
Transformational Programming and the

Derivation of Algorithms

Martin Ward and Hussein Zedan
Software Technology Research Lab

De Montfort University
The Gateway,

Leicester LE1 9BH, UK
martin@gkc.org.uk and zedan@dmu.ac.uk

Abstract. The transformational programming, method of algorithm
derivation starts with a formal specification of the result to be achieved
(which provides no indication of how the result is to be achieved), plus
some informal ideas as to what techniques will be used in the implemen-
tation. The formal specification is then transformed into an implementa-
tion, by means of correctness-preserving refinement and transformation
steps. The informal ideas are used to guide the selection of transfor-
mations to apply: since they only guide the selection of valid trans-
formations, the ideas do not themselves have to be formalised. At any
stage in the process, sub-specifications can be extracted and transformed
separately. The main difference between this approach and the invariant
based programming approach (and similar stepwise refinement methods)
is that loops can be introduced and manipulated while maintaining
program correctness and with no need to derive loop invariants. Another
difference is that at every stage in the process we are working with a
correct program: there is never any need for a separate “verification”
step. These factors help to ensure that the method is capable of scaling
up to the dvelopment of large and complex software systems.

1 Introduction

The waterfall model of software development sees progress as flowing steadily
downwards (like a waterfall) through the following states:

1. Requirements Elicitation: analysing the problem domain and determinining
from the users what the program is required to do;

2. Design: developing the overall structure of the program;
3. Implementation: writing source code to implement the design in a particular

programming language;
4. Verification: running tests and debugging;
5. Maintenance: any modifications required after delivery to correct faults,

improve performance, or adapt the product to a modified environment [1]

In theory, one proceeds from one phase to the next in a purely sequential
manner. But in practice, at each stage in the process, information may be



uncovered which affects previous stages. For example, during implementation
it may be determined that the design is unsuitable and needs to be changed,
during debugging the program implementation will have to be changed to fix
the bugs, and so on. So the process described in Figure 1 includes feedback
loops from each stage to preceding stages.

Requirements

Design

Implementation

Verification

Maintenance

Fig. 1. The “waterfall model” of programming

It has long been recognised that while testing may increase our confidence in
the correctness of a program, no amount of testing can prove that a program is
correct. As Didjkstra said: “Program testing can be used to show the presence of
bugs, but never to show their absence” [14]. To prove that a program is correct
we need a precise mathematical specification which defines what the program
is supposed to do, and a mathematical proof that the program satisfies the
specification. In the case of a simple loop, the proof using the method of “loop
invariants” takes the following steps:

1. Determine the loop termination condition;
2. Determine the loop body;
3. Determine a suitable loop invariant;
4. Prove that the loop invariant is preserved by the loop body;
5. Determine a variant function for the loop;
6. Prove that the variant function is reduced by the loop body (thereby proving

termination of the loop);



7. Prove that the combination of the invariant plus the termination condition
satisfies the specification for the loop.

This process is summarised in Figure 2. Loop invariants and postconditions can

Program code

Loop invariants

Verification

Pre/postconditions

Fig. 2. The program verification process

be difficult to determine with sufficient precision, and computing verification
conditions can be tedious and proving them can be difficult. Even with the aid
of an automated proof assistant, there may still be several hundred remaining
“proof obligations” to discharge (these are theorems which need to be proved in
order to verify the correctness of the development) [7,18,22]. In addition, should
the implementation happen to be incorrect (i.e. the program has a bug), then
the attempt at a proof is doomed to failure.

Sennett in [23] indicates that for “real” sized programs it is impractical to
discharge more than a tiny fraction of the proof obligations. He presents a case
study of the development of a simple algorithm, for which the implementation
of one function gave rise to over one hundred theorems which required proofs.
Larger programs will require many more proofs. In practice, since few if any of
these proofs will be rigorously carried out, what claims to be a formal method
for program development turns out to be a formal notation for program specifi-
cation, together with an informal development method.

An alternative to the a posteriori method, which was originally proposed
by Dijkstra [12], is to control the process of program generation by constructing
loop invariants in parallel with the construction of the code. This process is sum-
marised in Figure 3. Combined with stepwise refinement [14,30], this approach
is claimed to scale up to fairly large programs.



Pre/postconditions

Program

code

Loop

Invariants

Verification

Fig. 3. Dijkstra’s approach

A further refinement of this approach is to develop loop invariants before

the code itself is written. The idea has been proposed from the late 70’s by
several researchers in different forms. Dijkstra’s later work on programming [13]
emphasises the development of a loop invariant as an important initial step before
developing the body of the loop. Figure 4 summarises this approach. Notice that
in Figures 2, 3 and 4, developing the loop invariant is moved to earlier and earlier
phases in the process. Gries [16] takes up the idea that a proof of correctness and
a program should be developed hand in hand. Back [2] presents a notation for
writing invariant based programs, a method for finding invariants before writing
code and methods for checking the correctness of invariant based program. He
points out that the natural structure for the code may not be the same as the
natural structure for the invariants and emphasises that the program should be
structured around the invariants, so that they are as simple as possible.

In all the development methods we have seen so far, verification is the final
step in development. Up until the point where verification has been completed,
the programmer cannot be sure that the program is correct. Indeed, Back [2]
makes it clear that the program under development does not have to terminate
or be free from deadlocks, and that the initial invariant is usually both incom-
plete and partially wrong. He stresses that it is essential to carefully check the
consistency of each transition when it is introduced.

In this paper we present a different method of programming, called transfor-

mational programming or algorithm derivation.



Pre/postconditions

Loop invariants

Program code

Verification

Fig. 4. Invariant based programming

2 Transformational Programming

The transformational programming method starts with a formal specification
plus some informal ideas for implementation techniques which might be use-
ful. The formal specification is refined into a complete program by applying a
sequence of correctness-preseving refinement steps. The choice of which trans-
formation to apply at each stage is guided by the implementation ideas. These
ideas do not have to be formalised to any particular extent, since they are
only used to select between different transformations. The correstness of the
transformation guarantees that the transformed program is equivalent to the
original. The method is summarised in Figure 5. Developing a program by
stepwise transformation is an idea which dates back at least to the late seventies,
starting with Burstall and Darlington’s transformation work [10,11], the project
CIP (Computer-aided Intuition-guided Programming) [3,4,5,6,9] and continuing
more recently with the work of Morgal et al on the Refinement Calculus [19,
20,21] and the Laws of Programming [17]. However, the method presented here
is very different from these. In the Refinement Calculus, the transformations
for introducing and manipulating loops require that any loops introduced must
be accompanied by suitable invariant conditions and variant functions. Morgan
says: “The refinement law for iteration relies on capturing the potentially un-
bounded repetition in a single formula, the invariant”, ([19] p. 60, our emphasis).
So, in order to refine a statement to a loop, the developer still has to carry out
all the steps 1–7 listed above for verifying the correctness of a loop.

In contrast with the refinement calculus, the method presented here does
not require loop invariants. We have transformations to introduce, manipulate
and remove loops which do not depend on the existence of loop invariants.



Formal

Program

Specification

Informal

Implementation

ideas

Program 1

Program n

Fig. 5. Algorithm Derivation

Another key difference between Figure 5 and the other methods is that there is
no Verification step. This is because at each stage in the derivation process
we are working with a correct program. The program is always guaranteed
to be equivalent to the original specification, because it was derived from the
specification via a sequence of proven transformations and refinements.

Over the last twenty-five years we have developed a powerful wide-spectrum
specification and programming language, called WSL, together with a large
catalogue of proven program transformations and refinements which can be used
in algorithm derivations and reverse engineering. The method has been applied
to the derivation of many complex algorithms from specifications, including
the Schorr-Waite graph marking algorithm [28], a hybrid sorting algorithm (an
efficient combination of Quicksort and insertion sort) [26], various tree searching
algorithms [27] and a program slicing transformation [29]. The latter example
shows that a program transformation can be defined as a formal specification
which can then be refined into an implementation of the transformation.

2.1 Outline of the Algorithm Derivation method

A typical algorithm derivation takes the following steps:

1. Formal Specification: Develop a formal specification of the program, in
the form of a WSL specification statement. This defines precisely what the
program is required to accomplish, without necessarily giving any indication
as to how the task is to be accomplished. For example, a formal specification
for the Quicksort algorithm for sorting the array A[a . . b] is the statement



SORT:

A[a . . b] := A′[a . . b].(sorted(A′[a . . b]) ∧ permutation(A[a . . b], A′[a . . b]))

This states that the array is assigned a new value which is sorted and also a
permutation of the original value. The formula sorted(A) is defined:

∀1 6 i, j 6 ℓ(A). i 6 j ⇒ A[i] 6 A[j]

while permutation(A, B) is defined to be true whenever the sequence B is a
permutation of the elements of sequence A.
The form of the specification should mirror the real-world nature of the
requirements. It is a matter of constructing suitable abstractions such that
local changes to the requirements involve local changes to the specification.
The notation used for the specification should permit unambiguous expres-
sion of requirements and support rigorous analysis to uncover contradictions
and omissions. It should then be straightforward to carry out a rigorous
impact analysis of any changes.
The two most important characteristics of a specification notation are that
it should permit problem-oriented abstractions to be expressed, and that it
should have rigorous semantics so that specifications can be analysed for
anomalies.
In [15], Dijkstra writes:“In this connection it might be worthwhile to point
out that the purpose of abstracting is not to be vague, but to create a new
semantic level in which one can be absolutely precise.”

2. Elaboration: Elaborate the specification statement by taking out simple
cases: for example, boundary values on the input or cases where there is no
input data. These are applied by transforming the specification statement,
typically using the Splitting a Tautology transformation followed by inserting
assertions and then using the assertions to refine the appropriate copy of the
specification to the trivial implementation. For Quicksort, an empty array
or an array with a single element is already sorted, so SORT can be refined
as skip in these cases:

{a > b}; SORT ≈ {a > b}; skip

3. Divide and Conquer: The general case is usually tackled via some form
of “divide and conquer” strategy: this is where the informal implementation
ideas come into play to direct the selection of transformations. For Quicksort
the informal idea consists of two steps: (a) Partition the array around a pivot
element: so that all the elements less than the pivot go on one side and the
larger elements go on the other side. (b) Then the two sub-arrays are sorted
using copies of the original specification statement.
At this point we still have a non-recursive program: so there are no induction
proofs or invariants required for the transformations.

4. Recursion Introduction: The next step is to apply the Recursive Imple-
mentation Theorem to produce a recursive program with no remaining copies
of the specification.



5. Recursion Removal: We now have an executable implementation of the
specification. If an iterative implementation is required, we can apply the
Generic Recursion Removal Theorem (or an appropriate special case of the
theorem) to produce an iterative program.

6. Optimisation: Apply further optimising transformations as required.

The method is compositional at several levels:

1. At any stage in the development, any part of the program can be worked on
in isolation and the results “plugged back in” to the main program: this is
because refinement in WSL satisfies the replacement property [25]

2. Different aspects of the development can often be handled separately: for
example, correctness and efficiency;

3. At any stage in the process we may use data transformations to change
the data representation and other transformations to introduce and remove
“ghost variables” to convert abstract data structures to concrete data struc-
tures.

It should be noted that stages 1–3 involve analysing programs which contain
no recursion or iteration. This makes the analysis particularly straightforward:
for example, induction arguments are not needed. This is fortunate, as it is these
stages which require the most input from the informal implementation ideas.
Stages 4–6 involve standard transformations for recursion introduction, recursion
removal and optimisation. As the derivation progresses, the transformations
involved become more generic and less domain-specific. The techniques of cal-

culational programming [8] may be relevant to these stages. In the later stages,
the program will typically be getting larger, but the required transformations
will become simpler and more susceptable to automation. At some point, an
optimising compiler will take over and generate executable code, or the code
will be directly executed by an interpreter, as appropriate.

An important advantage of the transformational derivation approach, over
the various “code and verify” approaches is that it enables a separation of
concerns between implementing the algorithm and applying various optimisation
techniques. For example, in the derivation of the Schorr-Waite graph marking
algorithm, the first stage involves deriving the following recursive graph marking
algorithm from a specification for graph marking:

proc mark(x) ≡
M := M ∪ {x};
if L(x) /∈ M then mark(L(x)) fi;
if R(x) /∈ M then mark(R(x)) fi.

In the actual implementation, the values L(x) and R(x) are stored in arrays
l[x] and r[x]. The next stage involves using the “pointer switching” strategy
to reduce the memory requirement for the recursive program. The recursive
algorithm requires a stack to record the path back to the root. The central idea
behind the algorithm devised by Schorr and Waite is that when we return from
having marked the left subtree of a node we know what the value of L(x) is



for the current node (since we just came from there). So while we are marking
the left subtree, we can use the array element l[x] to store something else—for
instance a pointer to the node we will return to after having marked this node.
Similarly, while we are marking the right subtree we can store this pointer in
r[x]. The algorithm uses some additional storage for each node (denoted by the
array m[x]) to record which subtrees of the current node have been marked.

In the final algorithm, the pointer switching strategy and the graph mark-
ing algorithm are deeply intertwined since the algorithm uses the same data
structure for three different purposes: to store the original graph structure, to
record the path from the current node to the root, and to record the current
“state of play” at each node. The program is required to mark the graph without
changing its structure, yet works by modifying that structure as it executes. This
means that any proof of correctness must also demonstrate that all the pointers
are restored on termination of the program. Any direct proof of the algorithm
therefore has to prove that the graph is marked and that the pointers are restored
simultaneously.

The transformational programming approach treats these two ideas sepa-
rately in two stages of the derivation: we first derive a recursive graph marking
algorithm, then apply the pointer switching strategy to show that various data
items can be stored in the pointers, and the pointers restored at the end. Then
remove the recursion, using this extra data to avoid the need for a stack. Proving
that the pointers are restored is easy to do while the algorithm is in a recursive
form: it becomes a much more challenging task when the algorithm is in its final
iterative form.

3 Examples of Transformational Programming

3.1 String Comparison

Our first example illustrates multiple applications of the recursion introduction
and recursion removal transformations. Recursion introduction does not have to
be applied simultaneously to every copy of the specification: we can work on
copies of the specification one (or more) at a time.

Given two character strings a and b, it required to determine whether they
are equal “apart from blanks” (the space character being regarded as non-
significant). We represent the strings as arrays of characters, with the special
symbol end denoting the end of the string.

Define the function strip(s, i) to return the sequence of all non-space charac-
ters in s from the ith character to the end of the string:

strip(s, i) =











〈〉 if s[i] = end

strip(s, i + 1) if s[i] = space

〈s[i]〉 ++ strip(s, i + 1) otherwise



Formal Specification With this definition of strip our formal specification is:

COMP =
DF

if strip(a, 1) = strip(b, 1) then R := 1 else R := 0 fi

Informal Ideas Our informal idea is to step through both arrays a character
at a time until we reach the end, or find a significant difference. This suggests
generalising the specification to compare the strings from a given index onwards:

COMP(i, j) =
DF

if strip(a, i) = strip(b, j) then R := 1 else R := 0 fi

Program Derivation The obvious special cases to consider are the values of
a[i] and b[j]. First we consider the case where a[i] = space:

if a[i] = space then COMP(i, j)
else COMP(i, j) fi

By definition, if a[i] = space then strip(a, i) = strip(a, i + 1) so COMP(i, j) ≈
COMP(i + 1, j). We have:

if a[i] = space then COMP(i + 1, j)
else COMP(i, j) fi

By the precondition for the program, there is an array element a[i] = end for
some i. Let i′ be the first such element. Then the variant function i′−i is reduced
before the first copy of the specification, but (obviously) not before the second
copy. We can still apply Recursive Implementation, provided we only apply it to
the first copy of the specification:

proc comp ≡
if a[i] = space then i := i + 1; comp

else COMP(i, j) fi

This simple tail-recursion is transformed to a while loop:

while a[i] = space do i := i + 1 od;
COMP(i, j)

A similar argument for b[j] produces:

while a[i] = space do i := i + 1 od;
while b[j] = space do j := j + 1 od;
COMP(i, j)

Consideration of the cases where a[i] = end and/or b[j] = end gives:

while a[i] = space do i := i + 1 od;
while b[j] = space do j := j + 1 od;
if a[i] = end ∧ b[j] = end then R := 1
elsif a[i] 6= a[j] then R := 0

else i := i + 1; j := j + 1; COMP(i, j) fi



We can now apply Recursive Implementation, and Recursion Removal, to get the
final iterative program:

do while a[i] = space do i := i + 1 od;
while b[j] = space do j := j + 1 od;
if a[i] = end ∧ b[j] = end then R := 1; exit(1)
elsif a[i] 6= a[j] then R := 0; exit(1) fi;
i := i + 1; j := j + 1 od

3.2 Quicksort

The Quicksort derivation uses the specification SORT(A, i, j) from Section 2.1.
For the first step in the elaboration of the specification, we take out the case
i > j. If i > j then the array segment has at most one element, and is therefore
already sorted. So a valid refinement of SORT(A, i, j) in this case is skip:

if i < j then SORT(A, i, j) fi

The basic idea behind Quicksort is that the array segment is first partitioned
around a pivot element such that each element on the left is smaller than each
element on the right.

An improvement on the original Quicksort is to use two pivot elements,
partitioning the array into three sub-arrays [31]. The left section contains all
elements strictly less than the smaller pivot, the middle section contains all
elements between the two pivots (inclusive), and the right section contains all
the elements strictly larger than the larger pivot. This has been proved to require
the same number of comparisons and 20% fewer swaps, in the general case, as
compared to the traditional algorithm [31].

The specification Partition(A, i, j, p1, p2) is defined as:

〈A, p1, p2〉 := 〈A′, p′
1
, p′

2
〉.
(

i 6 p′
1

6 j ∧ i 6 p′
2

6 j

∧ A′[i . . p′
1
− 1] < A′[p′

1
] 6 A′[p′

1
+ 1 . . p′

2
− 1] 6 A′[p′

2
] < A′[p′

2
+ 1 . . j]

∧ Perm(A, A′, i, j)
)

where Perm(A, A′, i, j) states that A′[i . . j] is a permutation of A[i . . j] and
elsewhere A′ is identical to A:

ℓ(A) = ℓ(A′) ∧ ∀k. (1 6 k < i ∨ j < k 6 ℓ(A) ⇒ A′[k] = A[k])

∧ Perm(A, A′, i, j)

The three sub-arays A[i . . p1 − 1], A[p1 + 1 . . p2 − 1] and A[p2 + 1 . . j] can be
sorted, using copies of SORT, in any order. Define a “pseudo-parallel” construct
(S1 ‖ S2) as:

(S1 ‖ S2) =
DF

if true → S1; S2

⊓⊔ true → S2; S1 fi

Then, SORT(A, i, j) is equivalent to:



if i < j
then Partition(A, i, j, p1, p2);

(SORT(A, i, p1 − 1) ‖ SORT(A, p1 + 1, p2 − 1) ‖ SORT(A, p2 + 1, j)) fi

The nondeterminacy in the ‖ can later be refined in whatever way is most
efficient.

Partition is refined as follows:

1. Select two distinct elements;
2. Swap the smaller element with A[i] and the larger with A[j];
3. Permute elements in the array A[i + 1 . . j − 1] and assign to p1 and p2 such

that:

A[i + 1 . . p1] < A[i] 6 A[p1 + 1 . . p2] 6 A[j] < A[p2 + 1 . . j − 1]

4. Swap A[i] and A[p1] and swap A[p2] and A[j].

Define:
Swap(a, b) =

DF
〈A[a], A[b]〉 := 〈A[b], A[a]〉

So the following program is an implementation of Partition:

〈p1, p2〉 := 〈p′
1
, p′

2
〉.(i 6 p1 6 j ∧ i 6 p2 6 j ∧ p1 6= p2);

if A[p1] 6 A[p2]
then Swap(i, p1); Swap(j, p2)
else Swap(j, p1); Swap(i, p2) fi;

var 〈L := i + 1, K := i + 1, G := j − 1〉 :
Part(A, A[i], A[j], L, K, G);
p1 := L − 1;
p2 := G + 1;
Swap(i, p1); Swap(j, p2) end

where Part(A, P1, P2, L, K, G) is defined as:

{P1 6 A[L . .K − 1] 6 P2}
〈A, L, K, G〉 := 〈A′, L′, K ′, G′〉.

(

A′[L . .L′ − 1] < P1 6 A′[L′ . . K ′]
6 P2 < A′[G′ + 1 . .G]

∧ L 6 L′ 6 K ′ = G′ + 1 ∧ L 6 G′ 6 G
∧ Perm(A, A′, L, G)

)

This specification is refined as follows:

if K > G
then skip

elsif A[K] < P1

then Swap(L, K); Part(A, P1, P2, L + 1, K + 1, G)
elsif A[K] > P2

then Swap(K, G); Part(A, P1, P2, L, K, G − 1)
else Part(A, P1, P2, L, K + 1, G) fi



After recursion introduction and recursion removal, we have:

while K 6 G do

if A[K] < P1

then Swap(L, K); L := L + 1; K := K + 1
elsif A[K] > P2

then Swap(K, G); G := G − 1
else K := K + 1 fi od

4 Conclusion

This paper presents a brief introduction to the Transformational Programming
method of software development. The method starts with a formal specifica-
tion of the result to be achievedtogether with some informal ideas as to what
techniques will be used in the implementation. The formal specification is then
transformed into an implementation, by means of correctness-preserving refine-
ment and transformation steps. A key advantage of this approach is that loops
can be introduced and manipulated while maintaining program correctness and
with no need to derive loop invariants. Another advantage is that at every stage
in the process we are working with a correct program: there is never any need for
a separate “verification” step. These factors help to ensure that the method is
capable of scaling up to the dvelopment of large and complex software systems.

In [24] Martyn Thomas writes:

Software change is the most important step in the software lifecycle: most
software costs far more after delivery than before (and most current
“software maintenance” destroys more value than it preserves in your
software assets).
When requirements change, it is important to be able to make controlled
changes to the specification. (In these circumstances, modifying software
by going directly to the detailed design or code is vandalism). The spec-
ification therefore needs to be expressed in such a way that the nature,
scope and impact of any change can be assessed and accommodated.

None of the “code and verify” development methods are particularly adept
at handling changes to the specification. It is likely that the invariants will also
change, and the whole development process will have to be repeated.

With transformational programming the prognosis is much better: with a
properly-written specification (see Section 2.1), a small change to the require-
ments is likely to result in a small change to the specification. Any informal
implementation ideas may still be valid: in which case, the derivation process
can repeat many of the steps from the original derivation. This is because the
implementation ideas are used to select the sequence of transformations to be
applied: if the ideas are still valid then it is likely that the sequence is still valid
and can be applied to the modified specification with only minimal changes. This
process can be streamlined even further with the aid of suitable tool support,
such as the FermaT Transformation System.



References

[1] ISO JTC 1/SC 7, “Software Engineering – Software Life Cycle Processes –
Maintenance,” ISO/IEC 14764:2006, 2006.

[2] Ralph-Johan Back, “Invariant Based Programming: Basic Approach and Teaching
Experiences,” Formal Aspects of Computing 21#3 (May, 2009), 227–244.

[3] F. L. Bauer, “Program Development By Stepwise Transformations—the Project
CIP,” in Program Construction, G. Goos & H. Hartmanis, eds., Lect. Notes in
Comp. Sci.#69, Springer-Verlag, New York–Heidelberg–Berlin, 1979, 237–266.

[4] F. L. Bauer, R. Berghammer, et. al. & The CIP Language Group, The Munich

Project CIP, Volume I: The Wide Spectrum Language CIP-L, Lect. Notes in
Comp. Sci.#183, Springer-Verlag, New York–Heidelberg–Berlin, 1985.

[5] F. L. Bauer, B. Moller, H. Partsch & P. Pepper, “Formal Construction by
Transformation—Computer Aided Intuition Guided Programming,” IEEE Trans.

Software Eng. 15#2 (Feb., 1989).

[6] F. L. Bauer & The CIP System Group, The Munich Project CIP, Volume II: The

Program Transformation System CIP-S, Lect. Notes in Comp. Sci. #292,
Springer-Verlag, New York–Heidelberg–Berlin, 1987.

[7] Juan C. Bicarregui & Brian M. Matthews, “Proof and Refutation in Formal
Software Development ,” In 3rd Irish Workshop on Formal Software Development

(July, 1999).

[8] Richard Bird & Oege de Moor, The Algebra of Programming, Prentice-Hall,
Englewood Cliffs, NJ, 1996.

[9] M. Broy, “Algebraic Methods for Program Construction: the Project CIP,” in
Program Transformation and Programming Environments Report on a Workshop
directed by F. L. Bauer and H. Remus, P. Pepper, ed., Springer-Verlag, New
York–Heidelberg–Berlin, 1984, 199–222.

[10] R. M. Burstall & J. A. Darlington, “A Transformation System for Developing
Recursive Programs,” J. Assoc. Comput. Mach. 24#1 (Jan., 1977), 44–67.

[11] J. Darlington, “A Synthesis of Several Sort Programs,” Acta Informatica 11#1
(1978), 1–30.

[12] E. W. Dijkstra, “A Constructive Approach to the Problem of Program
Correctness.,” Technische Hogeschool Eindhoven, EWD209,
http://www.cs.utexas.edu/users/EWD/ewd02xx/EWD209.PDF.

[13] E. W. Dijkstra, A Discipline of Programming, Prentice-Hall, Englewood Cliffs,
NJ, 1976.

[14] E. W. Dijkstra, “Notes On Structured Programming,” Technische Hogeschool
Eindhoven, EWD249, Apr., 1970,
http://www.cs.utexas.edu/users/EWD/ewd02xx/EWD249.PDF.

[15] E. W. Dijkstra, “The Humble Programmer,” Comm. ACM 15 #10 (Oct., 1972),
859–866.

[16] David Gries, The Science of Programming, Springer-Verlag, New
York–Heidelberg–Berlin, 1981.



[17] C. A. R. Hoare, I. J. Hayes, H. E. Jifeng, C. C. Morgan, A. W. Roscoe, J. W.
Sanders, I. H. Sørensen, J. M. Spivey & B. A. Sufrin, “Laws of Programming,”
Comm. ACM 30 #8 (Aug., 1987), 672–686.

[18] C. B. Jones, K. D. Jones, P. A. Lindsay & R. Moore, mural: A Formal

Development Support System, Springer-Verlag, New York–Heidelberg–Berlin,
1991.

[19] C. C. Morgan, Programming from Specifications, Prentice-Hall, Englewood Cliffs,
NJ, 1994, Second Edition.

[20] C. C. Morgan, K. Robinson & Paul Gardiner, “On the Refinement Calculus,”
Oxford University, Technical Monograph PRG-70, Oct., 1988.

[21] C. C. Morgan & T. Vickers, On the Refinement Calculus, Springer-Verlag, New
York–Heidelberg–Berlin, 1993.

[22] M. Neilson, K. Havelund, K. R. Wagner & E. Saaman, “The RAISE Language,
Method and Tools,” Formal Aspects of Computing 1 (1989), 85–114 .

[23] C. T. Sennett, “Using Refinement to Convince: Lessons Learned from a Case
Study,” Refinement Workshop, 8th–11th January, Hursley Park, Winchester

(Jan., 1990).

[24] Martyn Thomas, “The Modest Software Engineer,” The Sixth International

Symposium on Autonomous Decentralized Systems, ISADS (2003).

[25] M. Ward, “Proving Program Refinements and Transformations,” Oxford
University, DPhil Thesis, 1989, 〈http://www.cse.dmu.ac.uk/∼mward/martin/
thesis〉.

[26] M. Ward, “Derivation of a Sorting Algorithm,” Durham University, Technical
Report, 1990, 〈http://www.cse.dmu.ac.uk/∼mward/martin/papers/
sorting-t.ps.gz〉.

[27] M. Ward, “Recursion Removal/Introduction by Formal Transformation: An Aid
to Program Development and Program Comprehension,” Comput. J. 42#8
(1999), 650–673, 〈http://www.cse.dmu.ac.uk/∼mward/martin/papers/
recursion-t.ps.gz〉 doi:10.1093/comjnl/42.8.650.

[28] M. Ward, “Derivation of Data Intensive Algorithms by Formal Transformation,”
IEEE Trans. Software Eng. 22 #9 (Sept., 1996), 665–686, 〈http://www.cse.dmu.
ac.uk/∼mward/martin/papers/sw-alg.ps.gz〉
doi:doi.ieeecomputersociety.org/10.1109/32.541437.

[29] Martin Ward & Hussein Zedan, “Deriving a Slicing Algorithm via FermaT
Transformations,” IEEE Trans. Software Eng., IEEE computer Society Digital
Library (Jan., 2010), 〈http://www.cse.dmu.ac.uk/∼mward/martin/papers/
derivation2-a4-t.pdf〉 doi:doi.ieeecomputersociety.org/10.1109/TSE.2010.13.

[30] N. Wirth, “Program Development by Stepwise Refinement,” Comm. ACM 14#4
(1971), 221–227.

[31] Vladimir Yaroslavskiy, “Dual-Pivot Quicksort,” Research Disclosure RD539015
(Sept., 2009), http://iaroslavski.narod.ru/quicksort/DualPivotQuicksort.pdf.


