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Abstract

A program transformation is an operation which can be
applied to any program (satisfying the transformations ap-
plicability conditions) and returns a semantically equiva-
lent program. In the FermaT transformation system pro-
gram transformations are carried out in a wide spectrum
language, called WSL, and the transformations themselves
are written in an extension of WSL called METAWSL which
was specifically designed to be a domain-specific language
for writing program transformations. As a result, FermaT
is capable of transforming its own source code via meta-
transformations. This paper introduces METAWSL and de-
scribes some applications of meta-transformations in the
FermaT system.

1 Introduction

The FermaT transformation system, based on research
carried out over more than twenty years at Durham Univer-
sity, Software Migrations Ltd. and De Montfort University,
is an industrial-strength formal transformation engine with
many applications in program comprehension and language
migration. FermaT uses formal proven program transforma-
tions, which preserve or refine the semantics of a program
while changing its form. These transformations are applied
to restructure and simplify legacy systems and to extract
higher-level representations. By using an appropriate se-
quence of transformations, the extracted representation is
guaranteed to be equivalent to the original code logic.

The first prototype transformation system, called the
“Maintainer’s Assistant”, was written in LISP [4,26,27]. It
included a large number of transformations, but was very
much an “academic prototype” whose aim was to test the
ideas rather than be a practical tool. In particular, little
attention was paid to the time and space efficiency of the
implementation. Despite these drawbacks, the tool proved
to be highly successful and capable of reverse-engineering

moderately sized assembler modules into equivalent high-
level language programs.

For the next version of the tool (i.e. FermaT itself) we
decided to extend WSL to add domain-specific constructs,
creating a language for writing program transformations.
This was called METAWSL. The extensions include an ab-
stract data type for representing programs as tree structures
and constructs for pattern matching, pattern filling and iter-
ating over components of a program structure. The “trans-
formation engine” of FermaT is implemented entirely in
METAWSL.

The implementation of METAWSL involves a transla-
tor from METAWSL to Scheme, a small Scheme runtime
library (for the main abstract data types) and a WSL run-
time library (for the high-level METAWSL constructs such
as ifmatch, foreach, fill etc.). One aim was so that the
tool could be used to maintain its own source code: in fact
we wanted to develop meta-transformations which could be
applied to the source code of other transformations in order
to improve efficiency or implement new constructs. An-
other aim was to test our theories on language oriented pro-
gramming [15]: we expected to see a reduction in the to-
tal amount of source code required to implement a more
efficient, more powerful and more rugged system. We
also anticipated noticeable improvements in maintainabil-
ity and portability. These expectations have been fulfilled,
and we are achieving a high degree of functionality from
a small total amount of easily maintainable code: the first
METAWSL implementation of FermaT consisted of around
16,000 lines of METAWSL and Scheme code, while the
previous version required over 100,000 lines of LISP.

2 Theoretical Foundation

The theoretical work on which FermaT is based origi-
nated in research on the development of a language in which
proofs of equivalence for program transformations could be
achieved as easily as possible for a wide range of constructs.

Over the last sixteen years we have been developing the
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WSL language, in parallel with the development of a trans-
formation theory and proof methods. In this time the lan-
guage has been extended from a simple and tractable kernel
language [12,16] to a complete and powerful programming
language. At the “low-level” end of the language there ex-
ists automatic translators from IBM Assembler, Intel x86
Assembler, TPF Assembler, a proprietory 16 bit assembler
and PLC code into WSL, and from a subset of WSL into C,
COBOL and Jovial. At the “high-level” end it is possible to
write abstract specifications, similar to Z and VDM.

Expressions and conditions (formulae) in WSL are taken
directly from first order logic: in fact, an infinitary first or-
der logic is used (see [6] for details), which allows count-
ably infinite disjunctions and conjunctions, but this is not
essential for understanding this paper. This use of first order
logic means that statements in WSL can include existential
and universal quantification over infinite sets, and similar
(non-executable) operations.

The language includes constructs for loops with multiple
exits, action systems, side-effects etc. and the transforma-
tion theory includes a large catalogue of proven transforma-
tions for manipulating these constructs, most of which are
implemented in FermaT [15,24,25].

In [17,23] program transformations are used to derive a
variety of efficient algorithms from abstract specifications.
In [17,22,23] the same transformations are used in the re-
verse direction: using transformations to derive a concise
abstract representation of the specification for several chal-
lenging programs.

3 The Kernel Language

The kernel language consists of four primitive state-
ments, two of which contain formulae of infinitary first or-
der logic, and three compound statements. Let P and Q be
any formulae, and x and y be any non-empty sequences of
variables. The following are primitive statements:

1. Assertion: {P} is an assertion statement which acts as
a partial skip statement. If the formula P is true then
the statement terminates immediately without chang-
ing any variables, otherwise it aborts (we treat abnor-
mal termination and non-termination as equivalent, so
a program which aborts is equivalent to one which
never terminates);

2. Guard: [Q] is a guard statement. It always terminates,
and enforces Q to be true at this point in the program
without changing the values of any variables. It has the
effect of restricting previous nondeterminism to those
cases which will cause Q to be true at this point. If this
cannot be ensured then the set of possible final states

is empty, and therefore all the final states will satisfy
any desired condition (including Q);

3. Add variables: add(x) adds the variables in x to the
state space (if they are not already present) and assigns
arbitrary values to them;

4. Remove variables: remove(y) removes the variables
in y from the state space (if they are present).

There is a rather pleasing duality between the assertion and
guard statements, and the add and remove statements.

The compound statements are as follows; for any kernel
language statements S1 and S2, the following are also kernel
language statements:

1. Sequence: (S1; S2) executes S1 followed by S2;

2. Nondeterministic choice: (S1 u S2) chooses one of
S1 or S2 for execution, the choice being made nonde-
terministically;

3. Recursion: (µX.S1) where X is a statement variable
(taken from a suitable set of symbols). The statement
S1 may contain occurrences of X as one or more of its
component statements. These represent recursive calls
to the procedure whose body is S1.

The reader may be wondering how we can implement a
normal assignment when the only means of changing the
value of a variable is to give it an arbitrary value, or an if

statement when the only way to specify more than one exe-
cution path is via a nondeterministic choice. Both of these
effects can be achieved with the aid of guard statements
to restrict the previous nondeterminacy. For example, the
assignment x := 1 can be implemented by the sequence
(add(x); [x = 1]). The if statement

if B then S1 else S2 fi

can be implemented by a nondeterministic choice with
guarded arms:

(([B]; S1) u ([¬B]; S2))

For the guarded command [5] such as:

if B1 → S1 ut B2 → S2 fi

we need an assertion to correctly implement the case where
both conditions are false:

(

{B1 ∨ B2};
(

([B1]; S1) u ([B2]; S2)
))

Note the statement will abort if neither B1 nor B2 is true.

The kernel primitives have been described as “the quarks
of programming” — rather mysterious objects which can-
not be found in isolation (the guard statement cannot be im-
plemented) but which combine to form more familiar ob-
jects: combinations which, until recently, were thought to
be “atomic” and indivisible.
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3.1 Specification Statements

We define the notation x := x
′.Q where x is a sequence

of variables and x
′ the corresponding sequence of “primed

variables”, and Q is any formula. This assigns new values
to the variables in x so that the formula Q is true where
(within Q) x represents the old values and x

′ represents the
new values. If there are no new values for x which satisfy
Q then the statement aborts. The formal definition is

x := x
′.Q =DF {∃x

′. Q}; add(x′); [Q];
add(x); [x = x

′]; remove(x′)

An important property of this specification statement is that
it is guaranteed null-free.

As an example, we can specify a program to sort the ar-
ray A using a single specification statement:

A := A′.(sorted(A′) ∧ permutation of(A′, A))

This says “assign a new value A′ to A which is a sorted
array and a permutation of the original value of A”, it pre-
cisely describes what we want our sorting program to do
without saying how it is to be achieved. In other words, it is
not biased towards a particular sorting algorithm. In [13] we
take this specification as our starting point for the “deriva-
tion by formal transformation” of several efficient sorting
algorithms.

In [21] we prove that any WSL program can be trans-
formed into a single equivalent specification statement.
This shows that the specification statement is sufficiently
general to define the specification of any program.

Morgan et al [7,8,9,10] use a different specification state-
ment x : [Pre,Post] where Pre and Post are formulae of
finitary first order logic. This statement is guaranteed to
terminate for all initial states which satisfy Pre and will ter-
minate in a state which satisfies Post while only assigning
to variables in the list x. In our notation an equivalent state-
ment is ({Pre}; (add(x); [Post])). The disadvantage of
this notation is that it makes the user responsible for ensur-
ing that he never refines a specification into an (unimple-
mentable) null statement. Also, there is no guarantee that a
desired specification can be written as a Morgan specifica-
tion statement.

3.2 Weakest Preconditions

The semantics of the kernel language and the definition
of refinement and equivalence in terms of these semantics
have been discussed in previous papers [18,21,23] so will
not be covered here. A fundamental property of the se-
mantics of WSL is that in order to prove a refinement or

equivalence relation between two programs, it is sufficient
to prove an implication or equivalence between the corre-
sponding weakest preconditions.

If S is any kernel language statement and V and W
are finite non-empty sets of variables, then the condition
S : V → W is true when V and W are syntactically valid
initial and final state spaces for S. For example, if V is the
set {x} and S is add(y) then the only valid set W such that
S : V → W is {x, y}. A kernel language program might
have no valid initial and final state spaces: consider the
statement: (add(x) u remove(x)) for example.

We define the weakest precondition for statements as a
formula of infinitary logic. WP is a function which takes a
statement (a syntactic object) and a formula from the infini-
tary first order logic L (another syntactic object) and returns
another formula in L.

Definition 3.1 For any kernel language statement S : V →
W , and formula R whose free variables are all in W , we
define WP(S, R) as follows:

1. WP({P}, R) =DF P ∧ R

2. WP([Q], R) =DF Q ⇒ R

3. WP(add(x), R) =DF ∀x. R

4. WP(remove(x), R) =DF R

5. WP((S1; S2), R) =DF WP(S1, WP(S2, R))

6. WP((S1 u S2), R) =DF WP(S1, R) ∧ WP(S2, R)

7. WP((µX.S), R) =DF

∨

n<ω
WP((µX.S)n, R)

where (µX.S)0 = abort and
(µX.S)n+1 = S[(µX.S)n/X] which is S with all occur-
rences of X replaced by (µX.S)n. (In general, for state-
ments S, T and T′, the notation S[T′/T] means “S with T′

instead of each T′′).

Here we see the advantage of using infinitary logic: the
weakest precondition of a recursive statement is defined as
a countably infinite conjunction of weakest preconditions of
statements with one fewer recursive constructs (and hence,
ultimately, in terms of weakest preconditions with no recur-
sion).

The fundamental property of the weakest precondition is
that the refinement relation (and therefore, program equiv-
alence in general) can be completely encapsulated by two
formulae involving weakest preconditions. Let S and S′ be
any statements and let x be a sequence of all the variables
assigned to in either S or S′. Let ∆ be any countable set
of sentences (formulae with no free variables). Then S is
refined by S′ under the assumptions ∆ if and only if the
formulae:

WP(S,x 6= x
′) ⇒ WP(S′,x 6= x

′)
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and
WP(S, true) ⇒ WP(S′, true)

are provable from ∆. If this is the case, then we write ∆ `
S ≤ S′. See [21] for the proof of this theorem.

Back and von Wright [2] show that the refinement re-
lation can be characterised using weakest preconditions in
higher order logic (where quantification over formulae is
allowed). Under their formalism, the program S2 is a refine-
ment of S1 if the formula ∀R. WP(S1, R) ⇒ WP(S2, R) is
true in finitary higher order logic. This approach to refine-
ment has two problems:

1. It has not been proved that for all programs S and for-
mulae R, there exists a finite formula WP(S, R) which
expresses the weakest precondition of S for postcondi-
tion R. Can proof rules justified by an appeal to WP
in finitary logic be justifiably applied to arbitrary pro-
grams, for which the appropriate finite WP(S, R) may
not exist? This problem does not occur with infinitary
logic, since WP(S, R) has a simple definition for all
programs S and all (infinitary logic) formulae R;

2. Second order logic is incomplete in the sense that not
all true statements are provable. So even if the refine-
ment is true, there is no guarantee that the refinement
can be proved.

By using a countable infinitary first order logic we solve
both of these problems and the problem of proving the cor-
rectness of a refinement of transformation, under a given
set of initial conditions, reduces to proving two formulae of
first order logic. Because infinitary first order logic is com-
plete (see [6]) we know that if the refinement is valid then
proofs of the formulae do exist.

4 METAWSL: Extensions to WSL

A transformation is a function which maps a WSL pro-
gram to an equivalent WSL program. WSL programs are
represented as abstract syntax trees: therefore we can ex-
press a transformation as an operation on a syntax tree.
Similarly, we can express the applicability condition of a
transformation as a function on syntax trees. (This, ob-
viously, only applies to computable transformations with
computable applicability conditions). By extending the
WSL language to provide suitable constructs for access-
ing and manipulating WSL syntax trees we are able to ex-
press our transformations in this extension of WSL, called
METAWSL. Since METAWSL is an extension to WSL, the
WSL transformations can also be applied to METAWSL
code (with some small modifications), in addition further
METAWSL specific transformations are possible.

Ty recap: a program transformation can be implemented
as a piece of METAWSL code which in turn can be the

source program for applying a transformation (including
itself: a transformation can be applied to its own source
code). The result will be a different implementation of the
same program transformation.

This “reflexivity” in the system has several advantages:

We can prove the correctness of the implementation of a
transformation by transforming a specification of the trans-
formation into an implementation of the transformation, us-
ing proven transformations.

We can use transformations to improve the efficiency of
the transformation system by transforming the source code
into a more efficient implementation.

4.1 FermaT Implementation

The first step in implementing the new transformation
system was to develop a METAWSL to Scheme translator
(itself written in METAWSL). The rest of the system was
also implemented in METAWSL and “bootstrapped” into
Scheme by using the old LISP implementation of WSL.

The transformation system uses transformations as part
of the translation process from WSL to Scheme. Firstly, the
WSL to Scheme translator only needs to be implemented
on a subset of METAWSL code: constructs which cannot
be directly translated are transformed into equivalent code
implementing the constructs in the subset of WSL. In addi-
tion, the METAWSL code implementing a transformation
can be transformed into a more efficient but more complex
version (see Section 5).

Scheme was chosen as the target of the METAWSL
translator because it is a small, well-defined language (the
entire formal language description is less than 50 pages of
text) which has an ISO and ANSI standard and which has
good facilities for manipulating trees and lists. The FermaT
source code consists of about 1,200 lines of Scheme support
code and about 46,000 lines of METAWSL code. The tree-
manipulation and pattern matching features of METAWSL
mean that it is possible to implement many of the trans-
formations with only a few lines each of METAWSL: this
greatly improves the productivity, maintainability and reli-
ability of the system [15].

4.2 Abstract Syntax Trees

WSL syntax trees are manipulated via an abstract data
type which stores the tree internally and records the “cur-
rent position” in the syntax tree. A “position” in the tree
is represented as a list of integers 〈p1, p2, . . . , pn〉 where
we take the p1th node of the root, the p2th node of that
node, and so on. METAWSL procedures @Up, @Down,
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@Left, @Right, @Goto(P ), @To Last, @To and @Down To
are used to move around the tree. The @Program func-
tion returns the whole tree, while @Item returns the current
item and @Posn returns the current position. The functions
@GT(I), @ST(I), @V(I) and @Cs(I) return the generic
type, specific type, value and list of components for the
node I . For example, if I is of type T Variable (an ordinary
variable), then I has no components and the value of I is the
name of the variable. In this case, @GT(I) = T Expression
and @ST(I) = T Variable.

The notation Iˆn returns the nth component of node I ,
while IˆˆL returns the subcomponent at the relative posi-
tion given by L, so, for example, @I = @Programˆˆ@Posn.

The editing procedures are:

@Delete, @Clever Delete, @Cut,
@Paste Over, @Paste Before, @Paste After,
@Splice Over, @Splice Before, @Splice After

These are applied to the current position in a tree.

@Delete deletes the current item without checking the
syntactic correctness of the result. @Clever Delete also
deletes the current item but ensures that the resulting pro-
gram is syntactically correct. For example, if the whole
body of a while loop is deleted, then @Clever Delete will
replace the loop by an assertion of the negation of the loop
condition: this is semantically equivalent to a while loop
with no body. @Cut is the same as delete but stores the
deleted item in a buffer which can be accessed via the
@Buffer function.

The Paste procedures take a single WSL item as param-
eter, while the Splice procedures take a list of items.

The creation function @Make(t, v, L) returns a new item
with specific type s, value v and components L (where L
is a list of items). This can be inserted in the tree using the
edit operations.

4.3 The foreach Construct

As an example of a high-level construct in METAWSL
we will consider two variants of the foreach construct. A
foreach is used to iterate over all those components of the
currently selected item which satisfy certain conditions, and
apply various editing operations to them. Within the body
of the foreach it appears as if the current item is the whole
program. The construct takes care of all the details, when
for example, components are deleted, expanded or other-
wise edited. Consider the following procedure (which is the
implementation of a transformation taken from the FermaT
system):
proc @Delete All Skips Code(Data) ≡

foreach Statement do

if @ST(@I) = Skip then @Delete fi od.

The purpose of this transformation is to delete all occur-
rences of skip statements in the currently selected item.
Since skip has no effect, the transformation is clearly
valid. However, there are various syntactic considerations
as shown by the following examples:

Before After

while B do skip od {¬B}

if B then skip

else x := 0 fi

if ¬B then x := 0 fi

do skip od abort

var x := 0 :
if B then skip fi end;

y := 0

y := 0

All of these cases are handled by the foreach construct: for
example, if the body of the foreach loop is executed on the
body of a while loop and deletes the whole body, then the
foreach will replace the while loop by the corresponding
assertion.

Another variant of the foreach construct iterates over all
the simple terminal statements. These are the components
of a statement which when executed will cause termination
of the statement. See [12,14,16] for a detailed definition. In
the following program, the two simple terminal statements
are boxed:
last := “ ”; line := “ ”; i := 1;
line := item[i] ++ “ ” ++ number[i];
if i > n

then do do last := item[i];
i := i + 1;

if i = n + 1 then write(line); exit(2) fi;

if item[i] 6= last
then write(line); exit(1);

if i = j then exit(2) fi

else line :=line ++ “, ”
++ number[i] fi od;

line := item[i] ++ “ ” ++ number[i] od

else skip fi

Note that the second occurrence of exit(2) is not considered
a terminal statement because it is not reachable. This is
because it occurs as part of a statement which follows an
exit statement.

An example of a transformation which involves finding
all simple terminal statements is absorb right. Suppose the
previous program is followed by the statement:
if item[i] = error then exit fi

This statement can be “absorbed” into all the terminal posi-
tions of the preceding statement to give the following equiv-
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alent version:
last := “ ”; line := “ ”; i := 1;
line := item[i] ++ “ ” ++ number[i];
if i > n

then do do last := item[i];
i := i + 1;
if i = n + 1

then write(line);
if item[i] = error

then exit(3) else exit(2) fi fi;
if item[i] 6= last

then write(line); exit(1);
if i = j then exit(2) fi

else line :=line ++ “, ”
++ number[i] fi od;

line := item[i] ++ “ ” ++ number[i] od

else if item[i] = error then exit fi fi

Note that the absorbed statement has to be “incremented”
(by having its exit statements increased in value, and an
else clause added with an appropriate exit) when it is in-
serted into one or more loops. The unreachable exit(2) has
not been modified.

If the selected statement is part of an action system, then
further complexities arise. Some action calls may not return
(because the action or a subsequent one called the special
action Z which causes immediate termination of the whole
action system). In a regular action system, no action calls
will return and nothing must be absorbed after an action
call. In a hybrid action system, this is only true for a call Z.

All these complexities and special cases are handled au-
tomatically by the high-level features of METAWSL: the
“foreach STS” structure finds all the simple terminal state-
ments within a selected statement, the @Increment func-
tion deals with moving statements to a lower depth, and the
@Gen Improper? function tests whether the insertion is ac-
tually required or not for each case.

The transformation can therefore be implemented in the
following few lines of code (which again are taken directly
from an early version the FermaT system):

proc @Absorb Right Code(Data) ≡
@Right; @Cut; @Left;
foreach STS do

if Depth = 0
∨ @ST(@I) = Exit ∧ @V(@I) = Depth

then if @ST(@I) = Exit ∧ Depth > 0
then @Splice Over(

@Increment(
@Buffer, AS Type, Depth, 0))

elsif @Gen Improper?(@I, AS Type)
then skip

elsif @ST(@I) = Skip ∨ @ST(@I) = Exit

then @Paste Over(@Buffer)
else @Paste After(@Buffer) fi fi od.

4.4 The ateach Construct

The construct:
ateach type do

S od

is similar to a foreach but with two main differences:

1. ateach processes the tree in top-down fashion (pro-
cessing the root before any of its components) while
foreach processes the components first;

2. ateach merely moves to the appropriate nodes: it does
not create a new temporary program for each processed
node, as foreach does. As a result, it is possible to
move away from the current node within an ateach

body: though this should be done with care. For ex-
ample, the loop:
ateach Statement do if @Left? then @Left fi od

is unlikely to terminate.

4.5 The ifmatch and fill Constructs

The ifmatch construct is used to match the current node
against a WSL program schema, while the fill construct cre-
ates a node by filling in the schema variables in a WSL
schema.

Within ifmatch constructs pattern variables are al-
lowed:

1. ∼?x matches any item and puts the matched result into
variable x;

2. ∼*x matches a sequence of zero or more items and
puts the result into x;

3. ∼=(e) matches the current item against the value of the
expression e.

Within a fill construct,:

1. ∼?x pastes in the current value of x at this position;

2. ∼*x splices the list of items in x over the pattern vari-
able;

3. ∼=(e) pastes in the value of expression e at this posi-
tion.

For example the transformation to reverse the arms of an
if statement can be written as:
ifmatch Statement if ∼?B then ∼?S1 else ∼?S2 fi

then @Paste Over(fill Statement
if ∼=(@Not(B))

then ∼?S2
else ∼?S1 fi endfill) endmatch
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5 Meta-Transformations

The fact that the transformations in FermaT operate
on METAWSL and are also implemented in METAWSL
means that we can apply transformations to the source code
of other transformation. In this section we discuss some
examples of these meta-transformations in the FermaT sys-
tem.

Our first example is the way in which the expression and
condition simplifier is implemented in FermaT.

5.1 Expression/Condition Simplifier

The ability to simplify expressions and conditions is im-
portant for any program transformation system. An obvi-
ous solution is to use an existing theorem prover, and in fact
some versions of the Maintainer’s Assistant used the Boyer-
Moore theorem prover nqthm [3]. But that was something
of an “overkill” for the purpose and imposed a large over-
head in both memory and CPU time. The simplifier is in-
voked very frequently, mostly on fairly simple expressions
such as x = 0 or ¬(x 6= 0), and in most cases there is little
work that needs to be done. This is because in the vast ma-
jority of cases the simplifier is invoked on an expression or
condition for which little simplification is possible.

For the industrial strength FermaT transformation system
the requirements for an expression and condition simplifier
were:

1. Efficient execution: especially on small expressions.
This implies a short “start up time”;

2. Easily extendible. It would be impossible to attempt
to simplify all possible expressions which are capable
of simplification. For example, we now know that the
integer formula n > 2 ∧ xn +yn = zn can be simpli-
fied to false: but it took a lot of work to get this partic-
ular result! Since we must be content with a less-than-
complete implementation, it is important to be able to
add new simplification rules as and when necessary;

3. Easy to prove correct. Clearly a faulty simplifier will
generate faulty transformations and incorrect code. If
the simplifier is to be easily extended, then it is impor-
tant that we can prove the correctness of the extended
simplifier equally easily.

In order to meet requirement (2) the heart of the sim-
plifier is table-driven, consisting of a set of pattern match
and replacement operations. For example, the condition
x + y 6 z + y can be simplified to x 6 z whatever ex-
pressions are represented by x, y and z. This pattern match
and replacement can be coded as a simple ifmatch and fill

in METAWSL:

ifmatch Condition ∼?x + ∼?y 6 ∼?z + ∼=(y)
then @Paste Over(fill Condition ∼?x 6 ∼?z endfill)

endmatch

To reduce the number of patterns required, the simplifier
first normalises the expression as follows:

1. Push down all “negate” operators to the lowest level,
using De Morgan’s laws, so that ¬(x = 1 ∨ x = 2)
becomes x 6= 1 ∧ x 6= 2 for example;

2. Flatten nested associative operators, such as (x+y)+z;

3. Evaluate any operators with constant operands;

4. Sort the operands of all commutative operators and
merge duplicated operands;

5. Expand factors (where this does not make the expres-
sion “too large”);

The next step is to check each pattern in the list. To make
it easy to add new patterns and to prove that the simplifier
is correct, the database of patterns and replacements is im-
plemented as a foreach Expression followed by a foreach

Condition, each of which contains a list of ifmatch con-
structs:
foreach Expression do

ifmatch Expression (−(−∼?x))
then @Paste Over(x) endmatch;

ifmatch Expression 1/(1/∼?x)
then @Paste Over(x) endmatch;

. . .
od

If any of the patterns matched, then we repeat from step (2)
until the result converges (or we have had “too many” it-
erations). Finally we factorise expressions where possible
and apply some final cosmetic cleanup rules: for example,
people usually write 2∗x (putting the number first in a mul-
tiplication operation), but x + 2 (putting the number last in
an addition).

Clearly, the most expensive step in the process is the pat-
tern matching step and as described above, this step is im-
plemented very inefficiently. For example, if we discover
that the operator at the root of the expression is a + with
two components, then there is no need to test most of the
ifmatch patterns. In one version of the Maintainers As-
sistant the patterns were implemented as a huge nested if

structure which tested the type of the root and number of
components, and then tested the types of each component.
This solved the efficiency problem at the expense of being
very hard to read, understand and maintain: for example, if
a new pattern was added to the wrong place in the structure,
then it would simply never get triggered!

The solution we developed for FermaT is to implement
a meta-transformation which took as input a sequence of
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ifmatch constructs and transformed them into the equiva-
lent nested if clause. As a result, new patterns can be added
anywhere in the list and the correctness of the list can be
proved simply by proving the correctness of each individ-
ual pattern. This meta-transformation transforms the source
code of the Simplify transformation from a simple but inef-
ficient form to an equivalent convoluted but more efficient
implementation.

The resulting improvement in maintainability and pro-
ductivity is quite dramatic. The source file for the simpli-
fier’s patterns (maths2-1.src) is only 19,465 bytes and is
very easy to maintain because it largely consists of a list of
simple ifmatch and fill constructs. The transformed WSL
file (maths2-2.wsl) is 85,786 bytes of complex, nested
tests. This compiles into a 274,032 byte Scheme file which
expands to 884,943 bytes when all the Scheme macros are
expanded. The Scheme is then compiled into a 1,089,448
byte C file plus associated 108,098 byte header file. So in
this case the final C code is over 60 times larger than the
WSL source file!

5.2 WSL to Scheme Translator

Another area where meta-transformations are used ex-
tensively is in the METAWSL to Scheme translator. Most
of the features of WSL are fairly easy to translate into equiv-
alent Scheme code, but some features cause difficulties. In
particular, the multi-level do . . . od loops with exit state-
ments can only be directly implemented using Scheme’s
“call with current continuation” procedure [1]. The pro-
cedure (call/cc proc) packages up the current continuation
as an “escape procedure” and passes it as an argument to
proc. The escape procedure is a Scheme procedure that, if
it is later called, will abandon whatever continuation is in
effect at that later time and will instead use the continua-
tion that was in effect when the escape procedure was cre-
ated. This mechanism can be used to implement exception
handling, coroutines and a wide variety of advanced con-
trol structures. Unfortunately, this very generality makes
it difficult for the Hobbit Scheme compiler [11] to com-
pile Scheme code efficiently to C in the presence of call/cc:
even if this particular use of call/cc could be implemented
as a simple goto. Ordinary while loops on the other hand
can be compiled efficiently.

The solution is to use FermaT’s powerful restructuring
transformations to transform all the do . . . od loops in the
FermaT source code into simple while loops.

Transforming a loop do S od to a while loop is simple if
the loop satisfies two conditions:

1. do S od is a proper sequence, i.e. every terminal state-
ment has terminal value zero. In other words, every

exit(n) statement must be within n or more nested
do . . . od loops. This is easy to arrange by processing
the loops from the top down (since the whole program
must be a proper sequence);

2. The body of the loop, S, must be reducible, i.e. re-
placing any terminal statement exit(n) with terminal
value one in S by exit(n − 1) should give a terminal
statement with terminal value zero.

Condition (2) can be arranged by repeated applications of
the Absorb Right transformation (Section 4.3). For exam-
ple, consider the following loop:
do if B1

then if B2 then exit fi;
S1

else S2 fi;
S3 od

The body of the loop is not reducible since if we replaced
the exit by exit(0) (which is equivalent to skip) it would
no longer be a terminal statement in the loop body. First we
apply Absorb Right to the statement if B2 . . . to give:
do if B1

then if B2 then exit else S1 fi

else S2 fi;
S3 od

Then apply Absorb Right to the outer if statement:
do if B1

then if B2 then exit else S1; S3 fi

else S2; S3 fi od

Note that there are now two copies of the statement S3. In
the general case, repeated application of Absorb Right can
lead to an exponential growth in the program size. However,
this growth can be avoided by creating procedures from the
copied statements and copying the procedure calls. Another
transformation Make Proc carries out this operation:
begin

do if B1

then if B2 then exit else S1; F3() fi

else S2; F3() fi od

where

proc F3() ≡ S3.
end

Finally, the transformation Floop To While converts the
loop to a while loop by introducing a flag:
begin

flag := 1;
while flag = 1 do

if B1

then if B2 then flag := 0 else S1; F3() fi

else S2; F3() fi od

where
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proc F3() ≡ S3.
end

The resulting program, when translated to Scheme, can be
efficiently compiled to C code. Eliminating the flag variable
is left as an exercise for the optimising compiler.

The WSL to Scheme translator source code includes
many do . . . od loops, as does the source code for
Floop To While and Reduce Loop (the latter transforma-
tion applies Absorb Right and Make Proc to make a loop
body reducible). So these transformations are applied to
their own source code on a regular basis, as part of the
FermaT build process.

6 Applications of FermaT

The FermaT transformation system forms the core of
the FERMAT Migration and Comprehension Workbench.
Other papers [19,20] describe case studies using FermaT:
one is a detailed description of using program transforma-
tions to extract a formal a specification from an IBM 370
Assembler module. The other case study is a “mass migra-
tion” exercise where we took a random selection of 1,925
different Assembler modules, containing just over one mil-
lion lines of source code, from many different commercial
systems, and migrated them all to compilable C code.

Currently, FERMAT is being used in a commercial
project to translate over half a million lines of x86 assem-
bler code (the core of a telephone switching system) into
high-level, efficient and maintainable C code.

These migration projects involve the automated applica-
tion of thousands of separate transformations to each source
file: the correctness of each transformation and the effi-
ciency of implementation are therefore paramount to the
success of the project.

7 Conclusions and Future Work

These is a lot of further scope for using transformations
as a way of “compiling” very high level programs down
to source code (not just for program transformation sys-
tems). Already within FermaT we can freely use high level
constructs such as ifmatch and foreach (and do . . . od

loops) without worrying about efficiency: since the trans-
formations can automatically process these constructs into
more efficient, but less comprehensible, low-level code. In
the future we want to extend this process so that the trans-
formations themselves are written in an abstract “specifi-
cation” style, possibly with “hints” to guide the transfor-
mation process. The source code can then be derived au-
tomatically from the specifications via proven transforma-

tions. Further efficiency improvements can be gained by
eliminating the intermediate Scheme stage: we transform
the high-level WSL code into an equivalent very low level
WSL code which in turn can be translated directly into low-
level C code.

The FermaT transformation system is available under
the GNU GPL (General Public License) from the author’s
web sites:

http://www.dur.ac.uk/∼dcs0mpw/fermat.html
http://www.cse.dmu.ac.uk/∼mward/fermat.html
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