, can both be
carried out within a single language. Specification statements are also used in semantic slicing (see
Section 5.4).

Informally, a specification describes what a program does without defining exactly how the
program is to work. This can be formalised by defining a specification as a list of variables (the
variables whose values are allowed to change) and a formula defining the relationship between the
old values of the variables, the new values, and any other required variables.

With this in mind, we define the notation x := x′.Q where x is a sequence of variables and x′

the corresponding sequence of “primed variables”, and Q is any formula. This assigns new values
to the variables in x so that the formula Q is true where (within Q) x represents the old values
and x′ represents the new values. The formula Q therefore specifies the program by defining the
relationship between the old values of the variables and the new values. If there are no new values
for x which satisfy Q then the statement aborts. The formal definition is:

x := x′.Q =
DF

{∃x′.Q}; add(x′); [Q]; add(x); [x = x′]; remove(x′)

For example, the specification statement 〈x〉 := 〈x′〉.(x′ = 1) defines a program which assigns
the value 1 to the variable x, while the specification statement 〈x〉 := 〈x′〉.(x′ = x + 1) defines a
program which increments the value of x.

If the “unprimed” variables x do not appear free in Q, then that simply means that the values
assigned to the variables in x do not depend on the original values of those variables x. Conversely,
if the primed variables x′ do not appear in Q, then the statement can assign any values to the
variables in x, provided condition Q holds initially. In this case, if Q is not true initially, then the
statement aborts since Q cannot be made true by assigning values to the primed variables. To be
precise, if non of the variables in x′ appears free in Q then:

∆ ⊢ x := x′.Q ≈ {Q}

4.3 Weakest Preconditions

Dijkstra introduced the concept of weakest preconditions [12] as a tool for reasoning about pro-
grams. For a given program P and condition R on the final state space, the weakest precondition
WP(P,R) is the weakest condition on the initial state such that if P is started in a state satisfying
WP(P,R) then it is guaranteed to terminate in a state satisfying R.

Given any statement S : V → W and any formula R whose free variables are all in W and
which defines a condition on the final states for S, we define the weakest precondition WP(S,R)
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to be the weakest condition on the initial states for S such that if S is started in any state which
satisfies WP(S,R) then it is guaranteed to terminate in a state which satisfies R. By using an
infinitary logic, it turns out that WP(S,R) has a simple definition (as a formula of infinitary logic)
for all WSL programs.

4.4 Example Transformations

In this section we introduce some of the basic transformations which are proved using weakest
preconditions.. To prove the transformation:

∆ ⊢ if B then S1 else S2 fi ≈ if ¬B then S2 else S1 fi

we simply need to show that the corresponding weakest preconditions are equivalent. See [41] for
the proof.

Another simple transformation is merging two assignments to the same variable:

∆ ⊢ x := e1; x := e2 ≈ x := e2[e1/x]

Another simple transformation is Expand Forwards:

∆ ⊢ if B1 then S1 . . . elsif Bn then Sn fi; S ≈ if B1 then S1; S . . . elsif Bn then Sn; S fi

For more complex transformations involving recursive constructs, we have a useful induction
rule which is not limited to a single recursive procedure, but can be used on statements containing
one or more recursive components (including nested recursion). For any statement S, define Sn to
be S with each recursive statement replaced by its nth truncation.

Lemma 4.1 The General Induction Rule for Recursion: If S is any statement with bounded
nondeterminacy, and S′ is another statement such that ∆ ⊢ Sn ≤ S′ for all n < ω, then ∆ ⊢
S ≤ S′.

Here, “bounded nondeterminacy” means that in each specification statement there is a finite number
of possible values for the assigned variables. See [31] for the proof.

An example transformation which is proved using the generic induction rule is loop merging. If
S is any statement and B1 and B2 are any formulae such that B1 ⇒ B2 then:

∆ ⊢ while B1 do S od; while B2 do S od ≈ while B2 do S od

To prove loop merging it is sufficient to prove by induction that for each n there exists an m
such that:

∆ ⊢ while B1 do S odn; while B2 do S odn ≤ while B2 do S odm

and for each m there exists an n such that:

∆ ⊢ while B2 do S odm ≤ while B1 do S odn; while B2 do S odn

(See [31] for the induction proofs). The result then follows from the general induction rule.

5 Slicing in WSL

Weiser [44] defined a program slice S as a reduced, executable program obtained from a program P by
removing statements, such that S replicates part of the behaviour of P. In the context of this paper,
program slicing is a useful tool to assist with understanding the behaviour of an assembler module.
In this section we will provide a unified mathematical framework for program slicing which places all
slicing work, for sequential programs, on a sound theoretical foundation. The main advantage to a
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mathematical approach is that it is not tied to a particular representation. In fact the mathematics
provides a sound basis for any particular representation. This mathematical representation lends
itself naturally to several generalisations, of which conditioned semantic slicing is the most general
and most useful. A conditioned semantic slice produces a concise, abstract representation of the
behaviour of a program with respect to one or more outputs of interest, and under the assumption
that certain conditions hold: for example, that no error occurs. Such a representation is very
valuable to a programmer who is unfamiliar with the program in question and who needs to work
out what the program does under normal operation.

If we are slicing on the end of the program then subset of the behaviour we want to preserve
is simply the final values of one or more variables (the variables in the slicing criterion). If we
modify both the original program and the slice to delete the unwanted variables from the state
space, then the two modified programs will be semantically equivalent, provided that they both
terminate. (We will see later that equivalence is not quite the relation we want. The correct relation
is semi-refinement. See Section 5.2).

If we are interested in slicing on variables in the middle of a program, then we can “capture”
the values of the variables at this point by assigning to a new variable, slice. Preserving the final
value of slice ensures that we preserve the values of the variables of interest at the point of interest.
See Section 5.5 below for the details.

This discussion suggests that the operation of slicing can be formalised as a combination of
two relations: a syntactic relation (statement deletion) and a semantic relation (which shows what
subset of the semantics has been preserved).

We start with a formal definition of the concept of statement deletion, by defining a syntactic
relation on programs, called reduction.

5.1 Reduction

The reduction relation defines the result of replacing certain statements in a program by skip, exit

or abort statements. The WSL language includes “unbounded” or “infinite” loops of the form
do . . . od. Such a loop can only be terminated by execution of an exit(n) statement: where n
is a positive integer. The statement exit(n) causes immediate terminate of the enclosing nested n
loops: so exit(1) will terminate the directly enclosing loop, exit(2) will terminate a double-nested
loop, and so on. The terminal value of the statement exit(n) is n. More generally, the set of
terminal values TVs(S) for any statement S is the set of possible loops which can be terminated
by executing the statement. This can be computed by taking the set of values n − d such that
there is a statement exit(n) enclosed in d nested loops within S which will cause termination of
S if executed. If S can be terminated by a statement other than an exit(n), then zero is also a
terminal value for S, i.e. 0 ∈ TVs(S).

For example, the statement:

do if n < 0 then exit(3) fi;
n := n + 1;
if n = 10 then exit(1) fi od

has terminal values {0, 2}.

We define the relation S1 ⊑ S2, read “S1 is a reduction of S2”, on WSL programs as follows:

S ⊑ S for any program S

skip ⊑ S for any proper sequence S

If S is not a proper sequence and n > 0 is the largest integer in TVs(S) then:

exit(n) ⊑ S
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If TVs(S) = ∅ then:
abort ⊑ S

If S′
1
⊑ S1 and S′

2
⊑ S2 then:

if B then S′
1

else S′
2

fi ⊑ if B then S1 else S2 fi

If S′ ⊑ S then:
while B do S′ od ⊑ while B do S od

var 〈v := e〉 : S′ end ⊑ var 〈v := e〉 : S end

var 〈v := ⊥〉 : S′ end ⊑ var 〈v := e〉 : S end

This last case will be used when the variable v is used in S, but the initial value e is not used. Here
we are using ⊥ to denote an unused value: this is different from the ⊥ in Section 4, which denotes
an undefined state.

If S′
i ⊑ Si for 1 6 i 6 n then:

S′
1
; S′

2
; . . . ; S′

n ⊑ S1; S2; . . . ; Sn

Note that the reduction relation does not allow actual deletion of statements: only replacing
a statement by a skip, exit or abort. This makes it easier to match up the original program with
the reduced version: the position of each statement in the reduced program is the same as the
corresponding statement in the original program. Deleting any extra skips is a trivial step.

In effect, we have expanded Weiser’s “reduction” process into a two stage process: reduction
followed by deletion of redundant skips.

Three important properties of the reduction relation are:

Lemma 5.1 Transitivity: If S1 ⊑ S2 and S2 ⊑ S3 then S1 ⊑ S3.

Lemma 5.2 Antisymmetry: If S1 ⊑ S2 and S2 ⊑ S1 then S1 = S2.

Lemma 5.3 The Replacement Property : If any component of a program is replaced by a reduction,
then the result is a reduction of the whole program.

5.2 Semi-Refinement

In this subsection we will discuss the selection of a suitable semantic relation for the definition of
slicing.

Initially we will consider the special case where the slicing point s is the end point of the program,
but we will generalise the variable v to a set X of variables. (As we will see in Section 5.5, slicing at
a point or points within the program does not introduce any further complications.) If X does not
contain all the variables in the final state space of the program, then the sliced program will not
be equivalent to the original program. However, consider the set W \X, where W is the final state
space. These are the variables whose values we are not interested in. By removing these variables
from the final state space we can get a program which is equivalent to the sliced program. If a
program S maps state spaces V to W , then the effect of slicing S at its end point on the variables
in X is to generate a program equivalent to S; remove(W \ X).

Binkley et al. [6,7] define an amorphous slice to be a combination of a syntactic ordering (any
computable, transitive, reflexive relation on programs) and a semantic requirement which is any
equivalence relation on a projection of program semantics. In WSL terms, this suggests defining a
slice of S on X to be any program S′ ⊑ S, such that:

∆ ⊢ S′; remove(W \ X) ≈ S; remove(W \ X)
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However, the requirement that the slice be strictly equivalent to the original program is too
strict in some cases. Consider the program:

S; x := 0

If we are slicing on x then we would like to reduce the whole of S to a skip: but the two programs

skip; x := 0; remove(W \ {x}) and S; x := 0; remove(W \ {x})

are only equivalent provided that S always terminates. But most slicing researchers see no difficulty
in slicing away potentially non-terminating code: Weiser [44] says that the slice can do anything
in the case where the original program fails to terminate. Any of the standard slicing algorithms
which use a dependency graph [17] will delete a loop which contains no assignments to variables
of interest, without making any attempt to prove termination of the loop. (In the general case,
of course, there is no algorithm which can unequivocally determine whether an arbitrary block of
code will terminate).

So, WSL equivalence is not suitable for defining program slicing. In fact, there is no semantic
equivalence relation which is suitable for defining a useful program slice! Consider the two programs
abort and skip. Any possible semantic relation must either treat abort as equivalent to skip, or
must treat abort as not equivalent to skip.

1. Suppose abort is not equivalent to skip. Then the slicing relation will not allow deletion of
non-terminating, or potentially non-terminating, code. So this is not suitable;

2. On the other hand, suppose abort is equivalent to skip. Then the slicing relation will allow
deletion of statements which turn a terminating program into a non-terminating program.
For example, in the program:

x := 0; x := 1; while x = 0 do skip od

we could delete the statement x := 1 to give a syntactically smaller, semantically “equivalent”
but non-terminating program. Few slicing researchers are happy to allow a non-terminating
program as a valid slice of a terminating program! (Weiser [44], for example, requires the
slice to terminate when the original program does).

It would appear that the concept of an “amorphous slice”, as described in [7] and elsewhere, is
fundamentally flawed.

Another semantic relation which has been proposed [33] is to allow any refinement of a program,
which is also a reduction, as a valid slice. This would allow slicing away nonterminating code, since
skip is a refinement of any nonterminating program, and would also disallow a nonterminating slice
of a terminating program. But such a definition of slicing is counter-intuitive, in the sense that
slicing is intuitively an abstraction operation (an operation which throws away information), while
refinement is the opposite of abstraction. A more important consideration is that we would like to
be able to analyse the sliced program and derive facts about the original program (with the proviso
that the original program might not terminate in cases where the slice does). If the sliced program
assigns a particular value to a variable in the slice, then we would like to deduce that the original
program assigns the same value to the variable. But with the refinement definition of a slice, the
fact that the slice sets x to 1, say, tells us only that 1 is one of the possible values given to x by the
original program.

Consider the following nondeterministic program which we want to slice on the final value of
x:

x := 1;
while n > 1 do

if even?(n) then n := n/2
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else n := 3 ∗ n + 1 fi od;
if true → x := 1
⊓⊔ true → x := 2 fi

The while loop clearly does not affect x, so we would like to delete it from the slice. But if we are
insisting that the slice be equivalent to the original program (on x), then we have to prove that the
loop terminates for all n before we can delete it. The loop generates the Collatz sequence and it
is an open question as to whether the sequence always reaches 1. (The problem was first posed by
L. Collatz in 1937 [21,27]).

Allowing any refinement as a valid slice (as in [33]) would allow us to delete the while loop,
but would also allow us to delete the if statement, giving x := 1 as a valid slice. If the slice is
being computed as part of a program analysis or comprehension task, then the programmer might
(incorrectly) conclude that the original program assigns the value 1 to x whenever it terminates.

(Note that one should be careful not to confuse the definition of a slice with an algorithm for
computing slices. One such algorithm involves tracking data and control dependencies. But the
existence of a dependency on a statement does not necessarily mean that the statement must be
included in the slice. See Section 5.12.1 for an example).

These considerations led to the development of the concept of a semi-refinement :

Definition 5.4 A semi-refinement of S : V → W is any program S′ : V → W ’ such that

∆ ⊢ S ≈ {WP(S, true)}; S′

It is denoted ∆ ⊢ S 4 S′.

A semi-refinement can equivalently be defined in terms of the weakest preconditions:

∆ ⊢ S 4 S′ iff ∆ ⊢ WP(S, true) ⇒ WP(S′, true)

and ∆ ⊢ WP(S,x 6= x′) ⇔ (WP(S, true) ∧ WP(S′,x 6= x′))

where x′ is a list of the variables in W .

The assertion in the semi-refinement relation shows that program equivalence is only required
where the original program terminates. So we define a slice of S on X to be any reduction of S

which is also a semi-refinement:

Definition 5.5 A Syntactic Slice of S : V → W on a set X ⊆ W of variables is any program
S′ : V → W such that S′ ⊑ S and

∆ ⊢ S; remove(W \ X) 4 S′; remove(W \ X)

The assertion {WP(S, true)} is a skip whenever S is guaranteed to terminate and an abort

whenever S aborts. So in the case when S aborts, S′ can be anything: in particular, setting S′

to skip will trivially satisfy S′ ⊑ S. So this definition allows us to slice away nonterminating code
while also preserving the nondeterministic behaviour of terminating code.

Semi-refinement also allows deletion of any assertions:

Lemma 5.6 {Q} 4 skip

Proof: WP({Q}, true) = Q so {Q} ≈ {WP({Q}, true)}; skip �

If ∆ ⊢ S 4 S′ then ∆ ⊢ S ≤ S′ (since deleting an assertion is a valid refinement), but the
converse does not hold. So the relationship lies somewhere between a refinement and an equivalence.

As with refinement and reduction, semi-refinement also satisfies the replacement property : if
any component of a program is replaced by a semi-refinement then the result is a semi-refinement
of the whole program.
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With this definition of slicing, a slice can be computed purely by applying program transforma-
tion operations which duplicate and move the remove statements through the program and then
use the remove statements to transform components of the program to skip statements.

5.3 Slicing Unstructured Programs

Note that we can apply arbitrary transformation in the process of slicing, provided that the final
program satisfies all the conditions of Definition 5.5 (in particular, the slice is a reduction of the
original program: in other words, it can be constructed from the original program by replacing
statements by skips, exits or aborts). So we can implement a slicing algorithm as the sequence:

transform → reduce → transform

provided that the reduction step is also a semi-refinement and the final transformation step “un-
does” the effect of the initial transformation. This step is facilitated by the fact that the reduction
relation preserves the positions of sub-components in the program. In practice, the final transform

step is implemented by tracking the movement of components in the initial transform step, noting
which components are reduced in the reduce step and replacing these by skips directly in the original
program.

In [40] we derive an algorithm for slicing structured WSL programs from a specification of
slicing. The above discussion suggests that an algorithm for slicing structured WSL can easily be
extended to unstructured code: first restructure the program to use only if statements and while

loops (for example, using Bohm and Jacopini’s algorithm [8]), then slice the structured program,
then determine which simple statements have been reduced, and apply the corresponding reduction
to the original program (or equivalently, undo the restructuring transformation).

The simplest restructuring algorithm converts the whole program to a single while loop whose
body is a multi-way conditional controlled by a single variable next which stores the number of the
next block to be executed:

while next 6= 0 do

if next = 1 then S1; if B1 then next := n11 else next := n12 fi

. . .
elsif next = i then Si; if Bi then next := ni1 else next := ni2 fi

. . . fi od

At the end of each branch of the conditional, next is conditionally or unconditionally assigned an
integer value representing transfer of control to that block. Block i will be followed by block ni1 or
ni2 depending in the result of the condition Bi.

If such a program is sliced on any variable assigned anywhere in the program, then next will have
to be included in the slice (since every statement is control dependent on next). All the variables
in all of the Bi conditions are control variables for next (because next is control dependent on all
these variables), so these variables will be included in the slice. Then all statements which assign
to any variables that affect any Bi will also be included in the slice. This is likely to be most of
the program.

FermaT’s solution is to destructure the program to an action system in “basic blocks” format.
Each basic block consists of a sequence of atomic statements (such as assignments, comments
and procedure calls) ending with either an unconditional call to the next block, or a conditional
statement with a call in each branch of the conditional. The action system is therefore a regular
action system which can only terminate via a call Z statement. Within each block we allow at
most one assignment to each variable.

To slice the action system, FermaT computes the Static Single Assignment (SSA) form of
the program, and the control dependencies of each basic block using Bilardi and Pingali’s optimal
algorithms [5,23]. FermaT tracks control and data dependencies to determine which statements can
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be deleted from the blocks. Tracking data dependencies is trivial when the program is in SSA form,
and the control dependencies are FermaT links each basic block to the corresponding statement in
the original program, so it can determine which statements from the original program have been
deleted (in effect, this will “undo” the destructuring step). This algorithm is implemented as the
Syntactic Slice transformation in FermaT.

5.4 Semantic and Amorphous Slicing

The definition of a syntactic slice immediately suggests a generalisation: why not keep the semantic
relation and drop the syntactic relation? In other words, why not drop the requirement that S′ ⊑ S?

The relation between a WSL program and its semantic slice is a purely semantic one: compare
this with a “syntactic slice” where the relation is primarily a syntactic one with a semantic
restriction.

Definition 5.7 A semantic slice of S on X is any program S′ such that:

∆ ⊢ S; remove(W \ X) 4 S′; remove(W \ X)

Note that while there are only a finite number of different syntactic slices (if S contains n
statements then there are at most 2n different programs S′ such that S′ ⊑ S) there are infinitely
many possible semantic slices for a program: including slices which are actually larger than the
original program. Although one would normally expect a semantic slice to be no larger than the
original program, there are cases where a high-level abstract specification can be larger than the
program while still being arguably easier to understand and more useful for comprehension and
debugging. A program might use some very clever coding to re-use the same data structure for
more than one purpose. An equivalent program which internally uses two data structures might
contain more statements and be less efficient while still being easier to analyse and understand.
See [34] and [35] for a discussion of the issues and [34] for an example.

Semantic refinement is implemented in FermaT via a process of abstraction and refinement. The
Representation Theorem of WSL shows that for any WSL program there exists a WSL specification
(containing a single specification statement) which implements that program:

Theorem 5.8 The Representation Theorem
Let S : V → W , be any non-null WSL statement and let x be a list of all the variables in W .
Without loss of generality we may assume that W ⊆ V (Any variables added by S are already in
the initial state space). Let y be a list of the variables removed by S, so x∩y = ∅ and x∪y = V .
Then

∆ ⊢ S ≈ x := x′.(¬WP(S,x 6= x′) ∧ WP(S, true)); remove(y)

A WSL statement is non-null if the set of final states is non-empty for every initial state. Equiva-
lently, a non-null program satisfies Dijkstra’s Law of the Excluded Miracle:

WP(S, false) ⇔ false

The WSL language is so designed that any WSL program which excludes “naked” guard statements
(i.e. guard statements which are not part of an assignment, if statement, specification etc.) is
guaranteed to be non-null.

In [37] we describe a partial implementation of the representation theorem in the form of a
program transformation called Prog To Spec. This is used in combination with a syntactic slicing
algorithm plus other transformations to develop a powerful conditioned semantic slicing algorithm.
A conditioned slice [9,15] is a program slice which makes use of assertions added to the code
to simplify the slice. The slicer applies the abstraction transformation Prog To Spec to blocks of
code which do not contain loops, it then uses FermaT’s condition simplifier to simplify the resulting
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specification. The simplifier can make use of assertions to simplify the specification, thus generating
conditioned slices. A syntactic slicing algorithm is applied to the resulting program (with some
semantic slicing extensions). Further simplification transformations, such as Constant Propagation,
are applied and any remaining specification statements are refined (using the Refine Spec transfor-
mation) into combinations of assertions, assignments and if statements, where possible.

The abstraction and refinement process can be used to simplify statements based on preceding
and subsequent assertions: semantic slices can delete code which would falsify a later assertion if
executed. This will be particularly important when we consider Conditioned Slicing in more detail
in Section 5.8.

5.5 Slicing At Any Position

To slice at an arbitrary position in the program we need to preserve the sequence of values taken
on by the given variables at that point in the program. To do this, we simply insert an assignment
to a new variable slice at the required position which records the current values of the variables on
a list. If X = {x1, . . . , xn} is the set of variables we are interested in then we insert the statement:

slice := slice ++ 〈〈x1, . . . , xn〉〉

at the point of interest, in order to record the current values of the variables at that point. Then
we slice at the end of the program on the single variable slice. (Note that we append to the list in
slice, rather than simply assign to it, because we are interested in the whole sequence of values, not
just the last set of values taken on by the variables.)

This process can be generalised to slicing at several points in the program, perhaps with a
different set of “variables of interest” at each point, simply by inserting the slice assignments at the
appropriate places.

One peculiarity of this definition is that if we slice at a point in the program which is within a
compound statement that does not modify any of the variables in the slicing criteria, then we can
end up with slices which appear to be larger than necessary. For example, suppose that we slice
on x within this if statement at the point just before the assignment to z on line 3:

(1) x := g(z);
(2) y := f(z);
(3) if y = 0 then z := 1 fi

The annotated program is:

(1) x := g(z);
(2) y := f(z);
(3) if y = 0 then slice := slice ++ 〈〈x〉〉; z := 1 fi;
(4) remove(x, y, z)

This is equivalent to:

(1) x := g(z);
(2) y := f(z);
(3) if y = 0 then slice := slice ++ 〈〈x〉〉 fi;
(4) remove(x, y, z)

We cannot delete the assignment y := f(z) on line 2 because it determines which branch of the
if statement is taken, and this affects the final value of slice (although it does not affect the value
of x). According to our definition, the slice has to preserve the test y = 0 and therefore preserve
any previous modifications to y. In effect, by slicing at a particular position we are insisting that
the given position should also appear in the sliced program. This is arguably correct in the sense
that, if the slice has to preserve the sequence of values taken on by x at a particular point in the
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program, then a corresponding point (at which x takes on the same sequence of values) must appear
in the slice. But if the if statement in the above example is deleted, then x may take on a different
sequence of values! To be precise, there is no point in the new program at which x takes on the
same sequence of values as at the slice point in the original program.

However, if it is not required to preserve the slice point then a simple solution is to allow the
slicing algorithm to move all the assignments to slice upwards out of any enclosing structures as
far as possible, before carrying out the slicing operation itself.

5.6 Dynamic Slicing

Although the term “dynamic program slice” was first introduced by Korel and Laski [20], it may
be regarded as a non-interactive version of Balzer’s notion of flowback analysis [3]. In flowback
analysis, one is interested in how information flows through a program to obtain a particular value:
the user interactively traverses a graph that represents the data and control dependences between
statements in the program.

A dynamic slice of a program P is a reduced executable program S which replicates part of
the behaviour of P on a particular initial state. We can define this initial state by means of an
assertion. Suppose V = {v1, v2, . . . , vn} is the set of variables in the initial state space for P, and
V1, V2, . . . , Vn are the initial values of these variables in the state of interest. Then the condition

A =
DF

v1 = V1 ∧ v2 = V2 ∧ · · · ∧ vn = Vn

is true for this initial state and false for every other initial state. The assertion {A} is abort for
every initial state other than the specified one. So we define:

Definition 5.9 A Dynamic Syntactic Slice of S with respect to a formula A of the form

v1 = V1 ∧ v2 = V2 ∧ · · · ∧ vn = Vn

where V = {v1, v2, . . . , vn} is the initial state space of S and Vi are constants, and the set of
variables X is a subset of the final state space W of S, is any program S′ ⊑ S such that:

∆ ⊢ {A}; S; remove(W \ X) 4 {A}; S′; remove(W \ X)

5.7 Dynamic Slicing of Assembler Modules

Traditional dynamic slicing algorithms incur a high runtime overhead due to the tracing and
dataflow information that is collected during the program’s execution. In [28] the authors describe
a method for computing statement coverage (i.e. determining which statements are executed during
one run of the program) for various microprocessors (Alpha, Sparc, Power, Mips, IA-64 and
x86). This involves replacing certain instructions by a branch to a base trampoline which can call
mini-trampolines both before and after executing the relocated instruction. The instrumentation
code (but not the base trampoline) can be removed when it is no longer required: even so, the
slowdown in execution speed can still be a factor of two or more.

We have developed a method for recording execution paths in IBM mainframe code which has
virtually zero overhead. This method works as follows:

1. Insert breakpoints at the start of each basic block in the assembler module. FermaT already
computes all the potential targets of branch instructions (these include branch to register
instructions) as part of the assembler to WSL translation.

2. The breakpoint handler records that this basic block was executed, restores the original
instruction, and branches back into the program.

3. Subsequent executions of the same basic block will therefore execute at full speed with no
performance penalty.
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With this slicing technique the overhead is proportional to the size of the program, and not to the
execution time.

The resulting slice will include all executed code: including code which does not affect the
variables of interest. However, a subsequent static slice has the opportunity to remove this code.

As with any slicing algorithm, it is easy to find cases which are not optimal. (It can be proved
that there is no optimal slicing algorithm, therefore this is true for any possible slicing algorithm!)
For example, consider the following loop:

while B1 do

if B2 then x := p fi;
S;
if B3

then if x = 1 then S1 else S2 fi fi od

Suppose that on every iteration, if B2 is true in the first if statement, then B3 is true in the second,
and if B2 is false then B3 is also false. Suppose that the only occurrences of x in the loop are those
given explicitly. Then the dynamic slice will include all the statements, and the subsequent static
slice will conclude that the initial value of x is required. A traditional dynamic slice which recorded
dataflow information for every iteration of the loop would be able to determine that the value of x
in the test x = 1 in every iteration in which the test is executed comes from the assignment x := p
and therefore that there are no dataflows before the loop, and that assignments to x before the
loop body are not needed.

These cases are rare in practice, but if a more accurate slice is required then it can be achieved
using our algorithm by expanding the first if statement over the next two statements:

while B1 do

if B2

then x := p;
S;
if B3

then if x = 1 then S1 else S2 fi fi

else S;
if B3

then if x = 1 then S1 else S2 fi fi fi od

Now the dynamic slice produces this result:

while B1 do

if B2

then x := p;
S;
if B3

then if x = 1 then S1 else S2 fi fi

else S;
{¬B3} fi od

and the subsequent static slice deduces that the initial value of x is not required.

5.8 Conditioned Slicing

Researchers have generalised dynamic slicing and combined static and dynamic slicing in various
ways. For example: some researchers allow a finite set of initial states, or a partial initial state
which restricts a subset of the initial variables to particular values [30]. In our formalism, all of these
generalisations are subsumed under the obvious generalisation of dynamic slicing: why restrict the
initial assertion to be of the particular form {v1 = V1 ∧ v2 = V2 ∧ · · · ∧ vn = Vn}?
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If we allow any initial assertion, then the result is called a conditioned slice:

Definition 5.10 A Conditioned Syntactic Slice of S with respect to any formula A and set of
variables X is any program S′ ⊑ S such that:

∆ ⊢ {A}; S; remove(W \ X) 4 {A}; S′; remove(W \ X)

Conditioned slicing is thus a generalisation of both static slicing (where the condition A is true)
and dynamic slicing (where A takes on the form v1 = V1 ∧ v2 = V2 ∧ · · · ∧ vn = Vn and the set
{v1, v2, . . . , vn} lists all the variables in the program). One algorithm for computing a conditioned
slice is to use the initial condition to simplify the program before applying a syntactic slicing
algorithm. Danicic et al [15] describe a tool called ConSIT, for slicing a program at a particular
point, given that the initial state satisfies a given condition.

The ConSIT tool works on an intraprocedural subset of C using a three phase approach:

1. Symbolically Execute: to propagate assertions through the program where possible;

2. Produce Conditioned Program: eliminate statements which are never executed under the
given conditions;

3. Perform Static Slicing: using a traditional (syntactic) slicing method.

In ConSIT, the slicing condition can be given in the form of ASSERT statements scattered
through the program: the authors [15] claim that these ASSERT statements are equivalent to a single
condition on the initial state, but in general this requires assertions to be formulae of infinitary logic.
This is because the general case of moving an assertion “backwards” over or out of a loop breaks
down into a countably infinite sequence of cases depending on the number of possible iterations of
the loop. Fortunately, the assertion statements in WSL are already expressed in infinitary logic, so
this is not a problem in our framework.

In our transformation framework, the ASSERT statements are simply WSL assertions. Symbolic
execution and producing a conditioned program (by using assertions to delete statements which
cannot be executed) are examples of transformations which can be applied to the WSL program.
In [31] we provide a number of transformations for propagating assertions and eliminating dead
code.

Theorem 5.11 A set of assertions scattered through a program can be replaced by an equivalent
assertion at the beginning of the program (in the sense that the two programs are equivalent).

Proof: Let S be any program and let S′ be constructed from S by deleting assertions (i.e. re-
placing the assertions with skip statements). Each assertion deletion is a semi-refinement, so
by the Replacement Property (Section 5), S’ is a semi-refinement of S. So, by the definition of
semi-refinement (Definition 5.4):

∆ ⊢ S ≈ {WP(S, true)}; S′

which proves the theorem. �

5.9 Conditioned Semantic Slicing

Again, a generalisation is suggested: why restrict ourselves to the assertion moving and dead
code removal transformations of ConSIT? A conditioned semantic slice can be defined by simply
removing the syntactic condition from the definition of a syntactic slice (i.e. the condition that
S′ ⊑ S):

Definition 5.12 Suppose we have a program S : V → W and a slicing criterion, defined from S

by inserting assertions and assignments to the slice variable to form S′. A conditioned semantic
slice of S with respect to this criterion is any program S′′ such that:

∆ ⊢ S′; remove(W ) 4 S′′; remove(W )
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Any syntactic slice is also a semantic slice (but not vice versa), so the conditioned semantic
slice is a generalisation of syntactic, semantic, dynamic, conditioned and operational slicing in the
sense that any of these slices is also a conditioned semantic slice.

5.10 Transformations Involving Abort and Assertions

A particularly useful form of conditioned slicing, which is especially effective when applied to
commercial assembler systems, is the removal of error handling code. In a typical commercial
assembler module, much of the code involves testing for and handling errors: this can amount
to more than half of the lines of code in the whole module. This error handling code is scattered
throughout the program and can make it much more difficult to work out what the program actually
does under normal (non-error) operation.

The basic approach is to insert an abort at any point in the module where it is known for
certain that we are in error handling code. For commercial assembler systems there are three cases
to consider:

1. Any ABEND instruction can be replaced by abort, since an ABEND causes an abnormal termi-
nation of the program. These are trivial to implement: we simply change the translation of
ABEND in the translation table to be an abort statement;

2. Any macro which expands to an unconditional ABEND and where FermaT is translating the
macro directly rather than translating the macro expansion should also be replaced by an
abort. Again this is a trivial change to the translation table, and these macros are well known:
since they are already in the translation table;

3. A call to an external module which handles error processing. This is quite rare in commercial
assembler systems since error processing is handled separately by each module: common code
is usually handled via a macro rather than a call. If there are external modules which handle
error processing, then these will be familiar to the maintenance programmers, and again the
solution simply involves an addition to the translation table. (A CALL to an external module
will be translated directly if the module name is found in the translation table).

The translation table is a text file which lists all the assembler instructions with their corresponding
WSL translations. Macros and external calls can also be included in the translation table. If a
macro is found in the table, then the corresponding WSL code is generated and the macro expansion
is skipped. Otherwise, the macro expansion is translated.

The following transformations can then be applied to remove the error handling code:

Theorem 5.13 ∆ ⊢ (S; abort) ≈ abort ≈ (abort; S)

Theorem 5.14 ∆ ⊢ if B then abort else S fi ≈ {¬B}; S

Theorem 5.15 ∆ ⊢ if B then S else abort fi ≈ {B}; S

FermaT will also automatically unfold any procedure whose body consists of an abort or an
assertion: so a procedure which simply checks for and handles error conditions will be transformed
to an assertion and unfolded everywhere.

To see how this works in practice, consider the following typical, but somewhat abbreviated,
error checking situation. The main program, or a subroutine, tests for an error and branches to a
specific error handler:

if r3 = 0 then ERR123() fi

The specific error handler sets an error code, prints a message, and calls the generic error handler:

proc ERR123() ≡ code := 123; WTO(“Error message...”); GENERR().

The generic error handler executes cleanup code (closing files, perhaps creating a memory dump
etc.) and then finally does an ABEND:
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proc GENERR() ≡ cleanup code; . . . ; ABEND; abort.

FermaT applies the above transformations repeatedly in a loop. The body of GENERR is trans-
formed to a single abort. All calls to GENERR are unfolded. The body of ERR123 is then
transformed to an abort and unfolded everywhere. Finally, the if statement in the mainline code
is simplified to the assertion {r3 6= 0}.

5.11 A Minimal Semantic Slice

Recall that any non-null program S : V → W where V ⊆ W is equivalent to the specification

x := x′.(¬WP(S,x 6= x′) ∧ WP(S, true))

where x is a list of all the variables modified in S. The variables in x′ do not appear in WP(S, true)
so this is equivalent to:

{WP(S, true)}; x := x′.(¬WP(S,x 6= x′))

Then, by the definition of semi-refinement:

S 4 x := x′.(¬WP(S,x 6= x′))

This is clearly a minimal semantic slice (counting statements) since it only contains a single
statement, and by definition no WSL program can be smaller than a single statement. (It is
not necessarily minimal if we are counting the total number of symbols: if statement S contains
loops or recursion then the formula WP(S,R) is infinitely long!) So we have:

Theorem 5.16 The Minimal Semantic Slice Theorem
Let S, be any null-free statement and let x be any list of variables in the final state space. Then
the statement x := x′.(¬WP(S,x 6= x′)) is a minimal semantic slice of S on the final values of x.

This may appear to contradict Weiser’s theorem on the non-computability of minimal slices,
but Weiser’s theorem only applies to algorithms for computing minimal syntactic slices. The
construction of x := x′.(¬WP(S,x 6= x′)) from S, while being well defined, is not an algorithm in
the usual sense because the formula WP(S,x 6= x′) may be infinitely long. An infinite specification
statement is not directly executable, so this result is only practical for statements which contain no
loops or recursion, but it does show that no semantic slice need be larger than a single statement.

As an example, consider the following program, where we are slicing on the final value of y:

if p = q
then x := 18
else x := 17 fi;

if p 6= q
then y := x
else y := 2 fi

Tip [29] suggested the computation of slices using a mixture of slicing and transformation in which
a program is translated to an intermediate representation (IR), the IR is transformed and optimised
(while maintaining a mapping back to the source text), and slices are extracted from the source
text. He suggests that such a slicer ought to be capable of producing the following slice:

if p = q
then skip

else x := 17 fi;
if p 6= q

then y := x
else y := 2 fi

With semantic slicing we can, of course, produce a smaller slice. Theorem 5.16 gives the
following slice:
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y := y′.(¬WP(if p = q then x := 18
else x := 17 fi;

if p 6= q then y := x
else y := 2 fi, y 6= y′))

This simplifies to:

y := y′.(¬WP(if p = q then x := 18
else x := 17 fi,

(p 6= q ⇒ y′ 6= x)
∧ (p = q ⇒ 2 6= y′)))

which in turn simplifies to:

y := y′.(¬((p = q ⇒ 2 6= y′)
∧ (p 6= q ⇒ 17 6= y′)))

which is equivalent to:

y := y′.((p = q ⇒ 2 = y′) ∧ (p 6= q ⇒ 17 = y′))

This can be expressed as a simple assignment on a conditional expression:

y := if p = q then 2 else 17 fi

FermaT’s semantic slicer produces the equivalent if statement:

if p = q then y := 2 else y := 17 fi

5.11.1 FermaT Implementation of Abstraction and Refinement

For WSL programs with no loops or recursion (and where all the formulae are finite). Theorem 5.16
does give an algorithm for computing a minimal semantic slice on any given slicing criterion.

We have implemented a function @WP in the FermaT transformation system which computes
the weakest precondition for any program which does not include loops or procedure calls. (The
implementation could be extended to non-recursive procedures and functions in the obvious way:
by unfolding all procedures and functions in the main body of the program). With the aid of this
function, we have implemented a transformation called Prog To Spec which can transform any non-
recursive and non-iterative program into an equivalent specification statement. The implementation
of @WP required less than 100 lines of METAWSL code, and the body of Prog To Spec is only
32 lines of code (including comments), demonstrating that METAWSL is the ideal language for
implementing program transformations! (See Section 6.3 for a brief description of METAWSL).

In the rest of the paper, all slicing examples were computed by FermaT in a single step and the
output copied into the paper.

Applying Prog To Spec to the assignment

x := 2 ∗ x + 1

gives the specification:

x := x′.(x′ = 2 ∗ x + 1)

Another example:

if true → p := 1
⊓⊔ true → p := 2 fi

gives:

p := p′.(p′ = 1 ∨ p′ = 2)

The statement to be specified may include assertions, local variables, nested if statements and so
on. FermaT’s simplifier will use the assertions to simplify other parts of the generated specification,
eliminate local variables and so on, automatically. For example:
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var 〈x := y〉 :
if p > q then x := x + 2

else x := x − 2 fi;
{x = 10} end

is transformed to the assertion:

{y = 8 ∧ p > q ∨ y = 12 ∧ p 6 q}

Note that the assertion {x = 10} has been used to simplify the preceding code.

A simple if statement such as:

if x > y then z := 1 else z := 2 fi

is transformed to the specification:

z := z′.(z′ = 1 ∧ x > y ∨ z′ = 2 ∧ x 6 y)

while a nested if statement such as:

if x = 1 then y := 2
elsif x = 2 then y := 3

else y := 4 fi

becomes:

y := y′.(y′ = 4 ∧ x 6= 1 ∧ x 6= 2
∨ y′ = 2 ∧ x = 1
∨ y′ = 3 ∧ x = 2)

Generally, programmers find that a compound statement with assertions, if statements and
simple assignments to be easier to read and understand than the equivalent single specification
statement. So we have implemented another transformation Refine Spec which analyses a specifi-
cation statement and carries out the following operations:

1. Factor out any assertions;

2. Expand into an IF statement: for example, the specification x := x′.(Q ∨ (B ∧ P)) where
B does not contain any variables in x′, is equivalent to:

if B then x := x′.(Q′ ∨ P′) else x := x′.Q′′ fi

where Q′ and P′ are the result of simplifying Q and P under the assumption that B is
true, and Q′′ is the result of simplifying Q under the assumption that B is false. These
sub-specifications are then recursively refined;

3. Finally, any simple assignments or parallel assignments are extracted.

For example, the statement:

var 〈x := x〉 :
if p = q

then x := 18
else x := 17 fi;

if p 6= q
then y := x
else y := 2 fi end

is abstracted to the specification:

y := y′.(y′ = 2 ∧ p = q ∨ y′ = 17 ∧ p 6= q)

Applying Refine Spec produces:

if p = q then y := 2 else y := 17 fi
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The above example shows one way in which abstraction and refinement can be applied to
construct a semantic slice: simply convert all the assigned variables that we do not want to slice
on (x in this case) into local variables, and apply the abstraction and refinement transformations
to the result!

5.12 Slicing Programs Containing Loops

As explained above, the simple approach of abstraction to a specification followed by refinement,
cannot be applied to programs containing loops or recursion. This is not such a crippling disadvan-
tage as it might seem: many large commercial systems actually contain very few loops, compared
to the total number of lines of code. For example: we analysed a fairly large commercial assembler
system and found that over 55% of the modules (1,083 out of 1,945 code modules) contained no
loops or recursion. Many modules contained one or two loops: in fact there was a total of 2,287
loops in the whole system (averaging 1.18 loops per module).

In a selection of 1749 modules supplied by twelve different organisations, 35% of the modules
contained no loops or recursion. (This selection was partly biased towards larger code modules
since much of the code was from pilot projects to test the capabilities of the migration engine).

FermaT’s semantic slicer is not restricted to programs with no loops. This is because abstraction
and refinement forms only one component of the general slicing algorithm. Abstraction and
refinement is applied to fragments of the program (such as the bodies of the innermost loops)
that are loop free.

Another feature of many commercial systems is that many of the assignment statements assign
a constant value: either a numeric or string constant, or a value which depends on variables which
are not assigned in the module, or at least in the enclosing loop statement. For example, in the
system mentioned earlier, 44% of all assignment statements are of constant values.

If a variable in the slicing criterion is assigned in the body of a loop, then the loop itself must
be included in any syntactic slice. With a dependence-based slicing algorithm, including the loop
in the slice may also bring in other statements which are not actually needed.

However, if the assignment is of a constant value then only the first execution of the assignment
statement is needed, since any further assignments will give the variable the same value. So we
are only interested in the first iteration in which the assignment is executed. In particular, if the
assignment is executed on the first iteration of the loop, then we can unroll the first iteration and
“slice away” the rest of the loop.

5.12.1 Speculative Unrolling

This is the motivation for the “speculative unrolling” transformation which is another component
of FermaT’s semantic slicer:

1. If a loop is encountered in which a variable in the slicing criterion is only assigned a constant
value, then unroll the first iteration of the loop;

2. Next, apply simplification transformations to the result. These will delete subsequent redun-
dant assignments to the variable;

3. Next, recursively apply Semantic Slicing to the result (with speculative unrolling disabled).
This will delete the rest of the loop if there are no further assignments to variables in the
slicing criterion;

4. If the result is smaller than the original (either in statement count, or the same number of
statements but fewer expressions), then keep it, otherwise restore the original loop.

A simple example to test speculative unrolling is the following program:

while p?(i) do
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x := f
ctrl

−→ q?(c)

c := g
ctrl

−→ q?(c)

q?(c)
data

−→ c := g

x := f
ctrl

−→ p?(i)

c := g
ctrl

−→ p?(i)

i := h
ctrl

−→ p?(i)

q?(c)
ctrl

−→ p?(i)

p?(i)
data

−→ i := h(i)

Table 2: Control and data dependencies in the example program

if q?(c)
then x := f ; c := g fi;

i := h(i) od

where we are slicing on the final value of x. This program is based on an example in [11].

Any dataflow-based slicing algorithms (such as [17]) will observe that there is a data dependency
between the final value of x and the assignment x := f . There is a control dependency between
the test q?(c) and the assignment x := f and there is a data dependency between c := g and q?(c).
Similarly, there is a control dependency between x := f and p?(i) and a data dependency between
i := h(i) and p?(i). Table 2 summarises the dependencies.

If the algorithm simply follows all dependencies in order to determine what statements to
include in the slice, then it will conclude that all the statements affect x. For example, the FermaT
syntactic slicer will return the whole program when asked to slice on the final value of x since it
uses just such a dependency tracking algorithm.

It should not be surprising that the dataflow algorithm sometimes produces a less than minimal
slice, since the task of determining a minimal slice is noncomputable in the general case: so there
can be no algorithm which always returns a minimal syntactic slice.

For semantic slicing, speculative unrolling can be applied. The transformation system unrolls
the first step of the loop to give:

if p?(i)
then if q?(c)

then 〈c := g, x := f〉 fi;
i := h(i);
while p?(i) do

if q?(c)
then 〈c := g, x := f〉 fi;

i := h(i) od fi

It then applies Fully Absorb Right to the inner if statement:

if p?(i)
then if q?(c)

then {q?(c)};
〈c := g, x := f〉;
i := h(i);
while p?(i) do

if q?(c)
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then 〈c := g, x := f〉 fi;
i := h(i) od

else {¬q?(c)};
i := h(i);
while p?(i) do

if q?(c)
then 〈c := g, x := f〉 fi;

i := h(i) od fi fi

Assertions are used to simplify the inner while loops:

if p?(i)
then if q?(c)

then {q?(c)};
〈c := g, x := f〉;
i := h(i);
while p?(i) do

if q?(c)
then 〈c := g, x := f〉 fi;

i := h(i) od

else {¬q?(c)};
i := h(i);
while p?(i) do

i := h(i) od fi fi

The simple slicing function produces this result:

if p?(i)
then if q?(c)

then {q?(c)};
〈c := g, x := f〉;
i := h(i);
while p?(i) do

if q?(c)
then 〈c := g, x := f〉 fi;

i := h(i) od

else {¬q?(c)}; fi

Constant Propagation simplifies this to:

if p?(i)
then if q?(c)

then {q?(c)};
〈c := g, x := f〉;
i := h(i);
while p?(i) do

i := h(i) od

else {¬q?(c)}; fi

Another call to the simple slicing function produces:

if p?(i)
then if q?(c)

then {q?(c)};
x := f

else {¬q?(c)}; fi
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And finally, abstraction and refinement gives this result:

if p?(i) ∧ q?(c) then x := f fi

This is smaller than the original program, so it is returned as the result of the transformation.

The above analysis and transformation steps were all carried out automatically by FermaT’s
semantic slicer to produce the given result.

In the general case, the constant assignment may not occur on the first iteration of the loop.
Here, we need to determine on which iteration of the loop the assignment takes place (if at all).
If we can analyse the loop body and determine the condition under which the assignment takes
place, then we can apply a general purpose transformation, Entire Loop Unrolling to split the loop
into two.

Theorem 5.17 Entire Loop Unrolling: for any statement S and any conditions B and Q:

∆ ⊢ while B do S od ≈ while B ∧ Q do S od; while B do S od

This transformation is valid for any while loop and any condition Q. Let Q be the negation of the
condition under which the assignment takes place. Then, the assignment will never take place in
the first while loop. If B is true on termination of the first while loop, then Q must be false, and
the first iteration of the second loop will assign to x. Any remaining iterations of the second loop
can only assign the same value to x, so these are redundant and can be transformed away.

We call this technique “Speculative Entire Unrolling”.

6 Assembler Abstraction and Analysis

The next part of this paper describes the application of WSL and transformation theory to the
analysis of assembler programs. As discusses in Section 3, the translation and analysis of an
assembler modules is carried out in four phases:

1. Translation of the assembler to WSL;

2. Translate and restructure data declarations;

3. Apply semantics-preserving WSL to WSL transformations;

4. (a) For migration: translate the high-level WSL to the target language.
(b) For analysis: apply slicing or abstraction operations to the WSL to raise the abstraction

level even further.

These phases are described in the following sections.

6.1 Assembler to WSL Translation

The assembler to WSL translator is designed to translate an assembler module to WSL as accurately
as possible: capturing every detail of the behaviour of the system without worrying about the size,
efficiency or complexity of the resulting code. This is because it is anticipated that phase 3 (WSL
to WSL translation) will remove inefficiencies and redundant operations. As a result, we can
separate the two, potentially conflicting, requirements of correctness and efficiency/maintainability
into separate phases, and therefore meet both requirements.

Perfect correctness is not possible: any scientific model of something must be an imperfect
representation (i.e. an approximation): otherwise it would not be a model, but the thing itself! In
modelling assembler code, consider the following situation: a bug in the program results in an out
of range value being passed to a jump table. The assembler computes the address to branch to: this
happens to be in the middle of another instruction (rather than being one of the branches in the
jump table). But the “instruction” at that point is benign and control eventually reaches the right
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place without doing irreparable damage. In one sense the program is “correct” (it works perfectly),
but in another sense, there is a bug waiting to happen. The only way such a program can be
modelled is via some form of emulator which keeps track of the contents of each memory location
(including the memory holding the program’s executable code) and interprets the execution of each
instruction.

Our approach therefore is to model as accurately as possible everything that can be modelled,
and to detect and flag cases that cannot be modelled.

The translator is table-driven: each assembler instruction or macro is listed in a configuration
table, along with its WSL translation. If a macro is listed in the table then the corresponding
WSL code is generated and the macro expansion is skipped, otherwise the macro expansion is
translated. The translator works from an assembly listing with all macros expanded, so it has
available the offset address of each instruction and data element, the object code generated, and
the full expansion of each macro.

The translator parses the listing into an internal data format and then makes several passes
over the data to determine jump tables, all the possible targets for branch to register instructions,
relative branch targets, self-modifying code, CICS calls, DSECT names and so on. A final pass
over the internal data generates a WSL file and a data file (which lists all data declarations).

6.2 Data Restructuring and Translation

A separate process parses the data file and restructures the data declarations into nested structures.
IBM assembler offers several ways to create overlapping data structures: declaring a symbol with
a type and length but with a “repeat count” of zero will not allocate any data, so subsequent data
declarations will overlap the symbol. An ORG directive can be used to redefine the same area of
memory with two or more different layouts.

The data restructuring process analyses the length, repeat count, offset and type of each symbol
to determine the nesting of data structures. Where structures cannot be properly nested it generates
unions of structures.

C or COBOL data declarations are generated from the restructured data file with “filler” data
inserted where necessary to ensure that the layout of the C or COBOL data is identical to the
original assembler data. This is important for two reasons:

1. If the migrated code is to be executed on the mainframe, then it may be necessary to share
data structures with existing assembler or HLL programs: it will be essential to ensure that
the data layouts match in this case;

2. Even if the intention is to migrate to a different platform, the code may expect a certain
layout of data and may fail if the data is reorganised. For example, an offset from one data
element may be used to access a different element, or pointers may be moved around in the
data structures. The migration process can detect and report on places where data items are
accessed outside their declared length: this report will indicate potential failure points if the
data were to be reorganised.

6.3 WSL to WSL Transformation

This is the heart of the transformation system: in this phase a large number of correctness preserving
transformations are applied to the WSL code in order to remove redundant statements, restructure
the code, determine procedure boundaries and so on.

The transformation engine is based on the WSL transformation theory, as described in the
first part of this paper, which provides methods to prove the correctness of a WSL to WSL
transformation. As a result we can have a very high degree of confidence in the accuracy of the
results, despite the fact that an average of over 1,800 transformations are applied to each assembler
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module during the migration process. If the average transformation were “only” 99.9% accurate,
then after applying 1,800 transformations the probability of a correct result falls to about 16.5%.
So it is vitally important to be confident of the correctness of each transformation step.

Most transformations fit into one of the two main classes:

1. Small, localised transformations. These are applied to a localised region of the program to
make a small improvement: such as merging two if statements, removing a single register
reference or removing a local variable. Repeated application of localised transformations over
the whole program can have a dramatic effect on the structure, efficiency and maintainability
of the program.

2. Whole-program analysis transformations: these include Constant Propagation, Dead Code
Removal, Data Translation and transformations based on constructing the Static Single
Assignment (SSA) form of the program.

There are a total of 148 different transformations implemented in FermaT (not all of which
are used for assembler migrations). These are implemented in METAWSL: an extension of WSL
specifically designed for writing program transformations. See [38] for a description of METAWSL.
The transformations range from 29 lines of METAWSL code to 3,381 lines with a median size of
105 lines: so most transformations are quite simple and easy to prove correct.

A control program selects the order of executing the transformations: this control program
is simply another transformation (Fix Assembler) which invokes other transformations via calls to
@Trans? and @Trans. The function @Trans? tests whether the give transformation is applicable at
the current position in the current program. The procedure @Trans applies the given transformation
to the current program at the current position. Typically, the localised transformations are iterated
over every applicable position in the syntax tree of the WSL program: this is easily achieved with
the foreach and ateach looping constructs of METAWSL. An example of such an iteration is the
following code from Fix Assembler:

foreach Statement do

if @ST(@I) = T Cond ∧ @Size(@I) 6 20
then if @Trans?(TR Join All Cases)

then PRINFLUSH(“+”);
@Trans(TR Join All Cases, “”) fi fi od;

Within the foreach loop the function @I returns the currently selected item (in this case, the
currently selected statement). Function @ST returns the specific type of its argument, so if
the current item is an if statement, then @ST(@I) returns T Cond. @Size(@I) is the number of
components of the current item: for an if statement this is the number of branches. So this loop
will test and apply the transformation TR Join All Cases to every if statement which has no more
than 20 branches. It prints a “+” each time a transformation is applied. Originally, such messages
were necessary to inform the user that the system was still running and applying transformations
and to give some indication of how far the transformations had progressed. With the dramatic
improvements in CPU speeds and improvements in the efficiency of FermaT, these messages are
not really necessary: in fact, if printed to the screen they scroll by far too quickly to read!

With simple assembler programs the order of applying transformations is not critical: since the
transformations are applied repeatedly until no further improvement can be achieved. With more
complex programs, especially highly unstructured programs, applying the transformations in the
right order can be important id FermaT is to fully restructure the program. The Fix Assembler

transformation has been developed and refined over many years experience with analysing assem-
bler, and has been tested on millions of lines of code from dozens of different companies.

6.3.1 Preventing Loops

There are two cases where this strategy can cause looping: both of which must be avoided:
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1. A transformation could make the WSL program larger. Later on (perhaps as a result of other
transformations) the same transformation could become applicable to a component of the
expanded program. The result is that the program size grows indefinitely without converging
to a solution;

2. A transformation could “undo” the effect of a previous transformation: the program could
then oscillate between two different versions, again without converging to a solution.

Broadly speaking, our solution to both of these problems is to only apply a transformation when
it makes the program “better” according to some complexity metric. If the complexity metric is
integer valued and every program reduces complexity (according to the metric), then the transfor-
mation process is guaranteed to converge.

Unfortunately, there is currently no universal integer valued complexity metric which is mono-
tonically reduced under every transformation that we wish to apply (this is a topic for further
research). However, the vast majority of transformations do reduce the size of the program: overall,
the WSL to WSL transformation step reduces the size to between a third to a half of the original.
A few transformations do increase the size of the program by a small fixed amount, but the result is
“obviously” an improvement (in the opinion of the developers anyway!) and the migration engine
is prevented from applying the inverse of these transformations.

As a result of these precautions, the only infinite loops we have seen have been the result of
bugs in the implementation of a transformation.

6.3.2 Dataflow Analysis

The raw WSL (before transformation) accurately models the control flow of the original assembler
but only allows a very crude dataflow analysis since it contains control flow paths from the end of
every assembler subroutine (ie from every Branch to Register instruction) to every possible return
point from a subroutine. But an accurate dataflow analysis is required in order to extract WSL
procedures from the unstructured code. For FermaT to decide if a particular set of WSL actions
can be used to form a WSL procedure body it needs to determine that the return address passed
in via a register at the top of the subroutine is preserved through the subroutine body (although
it may be incremented) and is finally passed to the dispatch action in the destination variable. If
this is the case, then FermaT can create a WSL procedure from the set of actions, and convert the
action calls to procedure calls and remove some dispatch calls.

For example, suppose we have the following assembler code:

A1 BAL R12,FOO SUBROUTINE CALL

A2 ...

FOO ST R12,SAVER12 SAVE RETURN ADDRESS

LA R12,0 RE-USE R12

...

L R13,SAVER12 RESTORE RETURN ADDR

BR B13 RETURN FROM SUBR

This translates to the following WSL code:

A1 ≡
r12 := 234; call FOO end

A2 ≡
. . . end

FOO ≡
SAVER12 := r12;
r12 := 0;
. . .
r13 := SAVER12;
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destination := r13;
call dispatch end

. . .
dispatch ≡

if destination = 0 then call Z

. . .
elsif destination = 234 then call A2

. . . fi end

Here, the return address stored in r12 (the address of the label A2) is represented as the “dispatch
code” 234. This is calculated as the decimal offset of label A2 from the start of the program (the
offset of each instruction is given in the assembler listing).

If the dataflow analysis on the body of FOO is successful, then the Fix Dispatch transformation
will transform the code into this:

begin

A1 ≡
FOO(); call A2 end

A2 ≡
. . . end

. . .
dispatch ≡

if destination = 0 then call Z

. . . fi end

where

proc FOO() ≡ SAVER12 := r12;
r12 := 0;
. . .
r13 := SAVER12 end

end

We have created a new procedure FOO, removed the FOO action from the action system and
removed a control flow link from the dispatch action. The result is a simplified control flow, from
which a more accurate dataflow analysis can be constructed.

FermaT does not depend on a single, initial, dataflow analysis but iteratively improves the
dataflow analysis as the control structure is improved: the simplified control structure makes
possible a more accurate dataflow analysis which, in turn, leads to further simplifications in the
control structure.

The first iteration can process assembler subroutines which call no other (internal) subroutines
(external calls are handled separately: FermaT recognises when a return address is passed to an
external routine and assumes that control will return via that return address). In the next iteration,
FermaT can process subroutines which only call subroutines processed in the first iteration, and so
on.

This approach only works for non-recursive subroutines. In practice, recursion within a single
assembler module is very rare and almost certainly a bug. This is because the usual (almost
universal) practice is for an assembler subroutine to store its return address in a static location.
So any recursion (including mutual recursion) within the same module will overwrite the original
return address and prevent the outermost call from returning properly. Recursion between modules,
or recursive calls to other entry points in the same module (where return addresses are stored in
the savearea chain) are possible, and these are handled correctly by FermaT.

Many assembler subroutines include tests for error conditions which will branch to an error
routine, leading ultimately to an ABEND instruction, or to a return from the module, instead of
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returning to the caller. A WSL procedure, on the other hand, must always return to the caller.
The solution is for FermaT generate code which will set a special flag variable exit flag and then
return. If exit flag = 0 then the return was a normal return, if exit flag = 1 then the program
must immediately terminate. Other values of exit flag may be used when one subroutine branches
directly into another subroutine, without going via a normal call and return.

7 First Case Study

For the first case study we are using an assembler module, UDATECNV which is a date conversion
module developed by Micro Focus Ltd. We are interested in how the variable WRKMTH is calculated
for a particular set of input data.

The source code given in Appendix 1 has had some lines elided for brevity, but contains all the
code of interest.

The module takes a pointer to a string, which contains both the input data and output data
area. For this case study we modified the module to set up the parameter string directly from
local storage, and to print the result before returning. This turns the module into a self-contained
program and avoids the need for a test harness.

We did not have access to a mainframe for this case study, so the dynamic slicing method
describe in Section 5.7 could not be used. Instead the module was executed using the z390

Portable Mainframe Assembler and Emulator from Automated Software Tools 〈http: // www.
automatedsoftwaretools. com/ z390〉 with the TRACE option turned on. This generates a trace
of all executed instructions. A utility program mark-traced takes the trace file, the assembler
listing file, and the raw WSL translation of the assembler and generates a new WSL file with added
abort statements. From the trace file, the program computes the offsets of all executed instructions.
From the listing, it then computes the line numbers of executed instructions. These line numbers
are included in the WSL file as FermaT comments, abort statements can be inserted at all points
in the program where the translation of a non-executed instruction appears.

The resulting WSL program is guaranteed to be semantically equivalent to the original program
when executed on the given initial state. It is also possible to execute the program for several
different initial states and combine the traces to get a program which is equivalent to the original
for all the given states.

The resulting WSL program is transformed and simplified: the transformations include opera-
tions which make use of the abort statements to simplify the program (see Section 5.10).

Here is the result of this “dynamic slice” applied to UDATECNV:

!P chain reg( var r13, os);
r12 := 6;
r11 :=!XF address of(SAVEAREA);
r13 :=!XF address of(SAVEAREA);
r2 :=!XF address of(CDATEDIN);
!P WTO(“Here is the input data:” var os);
!P WTO(CDFMT[5..CDFMT + 4] var os);
!P WTO(CDMSG[5..CDMSG + 4] var os);
r0 :=!XF system time(os);
SYSTIME :=!XF system time(os);
!P unpk(SYSTIME var DBLEWORD[1..7]);
LOCALTIM := DBLEWORD[1..6];
SYSDATE :=!XF system date(os);
!P unpk(SYSDATE var DBLEWORD[1..7]);
LOCALDAT := DBLEWORD[1..5];
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exit flag 1 := 0;
DDTIMEO := “hh:mm:s”;
NUMAREA := ZEROS 0;
{DDENV = ENVCICS};
NUMAREA[10..15] := DDTIMEI[2..7];
r1 := 15;
r15 :=!XF address of(NUMAREA);
do {a[r15] > “0”};

{a[r15] 6 “9”};
r15 := r15 + 1;
r1 := r1 − 1;
if r1 = 0 then exit(1) fi od;

if NUMAREA[10..11] 6 “23”
∧ NUMAREA[12..13] 6 “59”
∧ NUMAREA[14..15] 6 “59”
then DDTIMEO[1..2] := NUMAREA[10..11];

DDTIMEO[3] := “:”;
DDTIMEO[4..5] := NUMAREA[12..13];
DDTIMEO[6] := “:”;
DDTIMEO[7..8] := NUMAREA[14..15] fi;

DDODATA := “ ”;
{DDITYPE = “0”};
{DDOTYPE 6= “1”};
{DDOTYPE = “2”};
DDODATA.DDO2C := DDI0C;
DDODATA.DDO2Y := DDI0Y;
WRKMM := DDI0M;
{WRKMM[1] > “0”};
{WRKMM[1] 6 “1”};
{WRKMM[2] > “0”};
{WRKMM[2] 6 “9”};
{WRKMM > “01”};
{WRKMM 6 “12”};
DBLEWORD :=!XF pack(WRKMM);
r1 := 3 ∗ (!XF cvb(DBLEWORD) − 1);
r15 := 3 ∗ (!XF cvb(DBLEWORD) − 1)+!XF address of(MONTHS);
WRKMTH := MONTHS[3 ∗ (!XF cvb(DBLEWORD) − 1), 3];
DDODATA.DDO2M := WRKMTH;
DDODATA.DDO2D := DDI0D;
DDODATA.DDO2S1 := “-”;
DDODATA.DDO2S2 := “-”;
exit flag := 0;
r13 := SAVEAREA[5..8];
!P WTO(“Here is the result:” var os);
!P WTO(CDFMT[5..CDFMT + 4] var os);
!P WTO(CDMSG[5..CDMSG + 4] var os);
r15 := 0

The resulting program has had much irrelevant code deleted: all statements which were not
executed in the program run have been removed and many tests have been converted to assertions.

Note that code which is executed but which does not contribute to the output variables of
interest is still included in the slice: for example, this includes the loop which checks that all the
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characters in NUMAREA are digits. The code which is executed when an non-digit is found is not
included in the slice (since during the actual execution, all the characters are digits), but the tests
are included as is the loop which moves the pointer in r15

Traditional dynamic slicing algorithms have the opportunity to remove this code, if they can
determine (via dynamic dataflow analysis) that there are no dataflow links to the code. However,
FermaT can also remove this code via the static slicing step which follows.

The next step is a backwards static slice on the final value of WRKMTH. The result consists of
just three statements:

WRKMM := DDI0M;
DBLEWORD :=!XF pack(WRKMM);
WRKMTH := MONTHS[3 ∗ (!XF cvb(DBLEWORD) − 1), 3]

Applying a semantic slice collapses the result to a single assignment:

WRKMTH := MONTHS[3 ∗ (!XF cvb(!XF pack(DDI0M)) − 1), 3]

It is now immediately obvious how the final value of WRKMTH is calculated: the initial value of
the string DDI0M is first converted to a packed decimal number, and then to a binary number. This
number is used as an index into the string MONTHS to extract a three byte substring. Checking
the source code, we see that MONTHS indeed consists of twelve three byte strings “JAN”, “FEB”,
. . . , “DEC”. So it is clear that the program converts a month number DDI0M (in the range 1–12)
to a three character abbreviated month name.

By contrast, a static slice of the original program, on the final value of WRKMTH, looks like
this:

begin

if DDITYPE 6= “0”
then if DDITYPE 6= “1”

then if DDITYPE 6= “2”
then if DDITYPE = “3” ∧ DDOTYPE = “1”

then CONVDDD(); MM2MTH()
elsif DDITYPE = “3”

then if DDOTYPE = “2” then CONVDDD(); MM2MTH() fi fi

elsif DDOTYPE = “1”
then WRKMM := DDI2M; MM2MTH()
else if DDOTYPE = “2”

then WRKMM := DDI2M; MM2MTH() fi fi

elsif DDOTYPE = “1”
then WRKMM := DDI1M; MM2MTH()
else if DDOTYPE = “2”

then WRKMM := DDI1M; MM2MTH() fi fi

elsif DDOTYPE = “1”
then WRKMM := DDI0M; MM2MTH()
else if DDOTYPE = “2”

then WRKMM := DDI0M; MM2MTH() fi fi

where

proc CONVDDD() ≡
WRKDAYS :=!XF pack(DDI3DDD);
WRKMTH := “hex 0x1C”;
r15 :=!XF address of(MTHDAYS);
do if WRKDAYS 6 a[r15, 2]

then exit(1)
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else !P ap(“hex 0x1C” var WRKMTH);
!P sp(a[r15, 2] var WRKDAYS);
r15 := r15 + 2 fi od;

!P unpk(WRKMTH[2..3] var WRKMM) end

proc MM2MTH() ≡
if WRKMM[1] < “0”

then WRKMTH := “***”
elsif WRKMM[1] > “1”

then WRKMTH := “***”
elsif WRKMM[2] < “0”

then WRKMTH := “***”
elsif WRKMM[2] > “9”

then WRKMTH := “***”
elsif WRKMM < “01”

then WRKMTH := “***”
else if WRKMM > “12”

then WRKMTH := “***”
else DBLEWORD :=!XF pack(WRKMM);

WRKMTH := MONTHS[3 ∗ (!XF cvb(DBLEWORD) − 1), 3]
fi fi end

end

This version of the program contains much extraneous code concerned with error checking and
the various algorithms for handling different types of input. This is the best result we can get via a
purely static analysis of the program, without providing further information. If sufficiently detailed
conditioning assertions are inserted, then a conditioned semantic slice will produce the same result
as the combined slice. In practice, however, it is difficult to determine what these assertions should
be, and where they should be inserted, without a detailed knowledge of the behaviour of the
program. But “a detailed knowledge of the behaviour of the program” is just what we are trying
to ascertain!

The dynamic slicing step can make use of the results of two or more executions of the module.
For example, combining two traces, one with a valid month number and one with an invalid month
number, followed by a static slice, we get:

WRKMM := DDI0M;
if WRKMM[1] < “0”

then WRKMTH := “***”
elsif WRKMM[1] > “1”

then WRKMTH := “***”
elsif WRKMM[2] < “0”

then WRKMTH := “***”
elsif WRKMM[2] > “9”

then WRKMTH := “***”
elsif WRKMM < “01”

then WRKMTH := “***”
elsif WRKMM > “12”

then WRKMTH := “***”
else DBLEWORD :=!XF pack(WRKMM);

WRKMTH := MONTHS[3 ∗ (!XF cvb(DBLEWORD) − 1), 3]
fi
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This combines the behaviour of the program ion both valid and invalid data into a concise
abstract representation.

8 Second Case Study

For the second case study we take a typical assembler module which reads a file and generates a
report. See Appendix 2 for the source code.

After translating from assembler to WSL and transforming the WSL code to restructure and
simplify, and raise the abstraction level, we get this result:

begin

!P chain reg( var r13, os);
r12 := 6;
r11 :=!XF address of(SAVEAREA);
r13 :=!XF address of(SAVEAREA);
!P OPEN(“INPUT” var PARMS);
r15 := result code;
!P OPEN(“OUTPUT” var TEXTOUT);
r15 := result code;
RESULTLN := “ REPORT ON OUT-OF-RANGE DATA ”;
!P PUT FIXED(“ REPORT ON OUT-OF-RANGE DATA ” var TEXTOUT);
r15 := TEXTOUT STATUS;
do r0 := NOT USED;

r1 := NOT USED;
r14 := 96;
!P GET FIXED( var PARMS,PARMSIN);
r15 := PARMS STATUS;
if !XC end of file(PARMS)

then RESULTLN.RESULTMS := “TOTALS ”;
!P ed(SUM1[1..8], “hex 0x40402020202020202020202020202020”

var RESULTLN.RESULTC1, cc1,wedit addr);
!P ed(SUM2[1..8], “hex 0x40402020202020202020202020202020”

var RESULTLN.RESULTC2, cc1,wedit addr);
!P PUT FIXED(RESULTLN var TEXTOUT);
r15 := TEXTOUT STATUS;
if FOUNDL = 1

then RESULTLN := “A LOW VALUE WAS FOUND ”;
!P PUT FIXED(“A LOW VALUE WAS FOUND ”

var TEXTOUT);
r15 := TEXTOUT STATUS fi;

if FOUNDH = 1
then RESULTLN := “A HIGH VALUE WAS FOUND ”;

!P PUT FIXED(“A HIGH VALUE WAS FOUND ”
var TEXTOUT);

r15 := TEXTOUT STATUS fi;
RESULTLN := “ END OF REPORT ”;
!P PUT FIXED(“ END OF REPORT ”

var TEXTOUT);
r15 := TEXTOUT STATUS;
exit(1)

else NUMAREA := PARMSIN.CODE1;
NUMCHECK();
if r15 6= 0
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then !P WTO(“Non-numeric data in file” var os); exit(1)
else NUMAREA := PARMSIN.CODE2;

NUMCHECK();
if r15 6= 0

then !P WTO(“Non-numeric data in file” var os); exit(1)
else if PARMSIN.CODE1 < LOWVAL

then LOWVAL := PARMSIN.CODE1;
RESULTLN.RESULTMS := “NEW LOW VALUE ”;
RESULTLN.RESULTC1 := PARMSIN.CODE1;
RESULTLN.RESULTC2 := PARMSIN.CODE2;
!P PUT FIXED(RESULTLN var TEXTOUT);
r15 := TEXTOUT STATUS;
FOUNDL := 1 fi;

if CDC1 > HIGHVAL

then HIGHVAL := CDC1;
RESULTLN.RESULTMS := “NEW HIGH VALUE ”;
RESULTLN.RESULTC1 := PARMSIN.CODE1;
RESULTLN.RESULTC2 := PARMSIN.CODE2;
!P PUT FIXED(RESULTLN var TEXTOUT);
r15 := TEXTOUT STATUS;
FOUNDH := 1 fi;

VALUE 0 :=!XF pack(PARMSIN.CODE1);
!P ap(VALUE 0 var SUM1[1..7]);
VALUE 0 :=!XF pack(PARMSIN.CODE2);
!P ap(VALUE 0 var SUM2[1..7]) fi fi fi od;

exit flag := 0;
!P CLOSE( var PARMS);
r15 := result code;
!P CLOSE( var TEXTOUT);
r15 := 0

where

proc NUMCHECK() ≡
r1 := 15;
r15 :=!XF address of(NUMAREA);
do if (a[r15] < “0” ∨ a[r15] > “9”) ∧ a[r15] 6= “ ”

then if a[r15] < “0”
then r15 := 4; exit flag := 0
else r15 := 4; exit flag := 0 fi;

exit(1)
elsif a[r15] 6= “ ”

then r15 := r15 + 1; r1 := r1 − 1
else r1 := r1 − 1 fi;

if r1 = 0
then r15 := 0; exit flag := 0; exit(1) fi od end

end

Figure 2 shows a sample input file, and Figure 3 shows the corresponding report file.

We are interested in the code which computes the final values of FOUNDL and FOUNDH under
normal processing conditions. A static slice of FOUNDL looks like this:

begin
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8 888

7 777

12 212

120 120

121 121

114 114

Figure 2: Sample input file

REPORT ON OUT-OF-RANGE DATA

NEW LOW VALUE 8 888

NEW HIGH VALUE 8 888

NEW LOW VALUE 7 777

TOTALS 382 2232

A LOW VALUE WAS FOUND

A HIGH VALUE WAS FOUND

END OF REPORT

Figure 3: Sample output file

!P OPEN(“INPUT” var PARMS);
do !P GET FIXED( var PARMS,PARMSIN);

if !XC end of file(PARMS)
then exit(1)
else NUMCHECK();

if r15 6= 0
then exit(1)
else NUMCHECK();

if r15 6= 0
then exit(1)
else if PARMSIN.CODE1 < LOWVAL

then LOWVAL := PARMSIN.CODE1;
FOUNDL := 1 fi fi fi fi od

where

proc NUMCHECK() ≡
r1 := 15;
r15 :=!XF address of(NUMAREA);
do if (a[r15] < “0” ∨ a[r15] > “9”) ∧ a[r15] 6= “ ”

then if a[r15] < “0”
then r15 := 4 else r15 := 4 fi;

exit(1)
elsif a[r15] 6= “ ”

then r15 := r15 + 1; r1 := r1 − 1
else r1 := r1 − 1 fi;

if r1 = 0 then r15 := 0; exit(1) fi od end

end

This has to include the calls to NUMCHECK as well as the body of the procedure, even though
(as it happens) this procedure is wholly concerned with error checking.

A dynamic slice was computed by executing the program on the sample input file. A syntactic
slice of this dynamic slice produced this result:
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!P OPEN(“INPUT” var PARMS);
do !P GET FIXED( var PARMS,PARMSIN);

if !XC end of file(PARMS)
then exit(1)
else if PARMSIN.CODE1 < LOWVAL

then LOWVAL := PARMSIN.CODE1; FOUNDL := 1 fi fi od

This is a good result, but FermaT’s semantic slicer can do even better. First, it converts the
do . . . od loop to an equivalent while loop:

!P OPEN(“INPUT” var PARMS);
!P GET FIXED( var PARMS,PARMSIN);
while ¬!XC end of file(PARMS) do

if PARMSIN.CODE1 < LOWVAL

then LOWVAL := PARMSIN.CODE1; FOUNDL := 1 fi;
!P GET FIXED( var PARMS,PARMSIN) od

Next, FermaT notices the if statement in the loop body, and determines that the condition:

¬!XC end of file(PARMS) ∧ PARMSIN.CODE1 > LOWVAL

would be a suitable candidate for speculative entire loop unrolling:

!P OPEN(“INPUT” var PARMS);
!P GET FIXED( var PARMS,PARMSIN);
while ¬!XC end of file(PARMS) ∧ PARMSIN.CODE1 > LOWVAL do

if PARMSIN.CODE1 < LOWVAL

then LOWVAL := PARMSIN.CODE1; FOUNDL := 1 fi;
!P GET FIXED( var PARMS,PARMSIN) od;

while ¬!XC end of file(PARMS) do

if PARMSIN.CODE1 < LOWVAL

then LOWVAL := PARMSIN.CODE1; FOUNDL := 1 fi;
!P GET FIXED( var PARMS,PARMSIN) od

The first loop simplifies to:

while ¬!XC end of file(PARMS) ∧ PARMSIN.CODE1 > LOWVAL do

!P GET FIXED( var PARMS,PARMSIN) od;

On termination of this loop, the assertion:

!XC end of file(PARMS) ∨ PARMSIN.CODE1 < LOWVAL

is true. FermaT unrolls the first step of the second loop and uses the assertion to simplify the loop
body:

if ¬(!XC end of file(PARMS))
then 〈LOWVAL := PARMSIN.CODE1,FOUNDL := 1〉;

!P GET FIXED( var PARMS,PARMSIN);
while ¬(!XC end of file(PARMS)) do

if PARMSIN.CODE1 < LOWVAL

then 〈LOWVAL := PARMSIN.CODE1,FOUNDL := 1〉 fi;
!P GET FIXED( var PARMS,PARMSIN) od fi

Constant Propagation determines that the second assignment to FOUNDL is redundant:

if ¬(!XC end of file(PARMS))
then 〈LOWVAL := PARMSIN.CODE1,FOUNDL := 1〉;
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!P GET FIXED( var PARMS,PARMSIN);
while ¬(!XC end of file(PARMS)) do

if PARMSIN.CODE1 < LOWVAL

then LOWVAL := PARMSIN.CODE1 fi;
!P GET FIXED( var PARMS,PARMSIN) od fi

Now the whole of the while loop is redundant, as is the assignment to LOWVAL and the call to
GET FIXED:

if ¬(!XC end of file(PARMS))
then FOUNDL := 1 fi

The resulting program is:

!P OPEN(“INPUT” var PARMS);
!P GET FIXED( var PARMS,PARMSIN);
while ¬!XC end of file(PARMS) ∧ PARMSIN.CODE1 > LOWVAL do

!P GET FIXED( var PARMS,PARMSIN) od;
if ¬(!XC end of file(PARMS))

then FOUNDL := 1 fi

This result is found to be simpler than the original loop, so our “speculation” has succeeded and
this program is returned as the result.

The syntactic slice for FOUNDH (applied to the dynamic slice) is very similar to that for
FOUNDL:

!P OPEN(“INPUT” var PARMS);
do !P GET FIXED( var PARMS,PARMSIN);

if !XC end of file(PARMS)
then exit(1)
else if CDC1 > HIGHVAL

then HIGHVAL := CDC1; FOUNDH := 1 fi fi od

so we might expect the semantic slice to be similar. In fact, the semantic slice is:

!P OPEN(“INPUT” var PARMS);
!P GET FIXED( var PARMS,PARMSIN);
if ¬(!XC end of file(PARMS)) ∧ CDC1 > HIGHVAL

then FOUNDH := 1 fi

The difference is due to the fact that LOWVAL is compared against PARMSIN.CODE1 which depends
on the value of the record read from the file, while HIGHVAL is compared against CDC1 which is a
constant value.

In this case, selective entire loop unrolling does not simplify the program, but selective unrolling
of the first iteration of the while loop produces this result:

if ¬(!XC end of file(PARMS))
then if CDC1 > HIGHVAL

then 〈FOUNDH := 1,HIGHVAL := CDC1〉;
!P GET FIXED( var PARMS,PARMSIN) fi;

while ¬(!XC end of file(PARMS)) do

if CDC1 > HIGHVAL

then 〈FOUNDH := 1,HIGHVAL := CDC1〉 fi;
!P GET FIXED( var PARMS,PARMSIN) od fi

FermaT then expands the inner if statement forwards and inserts assertions. The assertions are
used to simplify the branches of the if statement:

if ¬(!XC end of file(PARMS))
then if CDC1 > HIGHVAL
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then {CDC1 > HIGHVAL};
〈FOUNDH := 1,HIGHVAL := CDC1〉;
!P GET FIXED( var PARMS,PARMSIN);
while ¬(!XC end of file(PARMS)) do

if CDC1 > HIGHVAL

then 〈FOUNDH := 1,HIGHVAL := CDC1〉 fi;
!P GET FIXED( var PARMS,PARMSIN) od

else {CDC1 6 HIGHVAL} fi fi

As before, Constant Propagation determines that the second assignment to FOUNDH is redundant,
whereupon the inner while loop and the call to GET FIXED become redundant:

if ¬(!XC end of file(PARMS))
then if CDC1 > HIGHVAL

then {CDC1 > HIGHVAL};
FOUNDH := 1

else {CDC1 6 HIGHVAL} fi fi

This is abstracted into the specification statement:

FOUNDH := FOUNDH′.(
((FOUNDH′ = 1 ∨ CDC1 6 HIGHVAL) ∧ FOUNDH′ = FOUNDH

∨ FOUNDH′ = 1 ∧ CDC1 > HIGHVAL)
∧ ¬(!XC end of file(PARMS))
∨ !XC end of file(PARMS) ∧ FOUNDH′ = FOUNDH)

And then refined into a simple if statement:

if ¬(!XC end of file(PARMS)) ∧ CDC1 > HIGHVAL

then FOUNDH := 1 fi

9 Mass Migration Exercises

We have also applied the semantic slicer to two mass migration case studies. The first case study
consisted of a complete assembler system comprising a total of 2,296 modules. The purpose of
this case study was to examine FermaT’s ability to restructure executable code and remove error
handling code.

Complete analysis of the entire system (all 1,945 code modules) including removal of error
handling code and abstraction to high level WSL took 5 hours 10 minutes CPU time on a 2.6GHz
P4 processor. This is an average of under 10 seconds CPU time per module.

FermaT applied a total of 3,876,378 transformations, averaging 1,993 transformations per mod-
ule and 208 transformations per second.

Table 3 records the lines of code and McCabe complexity metrics for the raw WSL (as translated
from the assembler), the transformed WSL (which in this case, also has comments deleted) and the
abstract WSL code. A total of 410 modules contained error handling code that was detected and

Total LOC Per module McCabe

Original Listings 11,959,084 6,149 —
Raw WSL 2,109,704 1,085 135
Transformed WSL 513,616 264 25
Abstract WSL 256,853 132 23

Table 3: Lines of Code and complexity metrics for raising abstraction level

removed. This code amounted to 16% of all the code in the modules. For 40 of the modules, error
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handling code amounted to over half the executable code in the module. Over the entire system,
removing error handling code produced about a 10% reduction in complexity.

For a programmer who needs to understand the main functions of a module, and the algorithms
it implements, reading a 132 line abstract WSL program should be much simpler than trying to
make sense of a 6,000 line assembler listing!

The second case study consists of a (fairly) random sample of 1,905 assembler modules taken
from twelve different organisations, and representing approximately one million lines of source code.
Of these, 203 consisted entirely of data declarations, so these were ignored for the code analysis
tests. The remaining 1,702 modules totalled 5,377,163 lines of listing (average 3,159 per module).

We applied a number of abstraction transformations to the WSL code to generate a high-level
abstract equivalent for each module. This took a total of 12 hours 58 minutes CPU time.

FermaT applied a total of 10,318,338 transformations, averaging 6,062 transformations per
module and 221 transformations per second.

Table 4 records the lines of code and McCabe complexity metrics for the raw WSL (as translated
from the assembler), the transformed WSL and the abstract WSL code.

Total LOC Per module McCabe

Original Listings 5,377,163 3,159 —
Raw WSL 4,047,258 2,378 373
Transformed WSL 736,816 433 62
Abstract WSL 442,764 260 50

Table 4: Lines of Code and complexity metrics for raising abstraction level

These two case studies are described in more detail in [43].

10 Practical Applications

There are two main practical applications for the combined slicing technique: debugging and
program comprehension and reengineering. These will be discussed in the following sections.

10.1 Debugging

Typically, when faced with a debugging problem a programmer will have test data which can
reproduce the bug. This is not always the case however: sometimes bugs appear sporadically
and are difficult to reproduce. Since the dynamic slicing method has such a small impact on
performance, it is quite practical to leave it “switched on” all the time. The next time the bug
manifests itself, the programmers can examine the dynamic slice to see which instructions were
actually executed, and apply backwards static slicing to the result, using the incorrect output as
the slicing criteria.

Thanks to the combined slicing technique, the programmer can extract just the code which:

1. Was actually executed when the bug manifested, and

2. Contributed to the incorrect output value.

This leads to a dramatic reduction in debugging effort.

10.2 Reengineering to an Object Oriented System

In this section we outline a method for reengineering a legacy system to an object oriented system.
This necessarily requires more work than a simple migration, but FermaT transformations can
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provide a lot of assistance with defining an object structure and determining which code belongs
in each object.

The first step in the analysis phase of any reengineering project is to determine the top level
structure of the system: i.e. the set of programs executed and the data files they operate on. The
order in which programs are invoked is determined by the operator instructions and the JCL (Job
Control Language) files. FermaT includes a sophisticated JCL parser which processes all the JCL
files to determine:

• The linkage between logical file names and physical file names at each program invocation;

• The order in which programs are invoked

The next step is to determine the major inputs and outputs for each module. The individual
modules are then restructured and analysed. For each output a backwards slice is computed: this
slice contains all the code needed to compute this output of the module. Overlapping slices can
be factored out into shared subroutines. The resulting analysis can be used to develop an object
structure for the reengineered program, and to implement the methods for each object.

11 Related Work

11.1 Assembler Migration

Feldman and Friedman [13] describe an automated assembler to C migration project which involved
the migration of a large database system and application generator written in IBM 370 assembly
language. They developed a “literal” translator which translated each instruction separately into
C code with no optimisation. In effect, the result of the translation was an IBM 370 simulator.
When became clear that this approach would not be sufficient, a new translator (called Bogart)
was developed based on abstraction and re-implementation. Bogart produced code which was
between half and three quarters as large and more than twice as fast as the literal translator’s
output. However, the translator required extensive manual modification of the assembler code
before it could be applied. Experienced programmers could process about 3600 lines of code per
person-month. As a result, “Manual preparation of the code has probably damaged the code’s
quality. Programmers estimate that the code is less efficient after standardization, and, naturally,
new bugs were introduced. . . . two versions now had to be debugged, tested, and maintained” [13].
In addition “Readability was only a secondary goal in this case, because the target code was not
meant to be handled by human programmers”

In contrast, our goals with the FermaT migration system are:

1. The absolute minimum of manual modification to the assembler code before migration: our
aim is always for 100% automated migration, but there will always be a handful of constructs
which appear so rarely in the code that it is easier to fix the original assembler than to
program a special-purpose transformation rule.

2. Generate HLL code which is both efficient to execute and maintainable by programmers
unfamiliar with IBM 370 assembler;

3. No manual modification of the HLL code after migration.

With all our migration projects to date, we have been able to fix any problems either by adjusting
the migration process (usually by updating translation tables) or as a last resort by rewriting parts
of the original assembler. So far we have not needed to carry out any manual modification of
the generated code. This is important because it allows us to regenerate the code at any time
simply by re-running the migration process, without having to redo any manual fixes. Combined
with the sheer speed of the migration process (around 10 seconds per module), this allows an
almost interactive edit/assemble/migrate/compile/test cycle during the initial phase where the
transformation rules are being “fine tuned” to produce the best possible output code.
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FermaT has been used for a number of successful migration projects. One early project involved
migrating an embedded system consisting of over 544,000 lines of 186 assembler to efficient and
maintainable C code. Another successful migration project involved migrating over 750,000 lines of
IBM assembler to efficient and maintainable cross-platform C code. The migrated C code runs on
the mainframe (a big-endian, EBCDIC machine) and on Windows and Linux PCs (little-endian,
ASCII machines).

11.2 Amorphous Slicing

Harman, Binkley and Danicic [7] define a slice in terms of a simplicity measure, which is a syntactic
relation that defines that which is allowed to change, and a preservation requirement, which is a
semantic relation which captures that which must remain invariant. Unfortunately, their theoretical
foundation has a fundamental flaw: the preservation requirement is defined to be an equivalence
relation. When applied to slicing nonterminating programs there are exactly two possibilities:

1. A nonterminating program can be equivalent to a terminating program;

2. A nonterminating program is never equivalent to a terminating program.

If (2) is the case, then according to their framework, no slicing algorithm is allowed to delete a
nonterminating loop. More seriously, the algorithm is not allowed to delete a loop which does not
affect the slicing criteria unless it can prove that the loop always terminates! Such a proof is not
always easy, see the example in Section 5.2 for an example where mathematicians suspect that the
loop always terminates, but so far have failed to prove it.

In [7] the authors take case (1) and use the lazy semantics of Cartwright and Felleisen [10]. This
allows a nonterminating program to be equivalent to a terminating program in certain situations,
and therefore allows a terminating program to be a valid slice of a nonterminating program. But
because the semantic relation is an equivalence, it also allows a nonterminating program to be a
valid slice of a terminating program! This is something that Weiser [45], for example, explicitly
excluded in his discussion of program slicing. Consider the following program:

x := 1;
x := 0;
while x = 1 do y := y + 1 od;
x := 2

where we are slicing on the value of x at the end of the program. This program always terminates
and sets x to 2. According to [7], the following program is a valid syntactic slice (since it meets
both the syntactic and semantic constraints):

x := 1;
while x = 1 do y := y + 1 od;
x := 2

But this program will never terminate!

Cartwright and Felleisen [10] give this example program Q2:

y := 1; while true do x := 0 od

and state that “From the perspective of program optimization, the semantics of sequential execution
is too restrictive. . . . in the program Q2 the while loop is superfluous if the value of x is never
demanded.” What they fail to mention is that the assignment to y is also superfluous even if the
value of y is demanded. This is because execution can never get past the while loop, so the value
assigned to y can never be used. In fact, the while loop is still superfluous, even if the value of x is
demanded: because the value assigned to x inside the loop can never be used elsewhere. A slicing
theory based on semantic equivalence using this lazy semantics would not allow one to delete either
the assignment to y (when y is demanded) or the while loop (when x is demanded), since the lazy
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semantics of the two programs is not the same. This contradicts Weiser’s assertion that anything
is allowed as a slice of a nonterminating program.

For these reasons, we have defined a semantic relation (semi-refinement) which is not an
equivalence relation. Semi-refinement allows the following:

1. If the program does not terminate for some initial state, then the slice can do anything;

2. If the program terminates for some initial state then the slice must be semantically equivalent
(for the subset of the final state space that we are interested in);

3. In particular, the slice must terminate whenever the original program terminates.

It is not possible to meet all these conditions if we use an equivalence relation as the semantic
constraint.

12 FermaT Availability

The FermaT transformation system implements all of the transformations described in this paper,
including syntactic and semantic slicing, constant propagation, abstraction and refinement.

The core transformation engine of FermaT (without the source and target translators) is avail-
able under the GNU GPL (General Public Licence) from the following web sites:

http://www.gkc.org.uk/fermat.html
http://www.cse.dmu.ac.uk/∼mward/fermat.html

13 Conclusion

In this paper we have described an approach to assembler analysis which combines a highly efficient
form of dynamic slicing with static semantic slicing based on WSL transformation theory to
derive concise, abstract descriptions of the semantics of the program for a given set of inputs
and outputs. Two case studies of typical assembler modules show the dramatic improvements in
understandability which can be achieved using these methods.

Appendix 1: Source code for First Case Study

***********************************************************************

* *

* Copyright (C) 1998-1999 Micro Focus. All Rights Reserved. *

* This demonstration program is provided for use by users of *

* Micro Focus products and may be used, modified and distributed *

* as part of your application provided that you properly *

* acknowledge the copyright of Micro Focus in this material. *

* *

***********************************************************************

UDATECNV CSECT

SAVE (14,12),,*

EQUREGS

BALR R12,R0 ESTABLISH

USING *,R12 ADDRESSABILITY

LA R11,SAVEAREA DO

ST R11,8(R0,R13) NORMAL

ST R13,4(R0,R11) SAVEAREA

LR R13,R11 CHAINING

*

* L R2,0(R0,R1) LOAD PASSED PARM

***

*** Set up R2 from local data

LA R2,CDATEDIN

WTO ’Here is the input data:’

WTO MF=(E,CDFMT)
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WTO MF=(E,CDMSG)

***

***

USING CDATED,R2 ADDRESS PASSD PARMS

*

TIME DEC GET SYSTEM DATE & TIME

ST R0,SYSTIME STORE SYSTEM TIME (HHMMSSDD)

OI SYSTIME+3,X’0F’ SET ZONE SIGN ON TIME

UNPK DBLEWORD(7),SYSTIME UNPACK TIME

MVC LOCALTIM,DBLEWORD STOTE MACHINE TIME

*

ST R1,SYSDATE STORE SYSTEM DATE (00YYDDDS)

OI SYSDATE+3,X’0F’ SET SIGN BITS ON DATE

UNPK DBLEWORD(7),SYSDATE UNPACK DATE

MVC LOCALDAT,DBLEWORD + 2

*

BAL R10,CONVTIM LINK TO TIME RTN

BAL R10,CONVDAT LINK TO DATE RTN

*

GOBACK EQU * COMMOM EXIT POINT

L R13,SAVEAREA+4 RESTORE R13

***

*** Print the result

WTO ’Here is the result:’

WTO MF=(E,CDFMT)

WTO MF=(E,CDMSG)

***

RETURN (14,12),RC=0 RETURN TO CALLER

*

**********************************************************************

* Convert any supplied time to hh:mm:dd format. *

* If ENV is CICS then we have the time as 0HHMMSS. *

* If ENV is IMS then we have date as HHMSSD *

* If ENV is nulls or INET we will use system time *

* Any other value of ENV is invalid so return ’hh:mm:ss’ rather than *

* a real time *

**********************************************************************

CONVTIM EQU *

MVC DDTIMEO,=CL7’hh:mm:ss’ SET DEFAULT RESPONES

MVC NUMAREA,ZEROS CLEAR NUMERIC WORK AREA

CLC DDENV,ENVCICS IS ENV = CICS

BNE CONVTIMA NO - SKIP TO CONVTIMA

MVC NUMAREA+9(6),DDTIMEI+1 MOVE IN CICS TIME

B CONVTIMX SKIP TO FORMAT PART

...

CONVTIMX EQU *

BAL R14,NUMCHECK CHECK TIME FOR NUMERIC

LTR R15,R15 WAS IT NUMERIC?

BNZ CONVTIMZ NO - SKIP TO EXIT

CLC NUMAREA+9(2),=CL2’23’ IS HH GREATER THAN 23?

BH CONVTIMZ YES - SKIP TO EXIT

CLC NUMAREA+11(2),=CL2’59’ IS MM GREATER THAN 59

BH CONVTIMZ YES - SKIP TO EXIT

CLC NUMAREA+13(2),=CL2’59’ IS SS GREATER THAN 59?

BH CONVTIMZ YES - SKIP O EXIT

CONVTIMY EQU * REFORMAT THE TIME

MVC DDTIMEO(2),NUMAREA+9 MOVE IN THE HH

MVI DDTIMEO+2,C’:’ MOVE IN A SEPERATOR

MVC DDTIMEO+3(2),NUMAREA+11 MOVE IN THE MM

MVI DDTIMEO+5,C’:’ MOVE IN A SEPERATOR

MVC DDTIMEO+6(2),NUMAREA+13 MOVE IN THE SS

B CONVTIMZ

CONVTIMZ EQU *
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BR R10

*

**********************************************************************

* Convert date from supplied format to requested format. *

**********************************************************************

CONVDAT EQU *

MVC DDODATA,=CL20’ ’ CLEAR THE OUTPUT DATA AREA

* CHECK OUTPUT TYPE

CLI DDITYPE,C’0’ IS INPUT TYPE 0 (YYYY-MM-DD)

BE CONVDAT0 YES - SKIP TO CONVDAT0

...

CONVDAT0 EQU *

CLI DDOTYPE,C’1’ IS OUTPUT TYPE 1 (DD-MMM-YY)?

BE CONVDT01 YES - SKIP TO CONVDT01

CLI DDOTYPE,C’2’ IS OUTPUT TYPE 2 (DD-MMM-YYYY)?

BE CONVDT02 YES - SKIP TO CONVDT02

...

CONVDT02 EQU * TYPE 2 (YYYY-MM-DD=>DD-MMM-YYYY)

MVC DDO2C,DDI0C MOVE CC TO OUTPUT

MVC DDO2Y,DDI0Y MOVE YY TO OUTPUT

MVC WRKMM,DDI0M MOVE MM TO WORKAREA

BAL R14,MM2MTH LINK TO CONVERSION RTN

MVC DDO2M,WRKMTH MOVE MMM TO OUTPUT

MVC DDO2D,DDI0D MOVE DD TO OUTPUT

MVI DDO2S1,C’-’ MOVE IN SEPERATOR

MVI DDO2S2,C’-’ MOVE IN SEPERATOR

BR R10 RETURN

...

MM2MTH EQU * CONVERT MM TO MMM (ALPHA)

CLI WRKMM,C’0’ CHECK MM IS VALID NUMERIC AND

BL MM2MTHE IN RANGE 01 TO 12

CLI WRKMM,C’1’

BH MM2MTHE

CLI WRKMM+1,C’0’

BL MM2MTHE

CLI WRKMM+1,C’9’

BH MM2MTHE

CLC WRKMM,=CL2’01’

BL MM2MTHE

CLC WRKMM,=CL2’12’

BH MM2MTHE

PACK DBLEWORD,WRKMM CONVERT MM TO BINARY

CVB R1,DBLEWORD

BCTR R1,R0 NOW REDUCE IT BY 1 AND

MH R1,=H’3’ MULT BY TABLE ENTRY

LA R15,MONTHS(R1) TO GET ADDRESS IN TABLE

MVC WRKMTH,0(R15) MOVE TABLE ENTRY TO WORK AREA

B MM2MTHX SKIP TO EXIT POINT

...

MM2MTHX EQU *

BR R14 RETURN FROM SUB ROUTINE

*

**********************************************************************

* Check the characters in NUMAREA for being numeric *

**********************************************************************

NUMCHECK EQU * CHECK NUMAREA FOR NUMERICS

LA R1,15(R0,R0) LENGTH OF NUMAREA

LA R15,NUMAREA POINT TO NUMAREA

NUMCHCKA EQU *

CLI 0(R15),C’0’ IS CHAR LESS THAN 0?

BL NUMCHCKY YES - SKIP TO ERROR

CLI 0(R15),C’9’ IS CHAR GREATER THAN 9?

BH NUMCHCKY YES - SKIP TO ERROR

LA R15,1(R0,R15) INCREMENT POINTER
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BCT R1,NUMCHCKA LOOP BACK

NUMCHCKX EQU *

LA R15,0(R0,R0) CLEAR RETURN CODE

B NUMCHCKZ SKIP TO EXIT

...

NUMCHCKZ EQU *

BR R14

*

DBLEWORD DS D

SAVEAREA DS 18F

R14STORE DS F

NUMAREA DS CL15

ZEROS DC CL15’000000000000000’

SYSDATE DC F’0’

LOCALDAT DC CL5’YYDDD’

SYSTIME DC F’0’

LOCALTIM DC CL6’HHMMSS’

ENVCICS DC CL4’CICS’

ENVIMS DC CL4’IMS ’

ENVINET DC CL4’INET’

ENVNULL DC XL4’00000000’

WRKMM DS CL2

WRKMTH DS CL3

WRKDD DS CL2

WRKDAYS DS CL3

WRKYY DS CL3

MONTHS DS 0CL36

DC CL3’JAN’

DC CL3’FEB’

DC CL3’MAR’

DC CL3’APR’

DC CL3’MAY’

DC CL3’JUN’

DC CL3’JUL’

DC CL3’AUG’

DC CL3’SEP’

DC CL3’OCT’

DC CL3’NOV’

DC CL3’DEC’

...

*** Local data for testing:

UDATECNV CSECT

CDFMT DC H’61’

DC H’0’

DC CL61’CICS0hhmmssTIME OUTfccyy-mm-dd fDATE OUT’

CDMSG DC H’61’

DC H’0’

CDATEDIN DC CL61’CICS0124500 02007-03-22 2’

*** End of data

Appendix 2: Source code for Second Case Study

*********************************************************************

* REPORT PROGRAM *

*********************************************************************

*

* PRINT NOGEN

REGEQU

CSECT

DCBD

START CSECT

STM R14,R12,12(R13) SAVE ALL REGISTERS

LR R3,R15 COPY R15 TO R3
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USING START,R3 SET UP ADDRESSABILITY

ST R13,WSAVE+4 SAVE R13

LA R14,WSAVE SET UP REGISTER SAVE AREA

ST R14,8(R13) SAVE RETURN ADDRESS (R14)

LA R13,WSAVE LOAD R13

OPEN (DDIN,(INPUT)) OPEN INPUT FILE

OPEN (RDSOUT,(OUTPUT)) OPEN OUTPUT FILE

NI LAB140+1,X’0F’ CLEAR THE BRANCH

GET DDIN,WREC READ FIRST RECORD

LA R15,LABEOF GET THE ADDRESS OF THE CODE

STCM R15,B’0111’,DDIN+33 MODIFY DCB FOR NEW EODAD

B LAB140 PROCESS FIRST RECORD

LAB100 GET DDIN,WREC READ A RECORD

CLC WLAST,WORD COMPARE TWO STRINGS

BE LAB160 BRANCH ON EQUAL TO LAB160

LAB170 BAL R10,PUTREC CALL SUBROUTINE

LAB140 NOP LAB999 MODIFIED BRANCH INSTRUCTION

MVC PWORD,WORD STORE INDEX WORD IN PRINT LINE

PACK WORKP,NUM CONVERT STRING TO PACKED DECIMAL

ZAP TOTAL,WORKP COPY WORKP TO TOTAL

LAB120 B LAB130

LAB160 PACK WORKP,NUM CONVERT STRING TO PACKED DECIMAL

AP TOTAL,WORKP ADD NUMBER

B LAB100

LAB130 MVC WLAST,WORD STORE LAST WORD

B LAB100

LAB999 CLOSE DDIN

CLOSE RDSOUT

L R13,WSAVE+4

LM R14,R12,12(R13)

SLR R15,R15

BR R14 RETURN FROM MODULE

*

LABEOF OI LAB140+1,X’F0’ SET THE BRANCH

B LAB170 CONTINUE

*

PUTREC MVC PNUM,=X’402020202020202020202120’

ED PNUM,TOTAL CONVERT TOTAL TO STRING IN PNUM

PUT RDSOUT,WPRT WRITE OUTPUT RECORD

MVI WPRT,C’ ’ CLEAR PRINT LINE

MVC WPRT+1(79),WPRT CLEAR PRINT LINE

BR R10 RETURN TO CALLER

*

WSAVE DS 18F REGISTER SAVE AREA

WREC DC CL80’ ’ INPUT RECORD AREA

ORG WREC

WORD DS CL20

DS C’ ’

NUM DS CL11

DS CL48

WPRT DC CL80’ ’

ORG WPRT

PWORD DS CL20

PNUM DS CL12

DS CL48

WLAST DC CL20’ ’

TOTAL DC PL6’0’

WORKP DC PL6’0’

DDIN DCB DDNAME=DDIN, *

DSORG=PS, *

EODAD=LAB999, *

MACRF=GM,RECFM=FT,LRECL=80

RDSOUT DCB DDNAME=RDSOUT, *

DSORG=PS, *
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MACRF=PM,RECFM=FT,LRECL=80

LTORG

*

END
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