
Formal Methods for Legacy Systems

M. P. Ward∗ K. H. Bennett∗

January 17, 2003

Abstract

A method is described for obtaining useful information from legacy code. The approach uses
formal proven program transformations, which preserve or refine the semantics of a construct
while changing its form. The applicability of a transformation in a particular syntactic context is
checked before application. By using an appropriate sequence of transformations, the extracted
representation is guaranteed to be equivalent to the code. In this paper, we focus on the results
of using this approach in the reverse engineering of medium scale, industrial software, written
mostly in languages such as assembler and JOVIAL. Results from both benchmark algorithms
and heavily modified, geriatric software are summarised. It is concluded that the approach is
viable, for self contained code, and that useful design information may be extracted from legacy
systems at economic cost. We conclude that formal methods have an important practical role
in the reverse engineering process.

1 Introduction

Legacy software may be defined informally as “software we don’t know what to do with, but it’s
still performing a useful job”. The implication is that the preferred solution is to discard the
software completely, and start again with a new system. This may not be appropriate in all cases,
for example:

(i) The software represents years of accumulated experience, which is unrepresented elsewhere,
so discarding the software will also discard this knowledge, however inconveniently it is rep-
resented;

(ii) The manual system which was replaced by the software no longer exists, so systems analysis
must be undertaken on the software itself;

(iii) The software may actually work well, and its behaviour may be well understood. A new
replacement system may perform much more badly, at least in the early days. Hence it may
be worth recovering some of the good features of the legacy system;

(iv) A typical large legacy software system has many users, who typically have exploited undoc-
umented “features” and side effects in the software. It may not be acceptable to demand
that users undertake a substantial rewrite for no discernable benefit. Therefore, it may be
important to retain the interfaces and exact functionality of the legacy code, both explicit
and implicit;

(v) Users may prefer an evolutionary rather than a revolutionary approach.

The aims of the work described in this paper are:

(i) To help the expert maintainer in understanding a large legacy system;

(ii) To assist in representing that understanding, using a carefully and formally defined language;

(iii) To automate as far as possible mundane and mechanical tasks, leaving the maintainer to
focus on the strategic steps;

∗Department of Computer Science University of Durham, Durham, UK

1



(iv) To ensure that the ultimate representation represents the semantics of the source code exactly.

Our ultimate objective is to recover a formal requirements specification for a legacy system,
given only the source code (written in a typical third or second generation language).

It should be stressed that the aim is not to replace the expert maintainer, or to “de-skill” the
reverse engineering task, but to provide tool support to enhance and magnify human skills.

Given a source program P, the approach is firstly to translate this into an equivalent form
P′ expressed in a language WSL, in which all subsequent operations are performed. This wide
spectrum language is a key part of our work, as it must facilitate the representation of both low
level imperative constructs (e.g. goto’s, aliased memory) and also non executable specifications e.g.
in first order logic. The WSL language has been designed from the start to be both a powerful
programming language and a language which is easy to transform. This is not the case for existing
programming languages. All transformations are expressed in terms of WSL.

Thus the user starts with P′, and selects a transformation from a library of pre-proven trans-
formations. This is applied, resulting in an intermediate representation S1. Subsequent transform-
ations may be applied to transform the software into S2, S3, . . . , Si. The end point may depend
on the need; for example, the user may wish only to perform simple restructuring, or they may
need to extract an abstract specification.

Such an approach clearly lends itself to tool support, though the central work of designing the
wide spectrum language and proving the transformations has to be done beforehand.

The main focus of this paper is the results of using this approach.

2 The Method

One of the major results from our research, which the availability of a prototype tool has helped
to produce, is the development of a method for reverse engineering using formal transformations.
The method is based on the following stages:

1. Establish the reverse engineering environment. This will involve a CASE tool to record
results, maintain different versions of code, specifications, and documentation and the links
between them; together with a WSL code browser and transformation system.

2. Collect the software to be reverse engineered. This involved finding the current versions of
each subsystem and making these available to the CASE tool.

3. Produce a high-level description of the system. This may already be available in the docu-
mentation, since the documentation at this level rarely needs to be changed, and is therefore
more likely to be up to date. The documentation is supplemented by the results of a cross
reference analysis which records the control flow and data dependencies among the subsys-
tems.

4. Translate the source code into WSL. This will usually be an automatic process involving
parsing the source files and translating the language structures into equivalent WSL struc-
tures.

5. “Inverse Engineering”, i.e. reverse engineering through formal transformations. It involves
the automatic and manual application of various transformations to restructure the system
and express it at increasingly higher levels of abstraction. This is carried out by iterating
over the following four steps:

(a) Restructuring transformations. These include removing goto statements, eliminating
flags, removing redundant tests, and other optimisations. The effect of this restruc-
turing is to reveal the “true” structure of the program which may be obscured by poor
design or subsequent patching and enhancements. This stage is more radical than can be
achieved by existing automatic restructuring systems since it takes note of both data flow

2



and control flow, and includes both syntactic and semantic transformations. We have
however had considerable success with automating the simpler restructuring transform-
ations, by implementing heuristics elicited from experienced program transformation
users.

(b) Analyse the resulting structures in order to determine suitable higher-level data repres-
entations and control structures.

(c) Redocument: record the discoveries made so far and any other useful information about
the code and its data structures.

(d) Implement the higher-level data representations and control structures using suitable
transformations. A powerful technique we have developed for carrying out these data
refinements is to introduce the abstract variables into the program as “ghost” variables
(variables whose values are changed, but which do not affect the operation of the pro-
gram in any way), together with invariants which make explicit the relationship between
abstract and concrete variables. Then, one by one, the references to concrete variables
are replaced by references to the new abstract variables. Finally, the concrete variables
become “ghost” variables and can be removed. See [12] for an example of this process;
it is also used extensively in [13]. In general, if our analysis in step 5b is correct then
the result of this stage is likely to be in a form suitable for further restructuring.

6. Acceptance test: We now have a high-level specification of the whole system which should go
through the usual Q.A. and acceptance tests.

2.1 Theoretical Foundation

This project originated not in software maintenance, but in theoretical research, developing a
language in which proofs of equivalence for program transformations could be achieved as easily as
possible for a wide range of constructs.

WSL is the “Wide Spectrum Language” used in our program transformation work, which in-
cludes low-level programming constructs and high-level abstract specifications within a single lan-
guage. By working within a single formal language we are able to prove that a program correctly
implements a specification, or that a specification correctly captures the behaviour of a program,
by means of formal transformations in the language. We don’t have to develop transformations
between the “programming” and “specification” languages. An added advantage is that different
parts of the same program can be expressed at different levels of abstraction, if required.

A program transformation is an operation which modifies a program into a different form which
has the same external behaviour (it is equivalent under a precisely defined denotational semantics).
Since both programs and specifications are part of the same language, transformations can be used
to demonstrate that a given program is a correct implementation of a given specification.

A refinement is an operation which modifies a program to make its behaviour more defined
and/or more deterministic. Typically, the author of a specification will allow some latitude to the
implementor, by restricting the initial states for which the specification is defined, or by defining a
nondeterministic behaviour (for example, the program is specified to calculate a root of an equation,
but is allowed to choose which of several roots it returns). In this case, a typical implementation
will be a refinement of the specification rather than a strict equivalence. The opposite of refinement
is abstraction: we say that a specification is an abstraction of a program which implements it. See
[6,7] and [1] for a description of refinement.

The syntax and semantics of WSL are described in [9,12] so will not be discussed in detail here.
Most of the constructs in WSL, for example if statements, while loops, procedures and functions,
are common to many programming languages. However there are some features relating to the
“specification level” of the language which are unusual. Expressions and conditions (formulae) in
WSL are taken directly from first order logic: in fact, an infinitary first order logic is used, which
allows countably infinite disjunctions and conjunctions, but this is not essential for understanding

3



this paper. This means that statements in WSL can include existential and universal quantification
over infinite sets, and similar (non-executable) operations.

Program transformations may be used to refine a specification to an executable implementation
(forward engineering) or to abstract a formal specification from program source code (reverse
engineering). The main novel theoretical contribution lies in the use of infinitary logic in both the
kernel language and proof meta language to widen the scope of the transformations it is possible
to prove. In particular, it has been possible to develop general purpose transformations for loops
and for recursive procedures which can be applied without needing loop invariants.

2.2 The FermaT Tool

The initial prototype of the tool was developed as part of an Alvey project at the University
of Durham [14]. This work on applying program transformation theory to software mainten-
ance formed the basis for a joint research project (the ReForm project) between the University
of Durham, CSM Ltd and IBM UK Ltd. whose aim was to develop a tool which would interactively
transform assembly code into high-level language code and Z specifications. The prototype has
since been completely redeveloped into an industrial-strength tool, called FermaT, which is cap-
able of dealing with medium sized (up to 20,000 lines) modules of source code. Translators have
been developed for IBM 370 Assembler and JOVIAL. A COBOL translator is currently under
development, and this will enable to tool to assist with migration from Assembler or JOVIAL to
COBOL II. Translators for C and ADA are also planned for the future.

A practical system for reverse engineering has to deal with real programs, not laboratory or toy
examples. More specifically, the following requirements were identified:

• The tool must cope with the usual programming constructs and their uses (and abuses)
including Gotos, global variables, aliasing, recursion, pointers, side effects etc.;

• It is not acceptable to assume that the code has been developed or maintained using structured
methods. Real code must be acceptable, and major restructuring may be required before
proper reverse engineering can start. This should be carried out automatically (or semi
automatically) by the system.

• Transformations in the library must be proven correct, so that the user can employ them
with confidence, but also so that the user does not have to undertake such proofs. The
transformations need applicability conditions, and these must be mechanically checked by the
tool. In this way, all responsibility for correctness lies with the tool—there are no generated
“proof obligations” which the user must discharge before correctness can be guaranteed;

• It must be possible to select a sub-component of a large existing system and to guarantee
to preserve the interactions of the sub-component with the rest of the system. This per-
mits attention to maintenance ‘hot spots’, and also permits a piecemeal approach to reverse
engineering;

• The correctness of the implementation must be well established.

The main components of the tool are shown in Figure 1. The core of the tool is the library
of proven transformations together with the transformation engine. The transformations in the
library were proven before the tool was built. They allow a construct in WSL to be recast into
another WSL construct while ensuring that the semantics are preserved. The software maintainer
using the tool has only to select a transformation and apply it. He or she does not have to do the
proof; the system’s transformation engine checks that the transformation is applicable.

However, the first stage is to load the source code into the tool, and this is achieved by the
source language to WSL translator as a batch job. The equivalent WSL code is stored internally as
an abstract syntax tree (together with ancillary information to aid applicability checking). Further
details are given in Section 3.2.2.

4



Maintainer

Translator

Structure

Editor

X-Windows

Front End

Browser
Interface

View

ASCII

EditSelect

The

Transformation

Library
Representation

of WSL code

Program

Transformer

High-Level

Source
WSL to
Z

WSL to
Low-Level

Internal

File

Source

Figure 1: The Architecture of the tool

The system is interactive and incorporates a graphical front end, pretty-printer and browser.
This allows the programmer to move through the program, apply transformations, undo changes
he or she has made, and in special circumstances, edit the program manually: but always in such
a way that it is syntactically correct. The system automatically checks the applicability conditions
of a transformation before it is applied, or even presented in one of the menus. This means that the
correctness of the resulting transformed program is guaranteed by the system rather than being
dependent on the user. A history/future structure is built-in to allow back-tracking and forward-
tracking enabling the programmer to change his or her mind. The system stores the results of its
analysis of a program fragment as part of the program, so that re-calculation of the analysis is
avoided wherever possible.

The interactive approach means that the programmer is always in control of how much or
how little the program is changed. Unlike conventional restructuring tools, the programmer drives
the process, and is not simply presented with a restructured program he or she still does not
understand. The ultimate shape of the program has been determined by the user, not by some
remote tool developer. If at any point the user is unhappy with the latest state of the program, he
or she can always undo the last (sequence of) transformation(s).

Presenting the programmer with a variety of different but equivalent representations of the
program can greatly aid the comprehension process, making best use of human problem solving
abilities (visualisation, logical inference, kinetic reasoning etc).

Note that the theoretical foundation work which proves that each transformation in the system
preserves the semantics of any applicable program is essential if this method is to be applied to
practical software maintenance or reverse engineering. It must be possible to work with programs
which are poorly (or not at all) understood, and it must be possible to apply many transformations
which drastically change the structure of the program (as in the examples in Section 3.1) with a

5



very high degree of confidence in the correctness of the result.

Finally, the tool is also capable of computing standard complexity metrics for a selected region
of the WSL program, and presenting them in graphical form to show changes with time. Currently,
McCabe, structural, size, control flow, data flow and branch-loop metrics may be computed [2].

It has been learned through experience that a user often employs a pattern of transformations,
and it is easy within the tool to group such transformations into more powerful single transform-
ations. Currently, such ‘super transformations’ are added by the tool builder, but as the trans-
formations are represented internally in WSL it would not be difficult to allow the user to do this.
The system is constructed as a hierarchy of abstract machines, each of which is formally specified.
Additionally, much of the tool is written in either WSL or METAWSL, an extension of WSL used
for representing transformations. This makes it possible for the developers to use the tool in the
maintenance of its own source code.

3 Results

3.1 Results with Benchmark Programs

In this section we describe some of the results of applying our program transformation system to
several small but challenging example programs. The examples selected pose particular challenges
to the approach, because they exhibit a combination of complex control flow and complex data
structures, and use data structures for multiple purposes.

3.1.1 A Report Generator

The first example is reverse engineering a simple program with a complex control flow. This was
taken from a programming textbook, although it is a classic example of bad programming style!
In [12] we translate the program into WSL and use program transformations to reverse-engineer it
to an abstract specification. This gave confidence that the approach could be used on a program
with a complex control structure, whose operation was not understood before starting the reverse
engineering process.

3.1.2 The Schorr-Waite Graph Marking Algorithm

Our next example is a forward engineering example: the Schorr-Waite graph marking algorithm
[8]. This has acquired the status of a standard testbed for program verification techniques applied
to complex data structures. In [13] we present a complete derivation of the algorithm, starting
with a mathematical specification of graph marking. We develop a simple recursive algorithm by
applying general purpose transformations, and then apply Schorr and Waite’s “pointer switching”
technique to develop an efficient iterative algorithm. The central idea behind the pointer switching
technique is that when we return from having marked the left subtree of a node we know what
the value of l[x] is for the current node (since we just came from there). So while we are marking
the left subtree, we can use the array element l[x] to store something else—for instance a pointer
to the node we will return to after having marked this node. Similarly, while we are marking the
right subtree we can store this pointer in r[x]. In [13] we use program transformations to apply
this technique to a number of different algorithms.

The transformation approach proved to be a powerful way to prove the correctness of these
challenging algorithms. A correctness proof for the algorithm has to show that:

1. The original graph structure is preserved by the algorithm (although it is temporarily dis-
rupted as the algorithm proceeds);

2. The algorithm achieves the correct result (all reachable nodes are marked).

Most published correctness proofs for the algorithm have to treat these two problems together.
The methods involving assertions (and intermittent assertions) require an understanding of the

6



“total situation” at any point in the execution of the program. In contrast, our approach makes it
possible to separate the two requirements, and thereby to apply the same technique to a number
of different algorithms. We have derived several marking algorithms which make use of the pointer
switching ides and which illustrate the advantages of transformational development using a wide
spectrum language:

1. The development divides into four stages: (i) Recursive Algorithm; (ii) Apply the pointer
switching idea; (iii) Recursion Removal; and (iv) Restructuring. Each stage uses general-
purpose transformations with no complicated invariants or induction proofs;

2. The method easily scales up to larger programs: for example, the hybrid algorithm presented
in [13] is much more complex than the simple algorithms, yet our development uses the same
transformations and involves no new ideas or proofs.

3.1.3 Topological Sorting

Our third example is a reverse engineering problem. In [4], Knuth and Szwarcfiter present an
algorithm for determining all the embeddings of a given partial order into a total order. The
algorithm is highly unstructured with complex control flow combined with complex data structures.
In [11] we restructure and analyse the algorithm using program transformations. The analysis of
the algorithm breaks down into several stages, culminating in a formal specification of topological
sorting.

1. Restructure to remove some of the control-flow complexity;

2. Recast as an iterative procedure, “abstracting away” the error cases so that recursion intro-
duction can be applied easily;

3. Apply the recursion introduction transformation;

4. Restructure the resulting recursive procedure;

5. Add abstract variables to the program and update them in parallel with the actual (concrete)
variables;

6. Replace references to concrete variables by equivalent references to abstract variables;

7. Remove the concrete variables to give an abstract program;

8. Show that the abstract program is a refinement of the specification of topological sorting.

3.1.4 Polynomials in Several Variables

The previous example exhibited a combination of control flow complexity with highly complex data
structures. Our fourth example (also a reverse-engineering example) is a program with complex
data structures (trees implemented as four-way linked structures) and highly complex control flow.
Algorithm 2.3.3.A from Knuth’s “Fundamental Algorithms” [5] (P.357) is an algorithm for the
addition of polynomials represented using four-directional links. Knuth describes this as having
“a complicated structure with excessively unrestrained goto statements” and goes on to say “I
hope someday to see the algorithm cleaned up without loss of its efficiency”. In [10] we use
program transformations to manipulate the program, using semantics-preserving operations, into
an equivalent high-level specification.

3.1.5 Conclusions

These and other case studies have demonstrated that the transformational approach can be applied
to both forward and reverse engineering problems. During this time, a method and strategy
for reverse engineering using formal transformations has been developed and successfully tested.
Certain features of the case studies indicate that the approach will scale up to industrial-scale
software. This is addressed in the next section.

7



3.2 Results with Industrial-Scale Software

3.2.1 IBM 370 Assembler

Experiments have been undertaken on modules of Assembler taken from real application programs.
The majority have been between 500 and 2,000 lines but some have been up to 20,000 lines.
These experiments have shown that programs which have been transformed using the tool can be
expressed in a form which subjectively is much easier to understand than the original. This applies
particularly to real programs which have been modified over many years.

3.2.2 Modelling Assembler in WSL

Constructing a useful scientific model necessarily involves throwing away some information: in
other words, to be useful a model must be inaccurate, or at least idealised, to a certain extent. For
example “ideal gases”, “incompressible fluids” and “billiard ball molecules” are all useful models
which gain their utility by abstracting away some details of the real world. In the case of modelling
a programming language, such as Assembler, it is theoretically possible to have a perfect model of
the language which correctly captures the behaviour of all assembler programs. Certain features
of Assembler, such as branching to register addresses, self-modifying code and so on, would imply
that such a model would have to record the entire state of the machine, including all registers,
memory, disk space, and external devices, and “interpret” this state as each instruction is executed.
Unfortunately, such a model is useless for inverse engineering1 purposes since such trivial changes
as deleting a NOP instruction, or changing the load address of a module, can in theory change the
behaviour of the program.

What we need is a practical model for assembler programs which is suitable for inverse engin-
eering, and is wide enough to deal with all the programming constructs we are likely to encounter.
Our approach involves three types of modelling:

1. Complete model: Each assembler instruction is translated into WSL statements which cap-
ture all the effects of the instruction. The machine registers and memory are modelled as
arrays, and the condition code as a variable. Thus, at the translation stage we don’t attempt
to recognise “if statements” as such, we translate into statements which assign to cc (the
condition code variable), and statements which test cc. The automatic restructuring and
simplification state can usually remove all references to cc, presenting the maintainer with a
structured program expressed in if statements, loops and actions;

2. Partial model: Branches to register are modelled by attempting to determine all possible
targets of such a branch (including all labels and jump instructions which follow labelled
instructions). Each label is turned into a separate action with an associated value (the relative
address). A “store return address” instruction stores the relative address in the register. A
“branch to register” instruction passes the relative address to a “dispatch” action which tests
the value against the set of recorded values, and jumps to the appropriate label. This can
deal with simple cases of address arithmetic (including jump tables) but may theoretically be
defeated if more complex address manipulations are carried out before a branch to register
instruction is executed;

3. Self-modifying code: This is not addressed, except for some special cases which are recognised
by the translator. In many environments the code must be re-entrant, or is to be blown into
a ROM, and therefore cannot be modified. In other cases, the self-modification may be
recognised by the translator and may require human intervention to determine a suitable
WSL equivalent.

One of the major drawbacks of automatic program restructurers [3] is that complex control
structures are replaced by complex data flow structures involving additional flag and sentinel vari-
ables with meaningless names inserted by the tool. This does not occur with our tool, and users

1We use the term “inverse engineering” to mean “reverse engineering through formal transformations.”

8



resolve the underlying structural problems because the transformations make it easy to do so. It
is also straightforward to avoid dispersing code that previously was together. This method has
the advantage that performance problems and errors which exist deeply buried in heavily modified
code become much more easily observable.

The following table demonstrates some sample results for a typical Assembler module:

No. of McCabe Control Flow/ Branch/
Stage Statements Cyclometric Data Flow Loop Structural

Initial 4,785 1,299 5,270 1,481 37,168
Stage 1 4,775 1,298 5,150 1,476 36,246
Stage 3 3,372 592 3,711 924 23,140
Stage 5 3,454 577 3,761 970 23,178
Stage 7 2,920 338 3,101 631 17,616
Final 2,508 310 2,590 544 15,466

“Statements” is the number of executable statements in the program, “McCabe Cyclometric” is
the usual McCabe cyclometric complexity, “Control Flow/Data Flow” is a control flow and data
flow metric, “Branch/Loop” is a metric which counts the size of loops, and “Structural” is a metric
which gives a weighted sum of the structural features of the program.

There is no single accepted metric for “complexity” or “maintainability”, however, the fact
that all the metrics used show a significant reduction in complexity indicates that a very useful
increase in maintainability has been achieved, and this is confirmed by a more “qualitative” manual
examination of the before and after source code. To provide an additional check on semantic
equivalence a few modest examples have been transformed and then (in the absence of a suitable
translator) hand converted to Assembler, reinstalled and re-executed. Apart from minor errors
caused by hand translation, the examples worked first time.

A major attraction of the tool has turned out to be the transformations which convert in-line
code to procedures, and global variables into parameters. This enables the user to convert a large,
unstructured, monolithic piece of code into a main program which calls a set of single-entry single-
exit procedures. These transformations alone can make a large difference to the understandability
of the code, and prepare it for the recognition of abstract data types.

3.2.3 JOVIAL

More recently we have constructed JOVIAL to WSL and WSL to JOVIAL translators, and have
used the tool for restructuring a number of JOVIAL source modules, ranging up to around 5,000
lines. The two examples in this section were selected for case studies because, despite their fairly
moderate size, they contained some very complicated code which made them difficult to analyse
and maintain using traditional methods. The aim was to restructure the programs for ease of
maintainability.

3.2.4 Module A

The first example consisted of 861 lines of JOVIAL in a main routine and eight procedures. The
module was translated from JOVIAL to WSL, restructured and simplified using the tool, and then
translated back to JOVIAL for testing. The following table shows the improvements achieved in
terms of various complexity metrics:

No. of McCabe Control Flow/ Branch/
Stage Statements Cyclometric Data Flow Loop Structural

Initial 954 120 845 701 10,371
Final 392 92 343 146 5,115

9



These improvements were achieved by the use of a wide range of transformations, with the choice
of transformations was guided by the aim of reducing the complexity as measured by the above
metrics. In some cases the immediate application of a powerful transformation such as Collapse

Action System achieved the desired results; in others, some localised restructuring using some
of the more specialised transformations was necessary first. The whole process, including the
generation of metrics and call graphs, took about half a day for an experienced user of the tool.

No. of McCabe Control Flow/ Branch/
Activity Step Statements Cyclometric Data Flow Loop Structural

Initial (1) 954 120 845 701 10,371
Restructure (2) 815 120 728 584 9,091
main routine
Simplify A.S. (3) 795 116 716 572 8,941
Merge calls (3.1) 791 116 712 568 8,901
Collapse A.S (Undone) (3.2) 1,005 188 876 538 10,820
Remove recursion (4) 913 142 838 537 9,869
Restructure (5) 812 122 731 539 9,023
action body
Collapse A.S. (6) 783 106 729 537 8,963
Create Procedure (7) 756 98 699 513 8,673
Collapse A.S GETTY (8) 732 98 669 507 8,404
Collapse A.S. ProcI (9) 692 98 627 464 7,994
Remove loop (10) 686 98 624 468 7,959
Collapse ProcG, ProcF (11) 677 98 615 459 7,874
Collapse ProcE (12) 616 98 552 384 7,254
Remove loop (13) 612 98 552 396 7,239
Collapse ProcD (14) 555 98 497 341 6,682
and simplify
Restructure ProcC (15) 436 97 383 227 5,534
Collapse ProcC (16) 431 95 374 177 5,445
Collapse ProcB (17) 392 92 343 146 5,115
and simplify

3.2.5 Module B

The second JOVIAL example consisted of 2,564 lines of JOVIAL. The main sources of complexity
in this module were:

1. Heavy use of labels and goto’s rather than structured programming practices, which make
the control flow difficult to understand; and

2. Multiple exit paths from the program, including exits via calls to closed compound procedures
which never return.

The main routine in the module contained the most complex code, but in addition, the procedure
ProcI contained some particularly complex code.

A significant amount of simplification and restructuring of the raw WSL is performed auto-
matically as part of the translation process from Jovial to WSL. One very significant area of
restructuring is the conversion of closed compound procedures in the original Jovial into pure pro-
cedures in the WSL version of the program. Where it is possible for a closed compound procedure
to perform a jump to a label which is outside its body, this behaviour is modelled by the setting
of a variable in the WSL program which is tested when the corresponding procedure returns and a
jump performed to the appropriate label. Thus, procedures always return to the point from which
they were called, and any jumps to labels are made explicit. A further advantage is that closed
compound procedures now appear in the procedure call graph of a module.

The following table shows the effect of the restructuring process:

10



No. of McCabe Control Flow/ Branch/
Stage Statements Cyclometric Data Flow Loop Structural

Initial 2,518 847 2,212 1,109 22,986
Final 2,222 780 2,138 863 20,832

Figure 2 shows the call graph of the main module before restructuring, while Figure 4 shows the
call graph after restructuring. For procedure ProcI, Figure 3 is the call graph before restructuring
and Figure 5 is the same procedure after restructuring.

3.2.6 Module C

The third JOVIAL example consisted of a collection of procedures. The following table contains
a summary of the metrics taken at different points in the transformation process. There is one
section for each of the WSL procedures and for the main body of the program. The first section is
for the program as a whole.

McCabe Control Flow/ Branch/
Name Cyclometric Data Flow Loop Structural

XRP.o 624 3,388 2,338 35,464
XRP.a 567 1,754 655 19,093
XRP.t 524 1,624 260 17,375

XRPPAR.a 86 231 58 2,024
XRPPAR.b 86 223 45 1,934
XRPPAR.c 86 220 40 1,909
XRPPAR.d 86 212 29 1,864
XRPPAR.e 72 230 28 1,851

XRPPDR.a 32 75 44 875
XRPPDR.b 31 69 31 823
XRPPDR.t 30 61 25 725

XRPPPD.a 6 59 7 429
XRPPPD.t 6 55 2 389

XRPRP.a 78 192 108 2,278
XRPRP.b 76 187 103 2,213
XRPRP.c 75 187 101 2,199
XRPRP.d 71 188 96 2,189
XRPRP.e 71 187 93 2,174

XRPTL.a 103 326 59 2,524
XRPTL.b 100 317 53 2,441
XRPTL.c 99 310 37 2,361
XRPTL.d 95 324 35 2,325
XRPTL.e 95 322 34 2,305
XRPTL.f 95 320 32 2,285

XRPX.a 8 22 11 242
XRPX.t 8 17 1 197

XRPY.a 10 30 12 363
XRPY.t 9 23 3 298

XRPZ.a 32 78 38 805
XRPZ.b 32 72 32 735
XRPZ.c 31 64 12 680
XRPZ.d 31 62 7 670
XRPZ.t 28 62 3 65

11



4 Conclusions

For simple restructuring, skills are needed to identify a simplification strategy and then to select
transformations to achieve this goal. However, for acquiring the specification of an existing program,
the user also needs to be an expert in software engineering and in the application domain. This
confirms the original design objective of providing assistance to the expert maintainer, rather than
de-skilling or automating the maintenance task.

We originally thought that all users would want to go from code to specifications. In fact there
is a spectrum of requirements, ranging from using the tool for code comprehension and simple
restructuring, to reverse engineering from code to a high level of abstraction. Our approach deals
with the whole spectrum of requirements.

We believe that the following main features have contributed to the success of our approach:

• Use of weakest preconditions expressed in infinitary logic;

• Starting with a small, tractable kernel language, extended via definitional transformations;

• Use of an imperative kernel language, with functional constructs added via definitional trans-
formation, rather than a functional kernel language;

• Developing the transformation theory in parallel with the language development;

• Dealing with assembler via simple translation followed by automatic restructuring and sim-
plification;

• Developing an interactive, semi-automatic tool, rather than attempting complete automation;

• Mechanical checking of the correctness conditions at each step, with only valid transformations
appearing in the menus;

• Knowledge elicitation: using the prototype and manual case studies to see how the experienced
user solves problem, and then implementing these methods and heuristics;

• The use of generic transformations for merging, moving, separating etc.; these are automat-
ically expanded into the appropriate transformation for each situation;

• Rapid prototyping development, with the system organised as a collection of abstract ma-
chines with formally defined interfaces;

• Separation of front-end issues into a separate program.

Acknowledgements

The research described in this paper has been partly funded by Alvey project SE-088, partly
through a DTI/SERC and IBM UK Ltd. funded IEATP grant “From Assembler to Z using Formal
Transformations” and partly by SERC (The Science and Engineering Research Council) project
“A Proof Theory for Program Refinement and Equivalence: Extensions”.

References

[1] R. J. R. Back, Correctness Preserving Program Refinements, Mathematical Centre Tracts#131, Math-
ematisch Centrum, Amsterdam, 1980.

[2] K. H. Bennett, H. Yang & T. Bull, “A Transformation System for Maintenance—Turning Theory into
Practice,” Conference on Software Maintenance, Orlando, Florida (1992).

[3] F. W. Calliss, “Problems With Automatic Restructurerers,” SIGPLAN Notices 23 (Mar., 1988), 13–21.

[4] D. E. Knuth & J. L. Szwarcfiter, “A Structured Program to Generate All Topological Sorting Arrange-
ments,” Inform. Process. Lett. 2 (1974), 153–157.

12



[5] D. K. Knuth, Fundamental Algorithms, The Art of Computer Programming#1, Addison Wesley, Read-
ing, MA, 1968.

[6] C. C. Morgan, Programming from Specifications, Prentice-Hall, Englewood Cliffs, NJ, 1994, Second
Edition.

[7] C. C. Morgan, K. Robinson & Paul Gardiner, “On the Refinement Calculus,” Oxford University, Technical
Monograph PRG-70, Oct., 1988.

[8] H. Schorr & W. M. Waite, “An Efficient Machine-Independant Procedure for Garbage Collection in
Various List Structures,” Comm. ACM (Aug., 1967).

[9] M. Ward, “Proving Program Refinements and Transformations,” Oxford University, DPhil Thesis, 1989.

[10] M. Ward, “Reverse Engineering through Formal Transformation Knuths “Polynomial Addition” Al-
gorithm,” Comput. J. 37 (1994), 795–813, 〈http: // www. dur. ac. uk/∼dcs0mpw/ martin/ papers/ poly-
t.ps.gz〉.

[11] M. Ward, “Program Analysis by Formal Transformation,” Comput. J. 39 (1996), 〈http: //www. dur. ac.
uk/∼dcs0mpw/martin/papers/topsort-t.ps.gz〉.

[12] M. Ward, “Abstracting a Specification from Code,” J. Software Maintenance: Research and Practice 5
(June, 1993), 101–122, 〈http://www.dur.ac.uk/∼dcs0mpw/martin/papers/prog-spec.ps.gz〉.

[13] M. Ward, “Derivation of Data Intensive Algorithms by Formal Transformation,” IEEE Trans. Software

Eng. 22 (Sept., 1996), 665–686, 〈http://www.dur.ac.uk/∼dcs0mpw/martin/papers/sw-alg.ps.gz〉.

[14] M. Ward, F. W. Calliss & M. Munro, “The Maintainer’s Assistant,” Conference on Software Maintenance

16th–19th October 1989, Miami Florida (1989), 〈http: // www. dur. ac. uk/∼dcs0mpw/martin/ papers/
MA-89.ps.gz〉.

13



Appendix: Call Graphs for Module B and ProcI

GG1004

GG1037 GG1060

GG1047 GG1089 GG1360

GG1424 GG2199 GG1176 GG1163

GG1195 GG1384 GG1433 GG1474

GG1198 GG1398 GG1400 GG1412

GG1450 GG1486 GG1495 GG1497

GG1500 GG1276 GG1275 GG1184

GG1316 GG1348 GG1415 GG1502

GG1352 GG2572

GG1212 GG1241

GG1214 GG2577

GG2580 Z

2

2

3

8

15

2

2 2

2

2 3

2

3

3

2

2

4

2

3

2

3

3

3

4

4

2

2

5

3

2

2

2

2

6

23

2

3

3

2

3

5

3

6

Figure 2: Call Graph of Module B before restructuring

14



ProcI

GG1750

GG2061 GG1715

X FOR LB 110

GG2073 GG2081 GG2084

X FOR TB 110 GG1899 GG1939 GG2043

X FOR EA 106 GG2008 GG2054

GG1975 GG2019 GG2036

GG2007 GG1865 X FOR LA 105

X FOR TA 105 GG1844 GG1763

GG1769 GG1783 GG1792 GG1809

GG1820 GG1836

Z

3

2

6

2

2

2

3

2

4

3

2

2

2

2 2

2

4

2

2

2

4

2

2

2

2 2

4

3

2 4 2

2

2

2

3

2 2 2

2

2

3

3

Figure 3: Call Graph of ProcI before restructuring

15



GG1004

GG1184 GG1486 GG1497

GG1500

Z

68

2 2

7 3

2

Figure 4: Call Graph of Module B after restructuring

ProcI

GG1844 GG1763

GG1899

GG1865

Z

2

18

17

4

112

Figure 5: Call Graph of ProcI after restructuring

16


