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Abstract

Reverse engineering of interrupt-driven real-time programs with timing constraints is a par-
ticularly challenging research area, because the functional behaviour of a program, and the
non-functional timing requirements, are implicit and can be very difficult to discover. However,
in this paper we present a significant advance in this area, which is achieved by modelling
real-time programs with interrupts in the wide spectrum language WSL. A small example
program is modelled in this way, and formal program transformations are used to derive vari-
ous timing constraints and to “inverse engineer” a formal specification of the program. (We
use the term “inverse engineering” to mean “reverse engineering achieved by formal program
transformations).

1 Introduction

This paper describes the process by which a simple interrupt-driven real time program has been
modelled in WSL and subsequently inverse engineered to derive a specification for the program.
The example is based on a previous case study, which we have simplified somewhat in order to con-
centrate on the handling of interrupts and timing information without the additional complications
inherent in that system.

The example is a simple program which runs in an infinite loop, reading characters from a
circular buffer and printing these on the standard output. Characters are placed into the buffer by
an interrupt routine, which may be triggered by external hardware, or another concurrent process.
When the buffer is empty, the program simply waits for more characters.

Our objectives in reverse engineering this program were as follows:

1. To derive a specification for the system, and thus

2. To show that there was no interference between the main program and the interrupt code,
i.e. to demonstrate that the points in its execution at which the main program is interrupted
are not significant—all such interrupts are equivalent. Alternatively if there is interference
then we should expect to identify where it occurs

3. To derive the combinations of timing constraints on interrupts, and buffer requirements, which
will guarantee that the program functions correctly.

The paper is organised as follows. In sections 2 and 3 we give a brief introduction to the
WSL language and transformation theory. Then in Section 4 we show how to model a real-time
interrupt-driven program in the WSL language. In Section 5 we transform the WSL model into
a simpler form, from which the timing constraints are derived in Section 6. Finally, we use this
information to derive a specification of the program in Section 7.

1



2 The Language WSL

In this section we give a brief introduction to the language WSL [13,42,44,45,48] the “Wide Spec-
trum Language”, used in Ward’s program transformation work, which includes low-level program-
ming constructs and high-level abstract specifications within a single language. By working within
a single formal language we are able to prove that a program correctly implements a specification,
or that a specification correctly captures the behaviour of a program, by means of formal trans-
formations in the language. We don’t have to develop transformations between the “programming”
and “specification” languages. An added advantage is that different parts of the program can be
expressed at different levels of abstraction, if required.

A program transformation is an operation which modifies a program into a different form which
has the same external behaviour (it is equivalent under a precisely defined denotational semantics).
Since both programs and specifications are part of the same language, transformations can be used
to demonstrate that a given program is a correct implementation of a given specification. In [43,
46,47,49] program transformations are used to derive a variety of efficient algorithms from abstract
specifications.

2.1 Syntax of Expressions

Expressions include variable names, numbers, strings of the form “text...”, the constants N, R,
Q, Z, and the following operators and functions. Note that since WSL is a wide spectrum language
it must not be restricted to finite values and computable operations. In the following e1, e2, etc.,
represent any valid expressions:

Numeric operators: e1 + e2, e1 − e2, e1 ∗ e2, e1/e2, e
e2

1 and so on, with the usual meanings.

Sequences: s = 〈a1, a2, . . . , an〉 is a sequence, the ith element ai is denoted s[i], s[i . . j] is the
subsequence 〈s[i], s[i + 1], . . . , s[j]〉, where s[i . . j] = 〈〉 (the empty sequence) if i > j. The
length of sequence s is denoted `(s), so s[`(s)] is the last element of s. We use s[i . . ] as an
abbreviation for s[i . . `(s)]. reverse(s) = 〈an, an−1, . . . , a2, a1〉, head(s) is the same as s[1] and
tail(s) is s[2 . . ].

Sequence concatenation: s1 ++ s2 = 〈s1[1], . . . , s1[`(s1)], s2[1], . . . , s2[`(s2)]〉. The append func-
tion, append(s1, s2, . . . , sn), is the same as s1 ++ s2 ++ · · · ++ sn.

Subsequences: The assignment s[i . . j] := t[k . . l] where j − i = l − k assigns s the value
〈s[1], . . . , s[i− 1], t[k], . . . , t[l], s[j + 1], . . . , s[`(s)]〉.

Stacks: Sequences are also used to implement stacks, for this purpose we have the following
notation: For a sequence s and variable x: x

pop
←− s means x := s[1]; s := s[2 . . ] which

pops an element off the stack into variable x. To push the value of the expression e onto

stack s we use: s
push
←− e which represents: s := 〈e〉 ++ s. cons(e, s) is the same as 〈e〉 ++ s.

Queues: The statement x
last
←− s removes the last element of s and stores its value in the variable

x. It is equivalent to x := s[`(s)]; s := s[1 . . `(s)− 1].

Sets: We have the usual set operations ∪ (union), ∩ (intersection) and \ (set difference), ⊆ (subset),
∈ (element), ℘ (powerset). { x ∈ A | P (x) } is the set of all elements in A which satisfy
predicate P . For the sequence s, set(s) is the set of elements of the sequence, i.e. set(s) =
{ s[i] | 1 6 i 6 `(s) }. The expression #A denotes the size of the set A.

2.2 Syntax of Formulae

In the following Q, Q1, Q2 etc., represent arbitrary formulae and e1, e2, etc., arbitrary expressions:

Relations: e1 = e2, e1 6= e2, e1 < e2, e1 6 e2, e1 > e2, e1 > e2, equal(e1, e2), eq(e1, e2), even?(e1),
odd?(e1);

Logical operators: ¬Q, Q1 ∨Q2, Q1 ∧Q2;
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Quantifiers: ∀v.Q, ∃v.Q.

2.3 Syntax of Statements

In the following, S1, S2 etc., are statements, Q, B etc., are formulae, and x is either a finite
sequence of variables or a simple variable and t is either a finite sequence of expressions or a single
expression. x′ is the sequence 〈x′1, . . . 〉 if x is the sequence 〈x1, . . . 〉.

Sequential composition: S1; S2; S3; . . . ; Sn

Deterministic choice: if B then S1 else S2 fi

Assertion: {B}. An assertion is a partial skip statement, it aborts if the condition is false but
does nothing if the condition is true.

Assignment: x := x′.Q. This assigns new values x′ to x such that the formula Q is true. If
there are no values which satisfy Q then the statement does not terminate. For example,
the assignment 〈x〉 := 〈x′〉.(x = 2.x′) halves x if it is even and aborts if x is odd. If the
sequence contains one variable then the sequence brackets may be omitted, for example:
x := x′.(x = 2.x′).

Simple assignment: x := t. This assigns the values of the expressions t to the variables in x.
The single assignment 〈x〉 := 〈t〉 can be abbreviated to x := t.

µ operator: x := µx′.Q. This assigns to x the smallest non-negative integer value x′ such that
the formula Q becomes true. It is equivalent to: x := x′.(Q ∧ x′ ∈ N0 ∧ ∀x′′ ∈ N0. (x′′ <
x′ ⇒ ¬Q[x′′/x′])) where N0 is the set of non-negative integers and Q[x′′/x′] is Q with all
occurrences of variable x′ replaced by x′′.

Nondeterministic choice: The “guarded command” of Dijkstra [17]:
if B1 → S1

ut B2 → S2

. . .
ut Bn → Sn fi

Each of the “guards” B1, B2, . . . , Bn is evaluated, one of the true ones is selected and the
corresponding statement executed. If no guard is true then the statement aborts.

Deterministic iteration: while B do S od The condition B is tested and S is executed re-
peatedly until B becomes false.

Nondeterministic iteration: The “guarded command loop” of Dijkstra [17]:
do B1 → S1

ut B2 → S2

. . .
ut Bn → Sn od

This is equivalent to:
while B1 ∨ B2 ∨ · · · ∨ Bn do

if B1 → S1

ut B2 → S2

. . .
ut Bn → Sn fi od

Uninitialised local variables: var x : S end Here x is a local variable which only exists within
the statement S. It must be initialised in S before it is first accessed.

Initialised local variables: var x := t : S end This is an abbreviation for var x : x := t; S end.
The local variable is initialised to the value t. We can combine initialised and uninitialised
variables in one block, for example: var x := t,y : S end where x is initialised and y is
uninitialised.
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Counted iteration: for i := b to f step s do S od is equivalent to:
var i := b :
while i 6 f do

S; i := i+ s od end

Unbounded loops and exits: Statements of the form do S od, where S is a statement, are
“infinite” or “unbounded” loops which can only be terminated by the execution of a statement
of the form exit(n) (where n is an integer, not a variable or expression) which causes the
program to exit the n enclosing loops. To simplify the language we disallow exits which leave
a block or a loop other than an unbounded loop. This type of structure is described in [27]
and more recently in [40].

2.4 Procedures and Functions with Parameters

We use the following notation for procedures with parameters:

begin S1

where

proc F (x, y) ≡ S2.

end

where S1 is a program containing calls to the procedure F which has parameters x and y. The
body S2 of the procedure may contain recursive procedure calls. We use a similar notation (with
funct instead of proc) for function calls.

3 Program Refinement and Transformation

3.1 Transformation Methods

The Refinement Calculus approach to program derivation [23,31,32] is superficially similar to our
program transformation method. It is based on a wide spectrum language, using Morgan’s spe-
cification statement [30] and Dijkstra’s guarded commands [17]. However, this language has very
limited programming constructs: lacking loops with multiple exits, action systems with a “ter-
minating” action, and side-effects. These extensions are essential if transformations are to be
used for reverse engineering. The most serious limitation is that the transformations for introdu-
cing and manipulating loops require that any loops introduced must be accompanied by suitable
invariant conditions and variant functions. This makes the method unsuitable for a practical
reverse-engineering method.

A second approach to transformational development, which is generally favoured in the Z

community and elsewhere, is to allow the user to select the next refinement step (for example,
introducing a loop) at each stage in the process, rather than selecting a transformation to be
applied to the current step. Each step will therefore carry with it a set of proof obligations, which
are theorems which must be proved for the refinement step to be valid. Systems such as µral
[25], RAISE [34] and the B-tool [1] take this approach. These systems thus have a much greater
emphasis on proofs, rather than the selection and application of transformation rules. Discharging
these proof obligations can often involve a lot of tedious work, and much effort is being exerted to
apply automatic theorem provers to aid with the simpler proofs. However, Sennett in [38] indicates
that for “real” sized programs it is impractical to discharge much more than a tiny fraction of
the proof obligations. He presents a case study of the development of a simple algorithm, for
which the implementation of one function gave rise to over one hundred theorems which required
proofs. Larger programs will require many more proofs. In practice, since few if any of these
proofs will be rigorously carried out, what claims to be a formal method for program development
turns out to be a formal method for program specification, together with an informal development
method. For this approach to be used as a reverse-engineering method, it would be necessary to
discover suitable loop invariants for each of the loops in the given program, and this is very difficult
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in general, especially for programs which have not been developed according to some structured
programming method.

The Munich project CIP (Computer-aided Intuition-guided Programming) [6,7,8] uses a wide-
spectrum language based on algebraic specifications and an applicative kernel language. They
provide a large library of transformations, and an engine for performing transformations and dis-
charging proof obligations. The kernel is a simple applicative language which uses only function
calls and the conditional (if. . . then) statement. This language is provided with a set of “axiomatic
transformations” consisting of: α-, β-and η-reduction of the Lambda calculus [15], the definition of
the if-statement, and some error axioms. Two programs are considered “equivalent” if one can be
reduced to the other by a sequence of axiomatic transformations. The core language is extended
until it resembles a functional programming language. Imperative constructs (variables, assign-
ment, procedures, while-loops etc.) are introduced by defining them in terms of this “applicative
core” and giving further axioms which enable the new constructs to be reduced to those already
defined. Similar methods are used in [12,37,53] and [9]. However this approach does have some
problems with the numbers of axioms required, and the difficulty of determining the exact cor-
rectness conditions of transformations. These problems are greatly exacerbated when imperative
constructs are added to the system.

Problems with purely algebraic specification methods have been noted by Majester [29]. She
presents an abstract data type with a simple constructive definition, but which requires several
infinite sets of axioms to define algebraically. In addition, it is important for any algebraic specific-
ation to be consistent, and the usual method of proving consistency is to exhibit a model of the
axioms. Since every algebraic specification requires a model, while not every model can be specified
algebraically, there seems to be some advantages in rejecting algebraic specifications and working
directly with models.

3.2 Transformation Systems

Many workers have recognised that developing a program by successive transformation can be made
much easier and less error-prone if an interactive or automatic system is provided which can carry
out the transformations, perhaps check that they are used in a valid way, and keep a record of
the various versions of the program. Thus, there has been much research into transformational
programming and this has resulted in a large number of experimental systems. For a detailed
overview of these see the papers by Partsch and Steinbrügen [36] and Feather [19].

The three main types of transformation system are:

1. A manual system makes the user responsible for every single transformation step. It is the
simplest implementation and the system must provide some means for building up compact
and powerful transformation rules.

2. A fully automatic system enables the selection and appropriate rules to be completely de-
termined by the system using built-in heuristics, machine evaluation of different possibilities,
or other strategic consideration.

3. A semi-automatic system works both autonomously for predefined subtasks and manually for
unsolvable problems.

For such systems there are two main ways of organising the transformations: The first is as an
extensible catalogue of specific transformations, the second is to have a small “generative set” of very
simple transformations which are combined in various ways to provide more powerful manipulations.

The Cornell Program Synthesiser of [5,41] can be thought of as a totally manual system. It is
an interactive system for program writing and editing which acts directly on the structure of the
program by inserting and deleting structures in such a way as to ensure that the edited program
is always syntactically correct: used as a transformation system, the user would be responsible for
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the semantic correctness of the manipulations. Arsac [2] describes using a simple manual system
to carry out transformations of a program and store the various versions. His system knows some
transformations but makes no attempt to check that the correctness conditions of a transformation
hold when it is applied.

The first work on automatic program transformation was done by Burstall and Darlington in the
mid-1970’s [14]. Their first system was based on a schema-driven method for transforming applic-
ative recursive programs into imperative ones: with the ultimate goal of improved efficiency. The
system worked largely automatically, according to a set of built-in rules, with only a small amount
of user control. The rules were simple transformations, including recursion removal, elimination of
redundant computations, unfolding and structure sharing.

Their second system, implemented in POP-2 and designed to manipulate applicative programs,
is a typical representative of the generative set approach and consists of only six rules: definition,
instantiation, unfolding, folding, abstraction, and laws (actually a set of data-structure-specific
rules). “Definition” allows the introduction of the new functions (in the form of recursion equa-
tions).

Balzer built a program transformation system in the early 1980’s [4]. The system used a separate
specification language GIST, rather than a single wide-spectrum language.

The CIP-S transformational system [8], based on the CIP-L language [6], aims to develop an
integrated environment for the transformational development of programs from algebraic specific-
ations. This includes manipulation of concrete programs, derivation of new transformational rules
within the system, transformation of algebraic types, and verification of applicability conditions,
and the documentation of developments and their manipulation.

The DRACO System is a general mechanism for software construction based on the paradigm of
“reusable software”. “Reusable” here means that the analysis and design of some library program
can be reused, but not its code. DRACO is an interactive system that enables a user to refine a
problem, stated in a high level problem domain specific language, into an efficient LISP program.
Accordingly, DRACO supplies mechanisms for defining problem domains as special purpose domain
languages and for manipulating statements in these languages into an executable form.

Another automatic system, the DEDALUS system (DEDuctive ALgorithm Ur-Synthesizer) by
Manna and Waldinger is implemented in QLISP. Its goal is to derive LISP programs automatically
and deductively from high-level input-output specifications in a LISP-like representation of math-
ematical logic notation. A goal-directed deductive approach is used whereby the reduction of a goal
(to synthesize a program satisfying a given specification) to one or more subgoals, by means of a
transformation rules, results in the generation of a program fragment which computes the desired
result, once it is completed with program fragments corresponding the subgoal(s). So, for example,
reducing a goal to two subgoals by means of a case analysis corresponds to the introduction of a
conditional expression.

The long-running SETL project at the Courant Institute of New York University [16] has served
as the context for a wide variety of transformation research. Their very high level programming

language, SETL, has syntax and semantics based on standard mathematical set theory. SETL
programs can always be executed; however, näıve execution of programs that make liberal use of
the high-level language features may be very inefficient. The SETL compiler has been built to
compile SETL programs into efficient interpretable code or machine code. Used in this manner,
the SETL compiler would fall into the category of a traditional compiler, albeit a very sophisticated
one.

Boyle’s TAMPR (Transformation-Assisted Multiple Program Realization) system provides a
variety of support for programming in FORTRAN at the Argonne National Laboratory [11]. The
modest nature of the tasks attempted enables TAMPR’s transformation process to be entirely
automatic. In addition to transformation within the FORTRAN language, TAMPR has also been
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applied to help in FORTRAN-to-PASCAL translation, and in converting the bulk of the TAMPR
system itself from its (almost) pure applicative LISP version into FORTRAN (which runs faster
than compiled LISP form on the same machine). This latter application demonstrates the feasibility
of the approach on moderately large programs (1300 lines, 42 functions, converted into 3000 lines
of FORTRAN). Boyle stresses that approaching these tasks by means of program transformation
encourages organising it in a modular fashion, with many consequent benefits.

Feather’s ZAP system and language [20] is based on the fold/unfold work of Burstall and Dar-
lington on transforming applicative programs expressed in recursion equations. The ZAP system’s
language is a language for expressing transformations and developments.

The KIDS system (Kestrel Interactive Development System) [39] is based on axiomatic spe-
cifications and purely functional programs. Program synthesis is based on building a “theory
morphism” from an algorithm theory (e.g. global search) to a problem theory (e.g. n-queens). The
prototype implementation has produced some small runnable programs.

The Popart system [52] uses automatic invocation of sets of transformations with declarative
user guidance. It uses “Extended BNF” as a specification language and Lisp, Ada and C++ as
target languages. There is a metaprogramming language (Paddle) for ad hoc transformational
developments.

The PROSPECTRA system [28] attempted to compile algebraic specifications into purely func-
tional programs.

3.3 Automating the Process

There are currently three main ways of automating more of the transformation process (see [22]):

Jittering: The method used in the Transformational Implementation (TI) system developed by
Balzer [4], and also in Fickas’ GLITTER system [21] is that of jittering. In this system, if
a transformation is applied, but fails due to some minor technical detail, the system auto-
matically modifies the program (using transformations) so that the initial transformation can
succeed.

Means-end analysis: A variant of jittering, called means-end analysis, is used by Mostow [33] to
guide rule selection. The user provides the pattern to be matched in order to apply the rule,
and the system computes the difference between this and the actual current pattern. The
computed difference then indexes further rules which could be used to reduce the difference.

Optimal “Next” Transformations: In this approach, the system is tried manually on many
different programs and the order of transformations used is recorded; this is a knowledge

elicitation process (and will also be used in the next approach to determine what metrics to
use). From these results it will be possible to determine which transformations form sequences
and to make suggestions as to the next transformation to use based on the previous one. For
example, removing a redundant variable may follow merging two assignments.

The Metric Approach: The final approach is, perhaps, the most ambitious. This is to determine
a metric which quantifies the “ease of understanding”, or “niceness”, of a program and uses
“hill-climbing” methods to find a sequence of transformations which manipulate the program
into an equivalent form which maximises this metric.

Note that total automation is extremely difficult and probably undesirable: the best approach is
an interactive system which is highly automated in some areas (eg restructuring).

3.4 Our Approach

In developing a model based theory of semantic equivalence, we use the popular approach of defining
a core “kernel” language with denotational semantics, and permitting definitional extensions in
terms of the basic constructs. In contrast to other work (for example, [7,10,35]) we do not use a
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purely applicative kernel; instead, the concept of state is included, using a specification statement

which also allows specifications expressed in first order logic as part of the language, thus providing
a genuine wide spectrum language.

Fundamental to our approach is the use of infinitary first order logic (see [26]) both to express the
weakest preconditions of programs [17] and to define assertions and guards in the kernel language.
Engeler [18] was the first to use infinitary logic to describe properties of programs; Back [3] used
such a logic to express the weakest precondition of a program as a logical formula. His kernel
language was limited to simple iterative programs. We use a different kernel language which
includes recursion and guards, so that Back’s language is a subset of ours. We show that the
introduction of infinitary logic as part of the language (rather than just the metalanguage of
weakest preconditions), together with a combination of proof methods using both denotational
semantics and weakest preconditions, is a powerful theoretical tool which allows us to prove some
general transformations and representation theorems.

The WSL language includes both specification constructs, such as the general assignment, and
programming constructs. One aim of our program transformation work is to develop programs by
refining a specification, expressed in first order logic and set theory, into an efficient algorithm.
This is similar to the “refinement calculus” approach of Morgan et al [23,31]; however, our wide
spectrum language has been extended to include general action systems and loops with multiple
exits. These extensions are essential for our second, and equally important aim, which is to use
program transformations for reverse engineering from programs to specifications. In [48] we describe
our method for formal reverse engineering using transformations.

Refinement is defined in terms of the denotational semantics of the language: the semantics of
a program S is a function which maps from an initial state to a final set of states. The set of final
states represents all the possible output states of the program for the given input state. Using a
set of states enables us to model nondeterministic programs and partially defined (or incomplete)
specifications. For programs S1 and S2 we say S1 is refined by S2 (or S2 is a refinement of S1), and
write S1 ≤ S2, if S2 is more defined and more deterministic than S1. If S1 ≤ S2 and S2 ≤ S1

then we say S1 is equivalent to S2 and write S1 ≈ S2. Equivalence is thus defined in terms of
the external “black box” behaviour of the program. A transformation is an operation which maps
any program satisfying the applicability conditions of the transformation to an equivalent program.
See [42] and [44] for a description of the semantics of WSL and the methods used for proving the
correctness of refinements and transformations. We use the term abstraction to denote the opposite
of refinement: for example the “most abstract” program is the non-terminating program abort,
since any program is a refinement of abort.

A program S is a piece of formal text, i.e. a sequence of formal symbols. There are two ways in
which we interpret (give meaning to) these texts:

1. Given a suitable set of values and an interpretation for the symbols of first order logic as
functions and relations on this set of values, and an initial state space (from which we can
construct a suitable final state space), we can interpret a program as a function f (a state

transformation) which maps each initial state s to the set of possible final states for s;

2. Given any formula R (which represents a condition on the final state), we can construct the
formula WP(S,R), the weakest precondition of S on R. This is the weakest condition on the
initial state such that the program S is guaranteed to terminate in a state satisfying R if it
is started in a state satisfying WP(S,R).

These interpretations give rise to two different notions of refinement: semantic refinement and
proof-theoretic refinement.
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3.5 Semantic Refinement

A state is a collection of variables (the state space) with values assigned to them; thus a state is
a function which maps from a (finite, non-empty) set V of variables to a set H of values. There
is a special extra state ⊥ which is used to represent nontermination or error conditions. A state
transformation f maps each initial state s in one state space, to the set of possible final states f(s),
which may be in a different state space. For convenience we require that if ⊥ is in f(s) then so is
every other state. We also require f(⊥) to be the set of all states (including ⊥). However, unlike
Back [3] and others, we do not require the set of final states to be non-empty.

Semantic refinement is defined in terms of these state transformations. A state transformation
f is a refinement of a state transformation g if they have the same initial and final state spaces and
f(s) ⊆ g(s) for every initial state s. Note that if ⊥ ∈ g(s) for some s, then f(s) can be anything
at all. In other words we can correctly refine an “undefined” program to do anything we please. If
f is a refinement of g (equivalently, g is refined by f) we write g ≤ f . A structure for a logical
language L consists of a set of values, plus a mapping between constant symbols, function symbols
and relation symbols of L and elements, functions and relations on the set of values. Given a
structure for L we can define the state transformation which corresponds to a given statement, this
is called the interpretation of the statement under the structure. If the interpretation of statement
S1 under the structure M is refined by the interpretation of statement S2 under the same structure,
then we write S1 ≤ M S2. A model for a set of sentences (formulae with no free variables) is a
structure for the language such that each of the sentences is interpreted as true. If S1 ≤ M S2 for
every model M of a countable set ∆ of sentences of L then we write ∆ |= S1 ≤ S2.

3.6 Proof-Theoretic Refinement

If there exists a proof of a formula Q using a set ∆ of sentences (formulae with no free variable) as
assumptions, then we write ∆ ` Q. Given two statements S1 and S2, and a formula R, we define
the two formulae WP(S1,R) and WP(S2,R) in [45]. Let x be a sequence of all variables assigned
to in either S1 or S2 and let x′ be a sequence of new variables. If the formula WP(S1,x 6= x′) ⇒
WP(S2,x 6= x′) is provable from the set ∆ of sentences, then we say that S1 is refined by S2 and
write: ∆ ` S1 ≤ S2.

A fundamental result, proved in [45], is that these two notions of refinement are equivalent
(provided the set ∆ is countable):

∆ |= S1 ≤ S2 ⇐⇒ ∆ ` S1 ≤ S2

A fundamental result about the join construct is that any refinement of the two components is also
a refinement of the join: If ∆ ` S1 ≤ S and ∆ ` S2 ≤ S then ∆ ` join S1 t S2 nioj ≤ S.

For the rest of the paper we will omit the ∆ ` from refinement and equivalence relations of
programs. If S1 ≤ S2 and S2 ≤ S1 then we say S1 is equivalent to S2 and write S1 ≈ S2.

A transformation is an operation which maps any program satisfying the applicability con-
ditions of the transformation to an equivalent program. See [42,44,45] for a formal description
of the semantics of WSL and the methods used for proving the correctness of refinements and
transformations.

3.7 Abstraction

We use the term “abstraction” to denote the converse to the refinement relation, the statement S1

is an abstraction of S2 if S1 ≤ S2. Clearly abort is an abstraction of any statement (since every
statement is a refinement of abort): the process of abstraction involves throwing away information,
in the case of abort, all the information has been thrown away. In the rest of this paper, abstraction
is used to simplify the various representations of parallel programs by removing nonessential details.
For example, an assignment to a variable a may be abstracted to the assignment a := a′.true which
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assigns an arbitrary value. It will usually be clear from the context which details are nonessential
and may be abstracted away.

4 Modelling Interrupt-Driven Programs in WSL

The original program, written in “pseudo-WSL”, is shown in Figure 1. This is not a correct WSL
program for reasons discussed below; however it reflects the way such a program would typically
be written in a high-level language.

begin

do if (count 6= 0)
then ch := buffer[first];

write(ch var std out);
first := first + 1;
count := count − 1;
if (first > bufsize) then first := 1 fi fi od;

where

proc interrupt(time0 var ) ≡
if (count < bufsize)
then buffer[free] := readchar();

free := free + 1;
if free > bufsize then free := 1 fi;
count := count + 1 fi.

end

Figure 1: The original program

In the next two sections we present a novel technique for modelling non-terminating programs
(“infinite loops”) and modelling interrupt-driven programs in the essentially sequential WSL lan-
guage. The aim of these models is to avoid modifying the kernel of WSL but to continue to build
on what has already been developed. This allows the large number of transformations which we
have developed and proved for WSL [42,45] to be used in reverse-engineering non-terminating and
interrupt-driven programs.

4.1 Modelling “infinite” loops

The most serious problem with the program as written in Figure 1 is that it consists of a loop with
no exit, and as such is equivalent to the program abort, (see [42]). However many programs are
written in just this way, to run “forever” processing inputs and producing output, and in a high
level language there is no problem with this construction. WSL programs however are rigorous
mathematical objects, which map an input state to a set of output states, representing the possible
states on termination. A program which does not terminate therefore produces no output state
and as such is semantically equivalent to abort. In this example, the standard output is part of
the output state and is therefore not visible until termination, though the program appears to be
producing “output” while it runs.

In practice, we observe the behaviour of such a program at various times to see what input
it has consumed, and what output it has produced so far. We can model such an “observation”
by terminating the program after a certain elapsed time, and observing the result. If the result is
correct for every such observation, then the behaviour of our model is identical to the behaviour
of the actual program—and this is precisely the requirement for a correct model. For example, we
could model the infinite loop as follows:

do S od; ; do if (time > runtime) then exit(1); S od;
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where S updates the value of time. (We use S ; S′ to mean that S′ is a correct WSL model of the
pseudo-WSL construction S). We don’t know the value for the variable runtime above of course, as
in practice it is determined only when the program is run. However any conclusions we can reach
about the behaviour of the above program which are independent of the value of runtime are valid
for any value including arbitrarily large values.

One difficulty with this “runtime” model is that we may interrupt the program while it is in
the middle of processing an input character, (i.e. between the do . . . od above), and this will lead
to complications in any derived specification. In practice, when observing a real-time program we
wait for the program to “settle down” before observing its output. The program has to respond
and produce some output, usually within a given time, but we are not really interested in what
happens before the output is produced. An improved model, based on these ideas, provides a
limited amount of input to the program, and causes it to terminate after it has read and processed
all the input. If the input to the program is modelled as a sequence, then we may insert into the
loop a test which causes an exit when the input sequence is empty and when appropriate output
has been generated, i.e. when the mapping of input to output has been performed. To emulate the
operation of a program for a particular sequence of inputs we must of course instantiate the input
sequence; however we can reason about the program without ever doing so.

In order to model time within WSL we add a variable time to the program which is incremented
appropriately whenever an operation is carried out which takes some time. We can then reason
about the response times of the program by observing the initial and final values of this variable.
We can also model the times when interrupts occur by providing an input sequence consisting of
pairs of values 〈t, c〉 where t the time at which the interrupt occurs and c is the character. Naturally
we should insist that the sequence of t values be monotonically increasing. Such a sequence can
model input from an external device, a concurrent process, or even a hardware register.

Our case study program has the form:

do if count 6= 0 then process char fi od;

We require that the program should terminate if there are no outstanding characters in the
buffer and all input has been received and processed, i.e. the sequence input is empty. Therefore
we model the program as follows:

do if count 6= 0 then process char
else if input = 〈〉 then exit(1) fi od

This approach to non-terminating programs was developed from the induction rule for iteration
[42,44]. The induction rule shows that to determine the behaviour of a loop, it is sufficient to
examine all its “truncations”, where the nth truncation of a loop acts like the full loop for less than
n iterations and aborts on the nth iteration. The truncation of a while loop is defined in terms of
if thus:

while B do S od0 =
DF

abort and

while B do S odn+1 =
DF

if B then S; while B do S odn fi

If the nth truncations of two programs are equivalent, then any observation of the execution of the
full programs for less than n iterations will not be able to distinguish between them. So if all the
truncations of two programs are equivalent, then no observations can distinguish them. Since we
are abstracting away from internal operations, an “observation” consists of waiting for the programs
to terminate, and comparing their final states. For non-terminating programs, an “observation”
might consist of forcibly terminating the program, at a suitable point, and examining part of its
state. It is this “observational” equivalence which our WSL model aims to capture: it should be
noted that the equivalence relation is stronger than denotational semantic equivalence, but weaker
than an operational semantic equivalence (which would insist that the two programs produce the
same sequence of states as they execute).
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By inserting a condition which causes termination into our model, we are able to reason formally
about the program in terms of its truncations. Under these terms it is clear that no experiment
of the above nature will cause the original program and the model to produce different results;
therefore under our definition they are equivalent. If the termination condition is never true, i.e.
there is an infinite amount of input, then the program(s) will run for ever and are equivalent to
abort. We will use transformations to derive equivalent programs, where equivalence is interpreted
in terms of input-output behaviour, i.e. for any given input the programs will produce the same
output.

4.2 Modelling interrupt processing

WSL has no notations for parallel execution or interrupts. We chose not to add such notations to
the language, since this would complicate the semantics enormously and render virtually all our
transformations invalid. Consider, for example, the simple transformation:

x := 1; if x = 1 then y := 0 fi ≈ x := 1; y := 0

which is trivial to prove correct in WSL. However, this transformation is not universally valid if
interrupts or parallel execution are possible, since an interrupting program could change the value of
x between the assignment and the test. Instead, our approach is to model the interrupts in WSL by
inserting a procedure call at all the points where the program could be interrupted. This procedure
tests if an interrupt did actually occur, and if so it executes the interrupt routine, otherwise it does
nothing. Although this increases the program size somewhat, the resulting program is written in
pure WSL and all our transformations can be applied to it.

One of our aims in transforming the resulting WSL program is to move the interrupt calls
through the body of the program, and collect them together in one place. The body of the main
loop would then be essentially the original loop body, followed by the processing of any interrupts
which occurred during execution of the loop.

As discussed above, the times of the interrupts are to be modelled as part of the input state. We
make this explicit in our model of the program: the array (or equivalently, sequence) input consists
of pairs of times and characters to represent the inputs, and is sorted by times. The interrupt
routine tests the time variable against the time value associated with the first element of the input
sequence to see if that interrupt is now “due”. If so, then it removes a pair from the head of the
sequence and processes the result.

The program is modelled as follows:

S1;
S2;
etc. . .

; S1;
interrupt(time);
time := time + 1;
S2;
interrupt(time);
time := time + 1;
etc. . .

If we assume a discrete model of time, i.e. that the value of time is an integer, and we assume that
time is incremented by one between each potential interrupt, then the test for validity of a call to
the interrupt routine is simply:

interrupt(time0) ; if (time0 = input[1][1]) then process interrupt fi;

where process interrupt corresponds to the original interrupt service routine. Note that input[1] is
the first element of the input sequence: this element is a pair of values (a time and a character),
so input[1][1] is the first element of the pair, i.e. the time of the first interrupt.
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However, a better model, which does not require a discrete model of time, and which allows
different “atomic” (i.e. non-interruptable) operations to take different amounts of time, is the
following:

interrupt(time0) ; while (time0 > input[1][1]) do process interrupt od;

This revised model of the interrupt routine allows more than one interrupt to occur between
atomic operations, and has the advantage that a call to interrupt can be merged with a second call
which immediately follows it:

interrupt(t1); interrupt(t2) ≈ interrupt(t2); provided t2 > t1

This follows from the transformation:

while B1 do S od; while B2 do S od; ≈ while B2 do S od; provided B1 ⇒ B2

which is proved in [42].

If t2 > t1 then (t1 > input[1][1])⇒ (t2 > input[1][1]), and so we can merge the two while loops
and hence the two procedures.

Thus, once we have moved a set of interrupt procedure calls to the same place, we can merge
them into one statement equivalent to “process all outstanding interrupts”, which is much closer
to a specification level statement than is a series of calls to the same procedure.

A final refinement to the model, necessitated by our model of non-terminating programs, is to
add a test We also need to test for the end of the input to avoid attempts to read past the end:

interrupt(time0) ; while (input 6= 〈〉 ∧ time0 > input[1][1]) do
process interrupt od;

The complete WSL model of the program is shown below:

begin

interrupt(time); time := time + 1;
do if count 6= 0

then interrupt(time); time := time + 1;
ch := buffer[first];
interrupt(time); time := time + 1;
write(ch var std out);
interrupt(time); time := time + 1;
first := first + 1;
interrupt(time); time := time + 1;
count := count − 1;
interrupt(time); time := time + 1;
if first > bufsize then interrupt(time); time := time + 1; first := 1 fi;
interrupt(time); time := time + 1;

else if input = 〈〉 then exit(1) fi fi;
interrupt(time); time := time + 1 od

where

proc interrupt(time0 var ) ≡
while (input 6= 〈〉 ∧ time0 > input[1][1]) do

if count < bufsize
then buffer[free] := input[1][2];

free := free + 1;
if free > bufsize then free := 1; time := time + 1 fi;
count := count + 1;
input := tail(input);
time := time + 6
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else time := time + 1 fi od.

end

The original program has been augmented by the addition of the time variable and interrupt calls.
In addition the interrupt procedure was modified as described above, and an exit added to the
main program loop to terminate the program after all inputs have been processed.

Note that the addition of interrupt calls is defining the “interruptable points” in the program,
or equivalently, the “atomic operations”. The increments to time define the processing time for
each atomic operation. For real programming languages, e.g. Coral, the atomic operations may
well be machine code instructions, rather than high-level language statements, and it is at the
machine code level that the model needs to be constructed, for it to accurately reflect the real
program. This will inevitably lead to a large and complex WSL program; however, as we shall see
in Section 5, automatic restructuring and simplifying transformations can eliminate much of the
complexity before the maintainer even has to look at the program.

5 Transformation of WSL model

5.1 Interrupt routine

The original program has the deficiency that, if the buffer becomes full, the interrupt routine ignores
incoming characters which are thus lost, i.e. never printed to the output. This is unrealistic, in
that no flow-control is performed or error message raised if the buffer fills up; however for our
purposes it is adequate in that we have, under these conditions, a program which fails to meet its
requirements (presumably — one would not ordinarily desire that input be lost). One objective in
reverse-engineering a system such as this might be to discover the conditions which must hold in
order that it should meet its requirements, in this case that no characters should be lost.

The variable count holds the number of unread characters in the buffer. This is tested in the
interrupt procedure against the constant bufsize (the size of the buffer) to determine whether there
is space in the buffer for an incoming character.

In order to determine the conditions for the success of this test, we will form an abstraction of
the program1 by inserting an assertion into the program before the test. The assertion will abort if
the test fails, so after the assertion we may assume that the test succeeds. We will then transform
the new program, restructuring it and moving the assertion through the code. This enables us
to determine the conditions under which the assertion can be guaranteed not to fail; under these
conditions the assertion can be removed. Ultimately we will end up with a high-level specification
where, under the conditions we derived, we can guarantee that the original program is a correct
refinement of this specification. In other words, we will have captured the behaviour of the program
in a functional specification plus timing constraints.

After adding the assertion we can simplify the interrupt procedure to:

proc interrupt(time0 var ) ≡
while (input 6= 〈〉 ∧ time0 > input[1][1]) do

{count < bufsize};
buffer[free] := input[1][2];
free := free + 1;
if free > bufsize then free := 1; time := time + 1 fi;
count := count + 1;
input := tail(input);
time := time + 6 od.

1Abstraction is the opposite of refinement, i.e. if S1 is refined by S2, then we say S1 is an abstraction of S2
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5.2 Transforming “busy wait”

If we consider the main loop of the program, we see that if the variable count is zero at the start
of the loop, the loop does nothing but increment time and call the interrupt routine. This is in
effect a busy wait; time increments until an interrupt occurs and the character which is input is
then processed. We can transform the program to make this explicit as follows. The first step is to
transform the main program into the following (recall that the statement exit(2) terminates two
nested do . . . od loops, in this case it terminates the whole program):

MAIN =
DF

interrupt(time); time := time + 1;
do do if count 6= 0 then exit(1) fi;

if input = 〈〉 then exit(2) fi;
interrupt(time); time := time + 1 od;

process char; interrupt(time); time := time + 1; od

where

proc process char ≡
interrupt(time); time := time + 1;
ch := buffer[first];
interrupt(time); time := time + 1;
write(ch var std out);
interrupt(time); time := time + 1;
first := first + 1;
interrupt(time); time := time + 1;
count := count − 1;
interrupt(time); time := time + 1;
if (first > bufsize) then interrupt(time); time := time + 1; first := 1 fi.

Proof: (The remarks in parentheses indicate the program transformation which justifies each
equivalence.)

do if count 6= 0
then process char;
else if input = 〈〉 then exit(1) fi fi

interrupt(time); time := time + 1; od;
≈ (by absorption)
do if count 6= 0

then process char; interrupt(time); time := time + 1
else if input = 〈〉 then exit(1)

else interrupt(time); time := time + 1 fi fi od;
≈ (make single loop into double loop)
do do if count 6= 0

then process char; interrupt(time); time := time + 1; exit(1)
else if input = 〈〉

then exit(2)
else interrupt(time); time := time + 1 fi fi od od;

≈ (take inner “if” out of outer)
do do if count 6= 0

then process char; interrupt(time); time := time + 1; exit(1) fi;
if input = 〈〉
then exit(2)
else interrupt(time); time := time + 1 fi od od;

≈ (take statements out of the inner loop)
do do if count 6= 0 then exit(1) fi;

if (input = 〈〉 then exit(2) fi;
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interrupt(time); time := time + 1 od;
process char; interrupt(time); time := time + 1; od;

≈ MAIN

We now have the program in a form in which its functionality is more explicit. The program
clearly waits in the inner loop (effectively a while with an exit) until count becomes non-zero,
before processing the input. If the input is empty and count is zero then the whole program
terminates. We can further transform the inner loop, to recover its specification:

do if count 6= 0 then exit(1) fi;
if input = 〈〉 then exit(1) fi;
interrupt(time); time := time + 1 od;

≈ (unfold call to interrupt and unroll the loop)
if count = 0
then if input = 〈〉 then exit(1) fi;

time0 := time;
while time0 > input[1][1] do . . . ; count := count + 1 od;
time := time + 1;
do if count 6= 0 then exit(1) fi; . . . od fi;

Suppose time > input[1][1]. Then count is incremented and is therefore non-zero when the do
loop is reached. The loop can therefore be removed, as it exits immediately it is entered. Now
suppose time is less than input[1][1], i.e. an interrupt is not yet due. Say time +N = input[1][1].
Unroll the do loop N times. For each unrolled loop body, except the last, time < input[1][1] so
the body simply increments time. For the Nth body we have time = input[1][1] and count will
be incremented. For non-zero count the do loop terminates without doing anything, so it can be
removed. We get:

if count = 0
then if input = 〈〉 then exit(1) fi;

time := input[1][1];
time0 := time;
while time0 > input[1][1] do . . . ; count := count + 1 od;
time := time + 1 fi

≈ (fold a call to interrupt)
if count = 0
then if input = 〈〉 then exit(1) fi;

time := input[1][1];
interrupt(time);
time := time + 1 fi

We shall return to this section of the program later, after restructuring the remainder of the
loop body.

5.3 Transforming loop body

One objective in transforming the WSL model has been to demonstrate that the occurrence of
interrupts does not interfere with the functionality of the main program, i.e. that it does not
matter at what point the main program is interrupted. If this is in fact the case, then it should be
possible to move the calls to the interrupt procedure past statements of the main program. Our
ultimate objective in this is to move all such calls to the end of the main loop of the program, and
use the transformation of Section 4.2 above to merge these into one call. This would demonstrate
that the loop body is equivalent to the body without interrupts, followed by the processing of any
interrupts which would have occurred.
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We also wish to move the statements which increment the time variable, where possible, to the
end of the main loop; this will allow us to determine bounds on the execution time of the loop.

We have, as the body of the main loop:

if count = 0
then if input = 〈〉 then exit(1) fi;

time := input[1][1];
interrupt(time); time := time + 1 fi;

ch := buffer[first];
interrupt(time); time := time + 1;
write(ch var std out);
interrupt(time); time := time + 1;
first := first + 1;
interrupt(time); time := time + 1;
count := count − 1;
interrupt(time); time := time + 1;
if (first > bufsize) then interrupt(time); time := time + 1; first := 1 fi;
interrupt(time); time := time + 1;

It can be seen that there are two sets of statements which potentially interfere with movement of
interrupts. The first are the statements which update the variable time, which is a parameter to
the interrupt procedure, and the second is the (single) statement which updates the variable count,
which is also accessed and updated in the interrupt procedure.

We first deal with moving the interrupt calls past the assignment to count. We wish to prove
that

interrupt(time); count := count − 1; 6 count := count − 1; interrupt(time); (1)

Define:

A ≡ while time0 > input[1][1] do
{count 6 bufsize};
buffer[free] := input[1][2];
free := free + 1;
if free > bufsize then first := first + 1; time := time + 1 fi;
input := tail(input);
time := time + 6;
count := count + 1 od

and

B ≡ while time0 > input[1][1] do
{count 6 bufsize};
buffer[free] := input[1][2];
free := free + 1;
if free > bufsize − 1 then first := first + 1; time := time + 1 fi;
input := tail(input);
time := time + 6;
count := count + 1 od;

We have:

interrupt(time); count := count − 1 ≈ var time0 := time : A; count := count − 1 end

and

count := count − 1; interrupt(time) ≈ var time0 := time : count := count − 1; B end
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Clearly A ≤ B since the assertion in A is stronger. So it is sufficient to prove:

A; count := count − 1 ≈ count := count − 1; B

Proof: We show by induction that

An; count := count − 1 ≈ count := count − 1; Bn

and appeal to the general induction rule for iteration [42]. Trivially A0 ≈ B0 ≈ abort.

An+1; count := count − 1
≈ (Absorb the assignment and apply the induction hypothesis)
time0 := time;
if time0 > input[1][1]
then {count 6 bufsize};

buffer[free] := input[1][2];
free := free + 1;
if free > bufsize then first := first + 1; time := time + 1 fi;
input := tail(input);
time := time + 6;
count := count + 1;
count := count − 1;
Bn;

else count := (count − 1) fi
≈ (moving assignment to count backward)
time0 := time;
if (time0 > input[1][1])
then count := (count − 1);

{count 6 (bufsize − 1};
buffer[free] := input[1][2];
free := free + 1;
if free > bufsize then first := first + 1; time := time + 1 fi;
input := tail(input);
time := time + 6;
count := count + 1;
Bn

else count := count − 1 fi
≈ (taking assignment to count out of if backward)
count := count − 1; Bn+1;

Hence: count := count − 1; A; ≈ B; count := count − 1 as required.

We can move a call to the interrupt procedure past a statement that increments time:

interrupt(time); time := time + 1 ≈ time := time + 1; interrupt(time − 1); (2)

We also have, from above,

interrupt(t1); interrupt(t2) ≈ interrupt(t2) if t2 > t1 (3)

enabling us to merge interrupts.

The only remaining obstacle to the movement of interrupt calls to the end of the main loop is
the conditional statement:

if first > bufsize then interrupt(time); time := time + 1; first := 1 fi;

We can remove the call to interrupt from this statement as follows. Using equations 1, 2 and 3
we can move all preceding interrupt calls as far as this statement and then merge them to give:
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interrupt(time); time := time + 1;
if first > bufsize then interrupt(time); time := time + 1; first := 1 fi;

Merge preceding statements into if:

if first > bufsize then interrupt(time); time := time + 1;
interrupt(time); time := time + 1; first := 1

else interrupt(time); time := time + 1 fi;

Move interrupt calls to end of then and else clauses using (2) and (3):

if first > bufsize then time := time + 1; time := time + 1;
first := (first + 1); interrupt(time − 2); interrupt(time − 1)

else time := time + 1; interrupt(time − 1) fi;
≈
if first > bufsize then time := time + 1; first := first + 1;

time := time + 1; interrupt(time − 1)
else time := time + 1; interrupt(time − 1) fi;

Take statements out of if statement:

if first > bufsize then time := time + 1; first := first + 1 fi;
time := time + 1; interrupt(time − 1);

Using 1, 2 and 3 together with the above result, it is possible to transform the main program
to the following:

interrupt(time); time := time + 1;
do if count = 0 then if input = 〈〉 then exit(1) fi;

time := input[1][1]; interrupt(time); time := time + 1 fi;
ch := buffer[first];
write(ch var stdout);
first := first + 1;
count := count − 1;
if first > bufsize then time := time + 1; first := first + 1 fi;
time := time + 4;
interrupt(time);
time := time + 1 od

This represents an abstraction of the original program.

Since the first two statements also occur as the last two in the loop, we may absorb them into
the top of the loop and eliminate them from the end. (We wait until now to do this as we need
to have merged all the interrupt calls at the end of the loop so they may all be removed in this
step):

do interrupt(time); time := time + 1;
if count = 0 then if input = 〈〉 then exit(1) fi;

time := input[1][1]; interrupt(time); time := time + 1 fi;
ch := buffer[first];
write(ch var stdout);
first := first + 1;
count := count − 1;
if first > bufsize then time := time + 1; first := first + 1 fi;
time := time + 4 od

It is now possible to merge the two separate calls to interrupt and to eliminate the interrupt from
the “busy wait”. We claim this equivalent to:
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do if count = 0
then if input = 〈〉 then exit(1)

elsf time < input[1][1] then time := input[1][1] fi fi;
interrupt(time);
ch := buffer[first];
write(ch var stdout);
first := first + 1;
count := count − 1;
if first > bufsize then time := time + 1; first := first + 1 fi;
time := time + 5 od;

The proof is by a case analysis on the loop body. Consider the cases:

1. count = 0 ∧ input = 〈〉;

2. count = 0 ∧ input 6= 〈〉 ∧ time < input[1][1];

3. count = 0 ∧ input 6= 〈〉 ∧ time > input[1][1];

4. count 6= 0.

It is easy to see that for each of these cases, the loop bodies are equivalent. For example, in case 3
the first call to interrupt will increment count, so the second call will not take place.

We have now transformed the model of the original program into the form shown in Figure 2,
which is an abstraction of the original.

begin

do if count = 0
then if input = 〈〉 then exit(1)

elsf time < input[1][1]
then time := input[1][1] fi fi;

interrupt(time);
ch := buffer[first];
write(ch var stdout);
first := first + 1;
count := count − 1;
if first > bufsize then time := time + 1; first := first + 1 fi;
time := time + 5 od;

where

proc interrupt(time0) ≡
while (input 6= 〈〉 ∧ time0 > input[1][1]) do

{count < bufsize};
buffer[free] := input[1][2];
free := free + 1;
if free > bufsize then free := 1; time := time + 1 fi;
count := count + 1;
input := tail(input);
time := time + 6 od.

end

Figure 2: The restructured program

We are now in a position to write down a low-level description of the program. Logically the
program consists of a single loop. The body of the main loop could in principle have been a small
section of a very large program, though in our case it is the main part of the system. We can see
that the operation of the loop body is as follows. The initial if statement implements a busy wait
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as previously discussed (Section 5.2). The conditions attached to this are now explicit. If the buffer
is empty but there is more input to be processed, then the program waits (time is advanced) (if
necessary) until the first interrupt becomes due.

Any interrupts which occurred during the previous iteration are serviced. The remainder of
the loop body processes a single character from the input buffer and writes it to the output. Non-
interference between the interrupt code and the main program is demonstrated by the fact that
we were able to move the interrupt calls freely through the main program, and ultimately collect
them together in one place.

The program, looked at in its entirity, simply executes the loop body repeatedly until all the
input is processed, at which point the exit statement is encountered and the program terminates.
The program therefore simply repeats the action of the loop body until all input has been processed
and all output generated.

6 Deriving timing constraints

As stated in Section 5.1, the original program behaves in an aberrant manner if the input buffer
becomes full, in that it then ignores input characters which are thus lost. In order to reason about
the program an assertion was added to the interrupt procedure, which was the formal equivalent
of saying “we only wish to consider cases in which the buffer does not become full”, i.e. only cases
where the program behaves correctly. Use of an assertion in this way allows us to derive conditions
which must hold elsewhere in the program to ensure that no characters are lost.

Following our transformation of the loop body, only one call to interrupt remains. We wish to
move the assertion out of the interrupt procedure to the start of the loop body. Consider first the
procedure body:

proc interrupt(time0) ≡
while (input 6= 〈〉 ∧ time0 > input[1][1]) do

{count < bufsize};
...
count := count + 1;
...

od

Assume n interrupts are to be processed in this call to the procedure, i.e. `(input) > n and
time0 > input[i][1] for i 6 n and if `(input) > n then time0 < input[n][1] (recall that the time
components of elements of input must be monotonically increasing). Now the loop body will be
executed precisely n times, incrementing count each time, so if all the assertions are to hold, we
must have count + n 6 bufsize initially.

We may now move the assertion statement to the top of the loop body:

n := max({ i | time0 > input[i][1] } ∪ {`(input)});
if count = 0 then if input = 〈〉 then exit(1)

elsf time < input[1][1] then time := input[1][1] fi;
{count 6 bufsize − n}

else {count 6 bufsize − n} fi;
interrupt(time);

The initial assertion allows us to remove the assertion in interrupt and guarantees the correct
operation of the loop body. If this condition can be shown always to hold then the assertion can be
removed, and the resulting program will be executable, and will execute without losing characters.
This method may therefore be used as a means of validating the program.

The condition states that if n interrupts occurred during execution of the loop body then there
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must be at least n spaces in the buffer to receive the characters. This can be read either as a
condition on the permissible rate of interrupts, or if this is known and fixed, as a condition on the
buffer size which could be an input to the design or re-design process.

6.1 Loop body

In the refined loop body (see Figure 2) most of the statements which increment time have been
moved to the end of the loop and merged into the statement time := time + 5. Two assignments
to time remain in the two conditional statements. We can see from this that the time taken to
execute the loop body is at least 5 time units and at most 6, plus the time taken to process the
interrupts. This is of course additional to any waiting time when the buffer is empty.

If we examine the interrupt procedure, we can see that its execution time for a single interrupt
is at least 6 and at most 7 time units. However an execution time of 7 units occurs only when the
buffer fills up and wraps round to the start again. This wrapping occurs once for every bufsize
interrupts; in a single invocation of the procedure it can occur at most once before the buffer
becomes filled with unread characters. If n interrupts occur (n < bufsize), the bounds on the
execution time ti of the interrupt procedure are 6n 6 ti 6 6n+ 1.

The bounds on the execution time tl of the loop body in which n interrupts occur can thus be
written

5 + ti 6 tl 6 6 + ti

and hence
5 + 6n 6 tl 6 7 + 6n

where again we assume that the buffer is not empty initially. The loop execution time is thus
dependent on the number of interrupts which occur during its execution, as we would expect. If
the system requirements placed an upper bound on the permissible execution time for this section
of code, for example, it would now be possible for us to calculate the maximum frequency of
interrupts which would allow this constraint to be met. The maximum execution time depends on
the maximum number of interrupts which are permissible, and this in turn is dependent on the size
of the buffer (as n < bufsize).

6.2 Main program

However, embedding the body in a repeating loop requires that we derive additional constraints for
the correct operation of the entire program. Provided these conditions are met by the environment
in which the program executes, the program is equivalent to the (non-executable) version with the
assertion statements in place.

If n interrupts occur during execution of the loop body, then at least n unread characters will
remain when the end of the loop is reached. (One character is removed from the buffer, but at
least one must be present in the buffer before the loop body is executed).

Consider two iterations of the loop: this is equivalent to concatenating two copies of the loop
body. We may move all interrupt calls to the top and extract the assertions as in Section 6. If n
interrupts occur during execution it is clear that the constraint on the initial conditions becomes
in this case count 6 bufsize − n+ 2.

For an arbitrary number of iterations j and an arbitrary number of interrupts N , the initial
condition becomes

count 6 bufsize −N + j or N − j 6 bufsize − count

If bufsize is small, this approximates to N 6 j.

However at the beginning of each iteration the constraint for the loop body must also hold:
count 6 bufsize − n. If the interrupts are strictly periodic, the global condition N 6 j requires
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that the period of the interrupts is greater than or equal to the iteration period. In this case,
one character is removed from the buffer per iteration and at most one is added; hence the loop
constraint remains true if it was true initially, and the buffer never becomes full. The minimum
execution time per iteration occurs when no time is spent in the “busy wait” condition, i.e. when
there is always a character in the buffer at the start of each iteration. The mean execution time
per iteration t is given by

t 6 tl + ti tl = execution time for main program statements

ti = time to service one interrupt

=
5bufsize + 1

bufsize
+

6bufsize + 1

bufsize

= 11 +
2

bufsize

This is the smallest permissible period for the interrupts. It can be seen that the influence of
bufsize on this value is comparatively small, and indeed if the interrupts are periodic there is no
need for a buffer with more than one or two spaces, as the interrupts are either slower than or equal
to the critical rate in which case there is never more than one unread character, or exceed this in
which case a buffer of any size will eventually overflow.

If however the interrupts are randomly distributed, then with a larger buffer we can replace this
condition by two weaker ones. The constraints are that the interrupts must be far enough apart so
that the interrupt can be serviced before the next interrupt occurs (this is true for any interrupt
service routine), and that during a certain interval (which depends on the buffer size), no more
interrupts can occur than can be processed in that interval. We give a practical application below
where this constraint is much easier to satisfy than the “critical rate” constraint. The constraints
derived from the program may be used, together with the timing information, the value of bufsize
and a knowledge of the interrupt distribution function, either to determine that characters will
not be lost (only possible if there is a lower bound on the inter-arrival time for interrupts), or to
calculate the probability that this will happen.

Suppose m = bufsize/2, and there are m characters in the buffer. Now if no more than m
interrupts occur in time t, during which time m characters from the buffer are processed, at the
end of this time the buffer will contain no more than m characters, and no characters will have
been lost regardless of the distribution of the interrupts within this time.

time taken to service m interrupts tI 6 6m+ 1

time taken to process m characters tL 6 5m+ 1

Therefore, maximum time to service m interrupts and to process m characters is given by

t 6 11m+ 2

Therefore, for random interrupts, we can say that provided no more than m interrupts occur during
any interval of length 11m+2 then no characters will be lost. This can be used to determine the size
of buffer required (since m = bufsize/2), or for an existing implementation, to determine the value
of t and hence a constraint on the interrupt distribution which will ensure no characters are lost.
For example, if interrupts come in bursts of not more than 10, randomly distributed in a period of
at least 112 time units, then a buffer size of 20 will be sufficient to ensure that no characters are
lost.
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Figure 3: A Terminal Multiplexer

An example of such a system is a terminal multiplexer, connected to a number of terminals via
serial lines and to a host computer via a high speed link (see Figure 3). The long term mean arrival
rate of characters is limited by the baud rate of the serial lines, but characters may arrive from
different terminals almost simultaneously, hence the need for a buffer. If the multiplexer link can
deliver characters at a rate of one million per second, then the system would have to be capable
of servicing and processing one character within one microsecond. However, serial lines of 9600
baud will deliver a maximum of 1 character per millisecond (approximately) per line, so within
any one millisecond period there can be no more than 10 interrupts. The above analysis shows
that provided an interrupts can be serviced in 1 microsecond, and a character processed within 99
microseconds, then a 20 character buffer will be sufficient to ensure that no characters are lost.

7 Recovering a specification

We have restructured the original program into the form shown in Figure 2, which has served to
make its logic more explicit and has aided us in deriving timing constraints. However, although
not executable, this program represents only a low level of abstraction. To recover a specification
for the system we need to abstract away from the detail of the implementation. We present two
approaches to this, the first an approach based on discovering and analysing loop invariants in the
code as it stands. The second uses restructuring and inverse engineering to simplify the program
before analysing the result.

First we perform some low level abstraction from the program data structures. We can replace
the external procedure write by its specification: if we regard the standard output as a sequence
std out[. . . ] (as we did the program input) then we can write

proc write(p var std out) ≡
std out := std out ++ 〈p〉.

We can replace the circular buffer buffer by a unbounded sequence buf. Since we know from
Section 6 that the buffer will not overflow, making it larger will not affect the program. Characters
are added to the buffer by appending to the tail, and removed from the head of the sequence. The
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variables free, first and count are then redundant and can be removed. Setting time0 equal to time
before the procedure call and replacing the procedure call by its body, we get:

PROG ≥
do if buf = 〈〉

then if input = 〈〉 then exit(1)
elsf time < input[1][1]

then time := input[1][1] fi fi;
time0 := time;
while (input 6= 〈〉 ∧ time0 > input[1][1]) do

buf := buf ++ input[1][2];
input := tail(input);
time > time + 6 od

ch := buffer[first];
write(ch var stdout);
std out := std out ++ buf [1];
buf := tail(buf );
time > time + 5 od;

where we have abstracted away details of the assignment of values to time.

Method 1: using loop invariants

The program consists of two nested loops. We proceed by identifying the invariants and termination
conditions for the loops. The loop invariant is a condition which is preserved by a loop throughout
its execution. When the loop terminates therefore both the invariant and the termination condition
are true; we can make use of this fact to find the specification of a loop.

Consider first the inner while loop. We introduce new variables buf 0, input0, and immediately
before the loop is entered assign buf 0:=buf, input0:=input. We can write the following invariant
conditions on the assigned variables in the loop body:

buf = buf 0 ++
∑j

i:=1〈input0[i][2]〉
∧ input = input0[j + 1 . .]
∧ time > time0 + 6j

where j is constrained by input[j][1] 6 time0, and in fact represents the number of iterations of
the loop. The loop terminates when the condition

input = 〈〉 ∨ time0 < input[1][1]

becomes true. Combining this with the invariant we get the following condition:

input[j + 1 . .] ≡ 〈〉 ∨ time0 < input0[j + 1][1]

We can therefore write the specification of the inner loop as

j := µj′(j′ > 0 ∧ input0[j
′ + 1 . .] = 〈〉 ∨ time0 < input0[j

′ + 1][1]);

buf := buf 0 ++
∑j

i:=1 〈input0[i][2]〉;
input := input0[j + 1 . .]
time := time′.(time′ > time0 + 6j)

where the first line is read as “j becomes equal to the smallest j ′ greater than or equal to 0 such that
the remainder of the condition is true”. Substituting this specification for the inner loop gives:

PROG ≥
do if buf = 〈〉

then if input = 〈〉 then exit(1)
elsf time < input[1][1] then time := input[1][1] fi fi;
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〈time0 := time, input0 := input, buf 0 := buf 〉;
j := µj′(j′ > 0 ∧ (input0[j

′ + 1 . .] = 〈〉 ∨ time0 < input0[j
′ + 1][1]));

buf := buf 0 ++
∑j

i:=1 〈input0[i][2]〉;
input := input0[j + 1 . .];
time := time′.(time′ > time0 + 6j + 5);
std out := std out ++ 〈buf [1]〉;
buf := tail(buf ) od;

We now have a single loop. Restructuring the initial if statement makes explicit the termination
condition for this loop:

if buf = 〈〉
then if input = 〈〉 then exit(1)

elsf time < input[1][1] then time := input[1][1] fi fi;
≈
if buf = 〈〉 ∧ input = 〈〉 then exit(1) fi;
if buf = 〈〉 ∧ time < input[1][1] then time := input[1][1] fi;

After the specification of the inner loop, we can say that time is greater than or equal to time of
last input (interrupt) received. We can therefore eliminate the second if statement by using time0

to record the time of the last interrupt. We can eliminate the new variables introduced in the last
step by suitably ordering the statements, and abstract the second if statement to give:

PROG ≥
do if buf = 〈〉 ∧ input = 〈〉 then exit(1) fi;

if buf = 〈〉 then time > input[1][1] fi;
time0 := time;
j := µj′(j′ > 0 ∧ (input[j′ + 1 . .] = 〈〉 ∨ time < input[j ′ + 1][1]));

buf := buf ++
∑j

i:=1〈input[i][2]〉;
if j > 0 then time0 := input[j][1];

input := input[j + 1 . . ];
time > time0 + 6j + 5;
std out := std out ++ 〈buf [1]〉;
buf := tail(buf ) fi od;

We can now write down the invariant for the main loop of the program and hence derive the
specification for the entire program. Again we use variables buf 0, input0, std out0 to record the
initial values of variables before the loop is entered.

In each iteration of the loop the buffer buf has j characters added to its end and one removed
from its head. Also, std out has the first character from buf added to its end. input has j
characters removed from its head. time is greater than or equal to the time of the last input
(interrupt) processed. Therefore we can write down the following invariant:

input = input0[k + 1 . .]

∧ buf = (buf 0 ++
∑k

i:=1 〈input0[i][2]〉)[n+ 1 . .]

∧ std out = std out0 ++ (buf 0 ++
∑k

i:=1 〈input0[i][2]〉)[1 . . n]
∧ time > input0[k][2] + 11

The termination condition buf = 〈〉 ∨ input = 〈〉 is equivalent to the constraints (on k and n):

input = 〈〉 ⇒ input0[k + 1 . .] = 〈〉 or k = `(input)

and

buf = 〈〉 ⇒ (buf 0 ++
k

∑

i:=1

〈input0[1][2]〉)[n+ 1 . .] = 〈〉 or n = `(input0) + `(buf 0)
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Substituting these conditions in the loop invariant, we arrive at the following:

PROG ≥
〈input0 := input, buf 0 := buf , std out0 := std out, time0 := time〉;
〈k := `(input0), n := `(input0) + `(buf 0)〉;
input := input0[k + 1 . .];
buf := 〈〉;

std out := std out0 ++ (buf 0 ++
∑k

i:=1 〈input0[i][2]〉)[1 . . n];
time := time′.(time′ > input0[`(input0)][1] + 11)

Simplifying gives us the following specification:

std out = std out0 ++ buf 0 ++
∑`(input0)

i=1 〈input0[i][2]〉;
input := 〈〉; buf := 〈〉;
time := time′.time′ > input0[`(input0)][1] + 11

Method 2: transformation—changing the data structure

We previously abstracted the program into the form

PROG ≥
do if buf = 〈〉

then if input = 〈〉 then exit(1)
elsf time < input[1][1]

then time := input[1][1] fi fi;
time0 := time;
while (input 6= 〈〉 ∧ time0 > input[1][1]) do

buf := buf ++ input[1][2];
input := tail(input);
time := time′.(time′ > time + 6) od

ch := buffer[first];
write(ch var stdout);
std out := std out ++ buf [1];
buf := tail(buf );
time := time′.(time′ > time + 5) od;

We are not really interested in the final value of time (which records the total time taken by the
program), especially since this is dependent on the interrupt times provided in the input sequence.
We are more interested in response times (the time taken to respond to each interrupt as it occurs)
and these have already been covered by our analysis in Section 6. Therefore, in this section we will
ignore the time variable and consider only the functional aspects of the program.

In the inner while loop, characters are removed from the sequence input and appended to
the sequence buf. If we define buf in = buf ++ π2 ∗ input where π2(x, y) =

DF
y is the second

projection, and π2 ∗ input is the sequence formed by concatenating the second elements of each
element of input), and remove references to time, (so we consider only functional aspects of the
program), we can rewrite the program as:

PROG ≥
do if buf in = 〈〉 then exit(1) fi;

std out := std out ++ 〈buf in[1]〉;
buf in := tail(buf in) od;

≈
while buf in 6= 〈〉 do

std out := std out ++ 〈buf in[1]〉;
buf in := tail(buf in) od;
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This approach will be generally applicable to programs using buffered input or output, and this
single step results in a significant simplification. Introduce buf in0 = buf in, std out0 = std out
before the loop is entered. The above is then equivalent to:

〈buf in0 := buf in, std out0 := std out〉;
std out := std out0 ++ buf in0;
buf in := 〈〉;

Now since buf in = buf ++ π2 ∗ input, we have

〈input0 := input, buf 0 := buf , std out0 := std out〉;
std out := std out0 ++ buf 0 ++ π2 ∗ input0;
buf := 〈〉; input := 〈〉;

Thus we arrive at the following specification:

std out := std out ++ buf ++ π2 ∗ input;
input := 〈〉; buf := 〈〉

which is identical to that obtained by the first method, with the exception that we have no spe-
cification of the elapsed time.

8 Conclusions

We have shown that the restructured program above in Figure 2 in Section 5.3 is an abstrac-
tion of the original program (with the assertion added). Trivially, the restructured program
(NEW+ASSERT) is an abstraction of the same program without the assertion (NEW), since the
removal of an assertion from any program is a refinement. NEW is a refinement of the specification
(SPEC) derived in the previous section. So we have the following relationships:

SPEC ≤ NEW and NEW+ASSERT ≤ ORIG+ASSERT ≤ ORIG

In Section 6.2 we derived conditions on the execution environment under which the assertion in
NEW+ASSERT can be removed. Provided that these conditions are met, we can write

NEW ≈ NEW+ASSERT

and hence, by transitivity of refinement:

SPEC ≤ ORIG

Therefore, the derived specification correctly captures the behaviour of the original program
provided the conditions on the distribution of interrupts are met.

The derivation of these conditions or constraints hinged on the insertion of appropriate asser-
tions into the program, in effect to “abstract away” some nonessential details. In this example this
was a simple exercise, since the conditions under which incorrect program operation was possible
could easily be identified. In a more complex program, it is likely that a significant amount of
restructuring might be necessary before this would be possible. Similarly, the small number of
paths through the program meant that timing information was easy to extract, and simple in form.
“Real” programs typically have a large number of potential execution paths; automated assistance
in the form of a tool which could extract timing information for all possible paths, and hence
bounds on the execution time between to points in a program, would be valuable in the analysis
of such programs.

This study shows that using an appropriate model for interrupts we can represent interrupt-
driven programs within the (purely sequential) WSL language. With such models, the inverse en-
gineering techniques of [44,48] can be applied to extract the specification of the original program.
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Program transformations are sufficiently powerful to cope with these, often complex, models. Al-
though a fairly large number of transformations are required to deal with these models, results
from the case study indicate that these are used in a systematic way: moving assignments to time
and calls to interrupt through the program to collect them together, unfolding and refolding where
necessary. This suggests that much of the donkey work can be automated by a tool such as the
Maintainer’s Assistant [13,51] and this is currently being investigated under a SMART2 2 project
at the Centre for Software Maintenance Ltd., and as part of a three-year SERC project at the
University of Durham.

8.1 The Maintainer’s Assistant Project

In [50] we describe a practical program transformation system for reverse engineering which is
based on our program transformation theory and has been used successfully with a number of IBM
Assembler modules.

The WSL language and transformation theory forms the basis of the “Maintainer’s Assistant”
project [13,51] at Durham University and the Centre for Software Maintenance Ltd. which has
developed a prototype transformation tool, implementing over six hundred transformations. The
aim of the tool is to use program transformations to assist with program analysis, reverse engin-
eering and general software maintenance. The tool consists of a structure editor, a browser and
pretty-printer, a transformation engine and library of proven transformations, and a collection of
translators for various source languages.

The initial prototype of ReForm was developed as part of an Alvey project at the University
of Durham [51]. This work on applying program transformation theory to software maintenance
formed the basis for a joint research project between the University of Durham, Durham Soft-
ware Engineering Ltd. and IBM UK Ltd. whose aim is to develop a tool which will interactively
transform assembly code into high-level language code and Z specifications. We have been able to
transform the assembler code to a high-level language representation, replace the “areas of store”
by the data structures they implement (using transformations which change the data represent-
ation of a program), and then transform this high-level language version into a specification. A
prototype translator has been completed and tested on sample sections of up to 80,000 lines assem-
bler code, taken from very large commercial assembler systems. One particular module had been
repeatedly modified over a period of many years until the control flow structure had become highly
convoluted. Using the prototype translator and ReForm tool we were able to transform this into a
hierarchy of (single-entry, single-exit) subroutines resulting in a module which was slightly shorter
and considerably easier to read and maintain. The transformed version was hand-translated back
into Assembler which (after fixing a single mis-translated instruction) “worked first time”.

The ReForm tool (Reverse Engineering through FORmal Methods), is designed to automate
much of the process of transforming code into specifications and specifications into code. This
process can never be completely automated—there are many ways of writing the specification of
a program, several of which may be useful for different purposes. So the tool must work interact-
ively, with the tedious checking and manipulation carried out automatically, while the maintainer
provides high-level “guidance” to the transformation process. In the course of the development of
the prototype, we have been able to capture much of the knowledge and expertise that we have
developed through manual experiments and case studies with earlier versions of the tool, and in-
corporate this knowledge within the tool itself. For example, restructuring a regular action system
(a collection of gotos and labels) can now be handled completely automatically through a single
transformation.

ReForm can also be used as a software development system (but this is not the focus of this
paper): starting with a high-level specification expressed in set-theory and logic notation (similar
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to Z or VDM [24]), the user can successively transform it into an efficient, executable program.
Transformations are themselves coded in an extension of WSL called METAWSL: in fact, much
of the code for the prototype is written in WSL, and this makes it possible to use the system to
maintain its own code.

The FermaT project is a complete redevelopment of the Maintainer’s Assistant prototype to
build an industrial strength CASE tool for reverse engineering, software maintenance and program
understanding.
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