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Abstract

In this paper we will take a detailed look at a larger example of program analysis by transformation. We will
be considering Algorithm 2.3.3.A from Knuth’s “Fundamental Algorithms” Knuth (1968) (P.357) which is an
algorithm for the addition of polynomials represented using four-directional links. Knuth (1974) describes this
as having “a complicated structure with excessively unrestrained goto statements” and goes on to say “I hope
someday to see the algorithm cleaned up without loss of its efficiency”. Our aim is to manipulate the program,
using semantics-preserving operations, into an equivalent high-level specification. The transformations are carried
out in the WSL language, a “wide spectrum language” which includes both low-level program operations and
high level specifications, and which has been specifically designed to be easy to transform.

1 Introduction

There has been much research in recent years on the
formal development of programs by refining a spe-
cification to an executable program via a sequence of
intermediate stages, where each stage is proved to be
equivalent to the previous one, and hence the final
program is a correct implementation of the specifica-
tion. However, there has been very little work on ap-
plying program transformations to reverse-engineering
and program understanding. This may be because
of the considerable technical difficulties involved: in
particular, a refinement method has total control over
the structure and organisation of the final program,
while a reverse-engineering method has to cope with
any code that gets thrown at it: including unstructured
(“spaghetti”) code, poor documentation, misuse of data
structures, programming “tricks”, and undiscovered
A particular problem with most refinement
methods is that the introduction of a loop construct
requires the user to determine a suitable invariant for
the loop, together with a variant expression, and to
prove:
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1. That the invariant is preserved by the body of the
loop;

2. The variant function is decreased by the body of
the loop;

3. The invariant plus terminating condition are suf-
ficient to implement the specification.

To use this method for reverse engineering would re-
quire the user to determine the invariants for arbitrary
(possibly large and complex) loop statements. This is
extremely difficult to do for all but the smallest “toy”
programs. A different approach to reverse engineering
is therefore required: the approach presented in this
paper does not require the use of loop invariants to
deal with arbitrary loops, (although if invariants are
available, they can provide useful information).

There are several distinct advantages to a trans-
formational approach to program development and re-
verse engineering:

e The final developed program, or derived specific-
ation, is correct by construction;

e Transformations can be described by semantic
rules and can thus by used for a whole class of
problems and situations;

e Due to formality, the whole process of program
development, and reverse engineering, can be sup-
ported by the computer. The computer can check
the correctness conditions for each step, apply the
transformation, store different versions, attach
comments and documentation to code, preserve
the links between code and specifications etc.;

e Provided the set of transformations is sufficiently
powerful, and is capable of dealing with all the
low-level constructs in the language, then it be-
comes possible to use program transformations as



a means of restructuring and reverse-engineering
existing source code (which has not been de-
veloped in accordance with any particular formal

method);

e The user does not have to fully understand the
code before starting to transform it: the program
can be transformed into a more understandable
form before it is analysed. This (parital) un-
derstanding is then used as a guide in deciding
what to do next. Thus transformations provide a
powerful program understanding tool.

Our aim in this paper is to demonstrate that our
program transformation theory, based on weakest pre-
conditions and infinitary logic, and described in Ward
(1989), Ward (1993) can form the basis for a method for
reverse engineering programs with complex data struc-
tures and control flow. This transformation theory is
used for forward engineering (transforming a high-level
abstract specification into an efficient implementation)
in Ward (1992b) and Priestley & Ward (1993).

The reverse engineering method is a heuristic
method based on the selection and application of formal
transformations, with tool support to check correctness
conditions, apply the transformations and store the
results. No reverse engineering process can be totally
automated, for fundamental theoretical reasons, but as
we gain more experience with this approach, we are
finding that more and more of the process is capable of
being automated.

In Ward (1993) we present a simple example of
program analysis by transformation. The paper de-
scribes a formal method for reverse engineering existing
code which uses program transformations to restructure
the code and extract high-level specifications. By a
“specification” we mean a sufficiently precise defini-
tion of the input-output behaviour of the program.
A “sufficiently precise” description is one which can
be expressed in first order logic and set theory: this
includes Z, VDM Jones (1986), and all other formal
specification languages. We did not consider timing
constraints in that paper: although the method has
been extended to model time as an extra output of a
program Younger & Ward (1993).

In this paper we treat a much more challenging
example than the one in Ward (1993): a program which
exhibits a high degree of both control flow complexity
and data representation complexity. The program is
Algorithm 2.3.3.A from Knuth (1968) (P.357) which is
an algorithm for the addition of polynomials in several
variables. The polynomials are represented in a tree
structure using four-directional links. Knuth describes
this as having “a complicated structure with excessively
unrestrained goto statements” Knuth (1974) and goes
on to say “I hope someday to see the algorithm cleaned
up without loss of its efficiency”.

1.1 Transformation Methods

The Refinement Calculus approach to program deriv-
ation Hoare et al. (1987), Morgan (1990), Morgan,
Robinson & Gardiner (1988) is superficially similar to
our program transformation method. It is based on
a wide spectrum language, using Morgan’s specifica-
tion statement Morgan (1988) and Dijkstra’s guarded
commands Dijkstra (1976). However, this language has
very limited programming constructs: lacking loops
with multiple exits, action systems with a “termin-
ating” action, and side-effects. These extensions are
essential if transformations are to be used for reverse
engineering. The most serious limitation is that the
transformations for introducing and manipulating loops
require that any loops introduced must be accompan-
ied by suitable invariant conditions and variant func-
tions. This makes the method unsuitable for a practical
reverse-engineering method.

A second approach to transformational develop-
ment, which is generally favoured in the Z community
and elsewhere, is to allow the user to select the next re-
finement step (for example, introducing a loop) at each
stage in the process, rather than selecting a transform-
ation to be applied to the current step. Each step will
therefore carry with it a set of proof obligations, which
are theorems which must be proved for the refinement
step to be valid. Systems such as mural Jones et al.
(1991), RAISE Neilson et al. (1989) and the B-tool Ab-
rial et al. (1991) take this approach. These systems thus
have a much greater emphasis on proofs, rather than
the selection and application of transformation rules.
Discharging these proof obligations can often involve a
lot of tedious work, and much effort is being exerted
to apply automatic theorem provers to aid with the
simpler proofs. However, Sennett (1990) indicates that
for “real” sized programs it is impractical to discharge
much more than a tiny fraction of the proof obligations.
He presents a case study of the development of a simple
algorithm, for which the implementation of one function
gave rise to over one hundred theorems which required
proofs. Larger programs will require many more proofs.
In practice, since few if any of these proofs will be
rigorously carried out, what claims to be a formal
method for program development turns out to be a
formal method for program specification, together with
an informal development method. For this approach
to be used as a reverse-engineering method, it would be
necessary to discover suitable loop invariants for each of
the loops in the given program, and this is very difficult
in general, especially for programs which have not been
developed according to some structured programming
method.

The well known Munich project CIP (Computer-
aided Intuition-guided Programming) Bauer et al.
(1989), Bauer & (The CIP Language Group) (1985),
Bauer & (The CIP System Group) (1987) uses a wide-
spectrum language based on algebraic specifications
and an applicative kernel language. They provide a



large library of transformations, and an engine for
performing transformations and discharging proof ob-
ligations. The kernel is a simple applicative language
which uses only function calls and the conditional (if . ..
then) statement. This language is provided with a set
of “axiomatic transformations” consisting of: «-, (3-and
n-reduction of the Lambda calculus Church (1951), the
definition of the if-statement, and some error axioms.
Two programs are considered “equivalent” if one can
be reduced to the other by a sequence of axiomatic
transformations. The core language is extended until
it resembles a functional programming language. Im-
perative constructs (variables, assignment, procedures,
while-loops etc.) are introduced by defining them
in terms of this “applicative core” and giving further
axioms which enable the new constructs to be reduced
to those already defined. Similar methods are used in
Broy, Gnatz & Wirsig (1979), Pepper (1979), Wossner
et al. (1979) and Bauer & Wossner (1982). However this
approach does have some problems with the numbers of
axioms required, and the difficulty of determining the
exact correctness conditions of transformations. These
problems are greatly exacerbated when imperative con-
structs are added to the system.

Problems with purely algebraic specification meth-
ods have been noted by Majester (1977). She presents
an abstract data type with a simple constructive defin-
ition, but which requires several infinite sets of axioms
to define algebraically. In addition, it is important for
any algebraic specification to be consistent, and the
usual method of proving consistency is to exhibit a
model of the axioms. Since every algebraic specification
requires a model, while not every model can be specified
algebraically, there seems to be some advantages in
rejecting algebraic specifications and working directly
with models.

1.2 Our Approach

In developing a model based theory of semantic equi-
valence, we use the popular approach of defining a core
“kernel” language with denotational semantics, and
permitting definitional extensions in terms of the basic
constructs. In contrast to other work (for example,
Bauer et al. (1989), Bird (1988), Partsch (1984)) we do
not use a purely applicative kernel; instead, the concept
of state is included, using a specification statement
which also allows specifications expressed in first order
logic as part of the language, thus providing a genuine
wide spectrum language.

Fundamental to our approach is the use of infinitary
first order logic (see Karp (1964)) both to express the
weakest preconditions of programs Dijkstra (1976) and
to define assertions and guards in the kernel language.
Engeler (1968) was the first to use infinitary logic
to describe properties of programs; Back (1980) used
such a logic to express the weakest precondition of
a program as a logical formula. His kernel language
was limited to simple iterative programs. We use a

different kernel language which includes recursion and
guards, so that Back’s language is a subset of ours. We
show that the introduction of infinitary logic as part
of the language (rather than just the metalanguage of
weakest preconditions), together with a combination of
proof methods using both denotational semantics and
weakest preconditions, is a powerful theoretical tool
which allows us to prove some general transformations
and representation theorems Ward (1993).

Over the last eight years we have been developing a
wide spectrum language (called WSL), in parallel with
the development of a transformation theory and proof
methods, together with methods for program develop-
ment and inverse engineering. Recently an interactive
program transformation system (called FermaT) has
been developed which is designed to automate much
of the process of transforming code into specifications
and specifications into code. This process can never be
completely automated—there are many ways of writing
the specification of a program, several of which may be
useful for different purposes. So the tool must work
interactively with the tedious checking and manipula-
tion carried out automatically, while the maintainer
provides high-level “guidance” to the transformation
process. In the course of the development of the proto-
type, we have been able to capture much of the know-
ledge and expertise that we have developed through
manual experiments, and case studies with earlier ver-
sions of the tool, and incorporate this knowledge within
the tool itself. For example, restructuring a regular
action system (a collection of gotos and labels) can now
be handled completely automatically through a single
transformation.

Any practical program transformation system for
reverse engineering has to meet the following require-
ments:

1. It has to be able to cope with all the usual pro-
gramming constructs: loops with exits from the
middle, gotos, recursion etc.;

2. Techniques are needed for dealing with variable
aliasing, side-effects and pointers;

3. It cannot be assumed that the code was developed
(or maintained) according to a particular pro-
gramming method: real code (“warts and all”)
must be acceptable to the system: in particular,
significant restructuring may be required before
the real reverse engineering can take place. It is
important that this restructuring can be carried
out automatically or semi-automatically by the
transformation system;

4. It should be based on a formal language and
formal transformation theory, so that it is possible
to prove that all the transformations used are
semantic-preserving. This allows a high degree
of confidence to be placed in the results;

5. The formal language should ideally be a wide
spectrum language which can cope with both



low-level constructs such as gotos, and high-level
constructs, including nonexecutable specifications
expressed in first order logic and set theory;

6. Translators are required from the source lan-
guage(s) to the formal language: many large
software systems are written in a combination of
different languages;

7. It must be possible to apply transformations
without needing to understand the program first:
this is so that transformations can be used as a
program understanding and reverse engineering
tool;

8. It must be possible to extract a module, or smal-
ler component, from the system for analysis and
transformation, with the transformations guar-
anteed to preserve all the interactions of that
component with the rest of the system. This
allows the maintainer to concentrate on “mainten-
ance hot spots” in the system, without having to
process the entire source code (which may amount
to millions of lines);

9. An extensive catalogue of proven transformations
is required, with mechanically checkable correct-
ness conditions and some means of composing
transformations to develop new ones;

10. An interactive interface which pretty-prints each
version on the display will allow the user to in-
stantly see the structure of the program from the
indentation structure;

11. The correctness of the transformation system it-
self must be well-established, since all results
depend of the transformations being implemented
correctly;

12. A method for reverse engineering by program
transformation needs to be developed alongside
the transformation system.

1.3 The FermaT Project

The WSL language and transformation theory forms
the basis of the FermaT project Bull (1990), Ward, Cal-
liss & Munro (1989) at Durham University and Durham
Systems Engineering Ltd. which aims to develop an in-
dustrial strength program transformation tool for soft-
ware maintenance, reverse engineering and migration
between programming languages (for example, Assem-
bler to COBOL). The tool consists of a structure editor,
a browser and pretty-printer, a transformation engine
and library of proven transformations, and a collection
of translators for various source languages.

The initial prototype tool was developed as part of
an Alvey project at the University of Durham Ward,
Calliss & Munro (1989). This work on applying pro-
gram transformation theory to software maintenance
formed the basis for a joint research project between
the University of Durham, CSM Ltd and IBM UK
Ltd. whose aim was to develop a tool to interactively

transform assembly code into high-level language code
and Z specifications. A prototype translator has been
completed and tested on sample sections of up to 80,000
lines assembler code, taken from very large commercial
assembler systems. One particular module had been
repeatedly modified over a period of many years until
the control flow structure had become highly convo-
luted. Using the prototype translator and ReForm
tool we were able to transform this into a hierarchy
of (single-entry, single-exit) subroutines resulting in a
module which was slightly shorter and considerably
easier to read and maintain. The transformed version
was hand-translated back into Assembler which (after
fixing a single mis-translated instruction) “worked first
time”. See Ward & Bennett (1993), Ward & Bennett
(1994) for a description of this work and the methods
used.

For the next version of the tool (i.e. FermaT it-
self) we decided to extend WSL to add domain-specific
constructs, creating a language for writing program
transformations. This was called Meg7TAWSL. The ex-
tensions include an abstract data type for representing
programs as tree structures and constructs for pattern
matching, pattern filling and iterating over components
of a program structure. The “transformation engine” of
FermaT is implemented entirely in Me7.AWSL. The im-
plementation of MeTAWSL involves a translator from
MeTAWSL to LISP, a small LISP runtime library (for
the main abstract data types) and a WSL runtime
library (for the high-level MeTAWSL constructs such as
ifmatch, foreach, fill etc.). One aim was so that the
tool could be used to maintain its own source code: and
this has already proved possible, with transformations
being applied to simplify the source code for other
transformations! Another aim was to test our theories
on language oriented programming (Ward (1994)): we
expected to see a reduction in the total amount of
source code required to implement a more efficient,
more powerful and more rugged system. We also anti-
cipated noticeable improvements in maintainability and
portability. These expectations have been fulfilled, and
we are achieving a high degree of functionality from a
small total amount of easily maintainable code: the
current prototype consists of around 16,000 lines of
MeTAWSL and LISP code, while the previous version
required over 100,000 lines of LISP.

The tool is designed to be interactive because the
reverse engineering process can never be completely
automated—there are many ways of writing the spe-
cification of a program, several of which may be useful
for different purposes. So the tool must work interact-
ively, with the tedious checking and manipulation car-
ried out automatically, while the maintainer provides
high-level “guidance” to the transformation process.
In the course of the development of the prototype,
we have been able to capture much of the knowledge
and expertise that we have developed through manual
experiments and case studies with earlier versions of



the tool, and incorporate this knowledge within the
tool itself. For example, restructuring a regular ac-
tion system (a collection of gotos and labels) can now
be handled completely automatically through a single
transformation. See Ward (1994) for more details.

FermaT can also be used as a software development
system (but this is not the focus of this paper): starting
with a high-level specification expressed in set-theory
and logic notation (similar to Z or VDM Jones (1986)),
the user can successively transform it into an efficient,
executable program. See Priestley & Ward (1993),
Ward (1992b) for examples of program development in
WSL using formal transformations. Within FermaT,
transformations are themselves coded in an extension
of WSL called MeTAWSL: in fact, much of the code
for the prototype is written in WSL, and this makes it
possible to use the system to maintain its own code.

2 The Language WSL

WSL is the “Wide Spectrum Language” used in our
program transformation work, which includes low-level
programming constructs and high-level abstract spe-
cifications within a single language. By working within
a single formal language we are able to prove that a
program correctly implements a specification, or that
a specification correctly captures the behaviour of a
program, by means of formal transformations in the
language. We don’t have to develop transformations
between the “programming” and “specification” lan-
guages. An added advantage is that different parts
of the program can be expressed at different levels of
abstraction, if required.

A program transformation is an operation which
modifies a program into a different form which has
the same external behaviour (it is equivalent under a
precisely defined denotational semantics). Since both
programs and specifications are part of the same lan-
guage, transformations can be used to demonstrate that
a given program is a correct implementation of a given
specification. We write S; ~ S, if statements S; and
S, are semantically equivalent.

A refinement is an operation which modifies a pro-
gram to make its behaviour more defined and/or more
deterministic. Typically, the author of a specification
will allow some latitude to the implementor, by re-
stricting the initial states for which the specification
is defined, or by defining a nondeterministic behaviour
(for example, the program is specified to calculate a
root of an equation, but is allowed to choose which
of several roots it returns). In this case, a typical
implementation will be a refinement of the specifica-
tion rather than a strict equivalence. The opposite of
refinement is abstraction: we say that a specification is
an abstraction of a program which implements it. See
Morgan (1990), Morgan, Robinson & Gardiner (1988)
and Back (1980) for a description of refinement. We

write 81 < S, if S5 is a refinement of S¢, or if S; is an
abstraction of S».

2.1 Syntax and Semantics

The syntax and semantics of WSL are described in
Priestley & Ward (1993), Ward (1989), Ward (1993),
Ward (1993) so will not be discussed in detail here.
Note that we do not distinguish between arrays and
sequences, both the “array notations” and “sequence
notations” can be used on the same objects. For

example if a is the sequence (a1, az,...,an) then:

e ?(a) denotes the length of the sequence q;
e afi] is the ith element qj;
e afi..j] denotes the subsequence
<Cli, AifTyeen, Clj>;
e last(a) denotes the element a[f(a)];

e butlast(a) denotes the subsequence

all..{(a) —1];
e reverse(a) denotes the sequence {an,...,az,ar);
e set(a) denotes the set of elements in the
sequence, i.e. {a,dz,...,dn);

e The statement x &% a sets x to a; and a to

<a2»a3»---»an>;
ush
e The statement a &= x sets a to
<X»a1»a2»---»an>;

e The statement x ¢ a sets x to a,, and a to
{ar,a2,...,an_1).
The concatenation of two sequences is written a 4 b.

Most of the constructs in WSL, for example if
statements, while loops, procedures and functions, are
common to many programming languages. However
there are some features relating to the “specification
level” of the language which are unusual.

Expressions and conditions (formulae) in WSL are
taken directly from first order logic: in fact, an infinit-
ary first order logic (see Karp (1964) for details), which
allows countably infinite disjunctions and conjunctions,
but this is not essential for this paper. This means
that statements in WSL can include existential and
universal quantification over infinite sets, and similar
(non-executable) operations.

An example of a non-executable operation is the
nondeterministic assignment statement (or specifica-
tion statement) (xi,...,%xn) := (x},...,x).Q which
assigns new values to the variables xy,...,%x,. In the
formula Q, x; represent the old values and x| represent
the new values. The new values are chosen so that Q
will be true, then they are assigned to the variables. If
there are several sets of values which satisfy Q then one
set i1s chosen nondeterministically. If there are no values
which satisfy Q then the statement does not terminate.
For example, the assignment (x)} := (x/).(x = 2.x/)
halves x if it is even and aborts if x is odd. If the



sequence contains one variable then the sequence brack-
ets may be omitted, for example: x := x'.(x = 2.x).
The assignment x := x'.(y = 0) assigns an arbitrary
value to x if y = O initially, and aborts if y # 0
initially: it does not change the value of y. Another
example is the statement x := x'.(x’ € B) which picks
an arbitrary element of the set B and assigns it to x
(without changing B). The statement aborts if B is
empty, while if B is a singleton set, then there is only
one possible final value for x.

The simple assignment (x1,...,xn) :={€1,...,€n)
assigns the values of the expressions e; to the variables
xi. The assignments are carried out simultaneously, so
for example (x,y) := (y,x) swaps the values of x and
y. The single assignment (x) := (e) can be abbreviated
to x :=e.

The local variable statement var x : S end in-
troduces a new local variable x whose initial value is
arbitrary, and which only exists while the statement S
is executed. If x also exists as a global variable, then
its value is saved and restored at the end of the block.
A collection of local variables can be introduced and
initialised using the notation var (x; := ej,...,xn =
en): S end.

An action is a parameterless procedure acting on
global variables (cf Arsac (1982a), Arsac (1982b)). It
is written in the form A =
S. where A is a statement variable (the name of the
action) and S is a statement (the action body). A set
of mutually recursive actions is called an action system.
There may sometimes be a special action Z, execution
of which causes termination of the whole action system
even if there are unfinished recursive calls. An occur-
rence of a statement call X within the action body is a
call of another action.

An action system is written as follows, with the first
action to be executed named at the beginning. In this
example, the system starts by calling Ay:

actions Aq:

S... endactions

For example, this action system is equivalent to the
while loop while B do S od:
actions A:
A =
if =B then call 7 fi;

S; call A. endactions

With this action system, each action call must lead to
another action call, so the system can only terminate
by calling the Z action (which causes immediate ter-
mination). Such action systems are called regular.

For a given set X, the nondeterministic iteration
over X is written for i € X do S od. This executes
the body S once for each element in X, with i taking
on the value of each element. It is equivalent to the
following:
var (i:=0,X":=X}:
while X' # & do

1:=1.1" e X'); X =X\ {i}
S od end

For a sequence X, the iteration over the elements
of X is written for x &2 X do S od. The elements
are taken in their order in the sequence, so the loop is
deterministic. The loop is equivalent to:
var (i:=0,X":=X}:
while X' # & do

i&2 X,
S od end

3 Example Transformations

In this section we give some examples of the transform-
ations to be used later in the paper.

3.1 Loop Inversion

The first example is a simple restructuring transforma-
tion. Suppose statement Sy is a proper sequence, i.e. it
cannot cause termination of an enclosing loop. Then if
S appears at the beginning of a loop body, we can take
it out of the loop provided we insert a second copy of Sy
at the end of the loop. In other words, the statement
do Sq; S, od is equivalent to S¢1; do S»; S od.

This transformation is useful in both directions, for
example we may convert a loop with an exit in the
middle to a while loop:

do S; if B then exit fi; S> od

Si; while =B do S»; S; od

when S; and S, are both proper sequences. Or we
may use it in the reverse direction to reduce the size of
a program by merging two copies of Sj.

3.2 Loop Unrolling

The simplest loop unrolling transformation is the fol-
lowing:
while B do S od

~

if B then S; while Bdo S od fi

This simply unrolls the first step of the loop. The next
transformation unrolls a step of the loop within the loop
body. For any condition Q:

while B do S od

~
~

while Bdo S; if B A Q then S fi od

This can be useful when the body S is able to be
simplified when condition Q is true. An extension of



this transformation is to unroll an arbitrary number of
iterations into the loop body:
while B do S od

~
~

while B do S; while B A Q do S od od

As an example of the effect of several unrolling
operations, consider the following program schema:
while B do

if By then S;
elsf B, then S;
else S; fi od

where executing S; makes B, true and By false (i.e.
{B1); S1 < {B1}; S1; {B2 A —Bj}), and S; is the
only statement which can affect condition B;. If we
selectively unroll after S, then B will still be true, B
will be false, and B, will be true. So we can prune the
inserted if statement to get:
while B do

if By then S;

elsf B, then S;; S3

else S3 fi od

Since S does not affect B, we can selectively unroll
the entire loop after S under the condition B A Bj
(which reduces to B since B is true initially and not
affected by S1):
while B do

if By then S;; while By do S7 od

elsf B, then S;; S3

else S3 fi od

Convert the elsfto else if, take out S3, and roll up one
step of the inner while loop to get:
while B do

while B; do S7 od

if -B; then S; fi;

S3 od

3.3 General Recursion Removal

Our next transformation is a general transformation
from a recursive procedure into an equivalent iterative
procedure, using a stack. It can also be applied in
reverse, to turn an iterative program into an equivalent
recursive procedure (which may well be easier to under-
stand). The theorem was presented in Ward (1992a),
and the proof may be found in Ward (1991).

Suppose we have a recursive procedure whose body
is a regular action system in the following form:
proc F(x) =
actions Aj:
A] =
S;.

Sjo; Flgj1(x)); Si1; Flgja(x)); ...
Flgin; (x)); Sin;-
... endactions.

where the statements Sj1,. .., Sjn; preserve the value of
x and no S contains a call to F (i.e. all the calls to F are
listed explicitly in the B; actions) and the statements
Sj0,Sj1...,Sjn;—1 contain no action calls. There are
M + N actions in total: Ay,...,Am,B1,...,Bn. Note
that the since the action system is regular, it can only
be terminated by executing call Z, which will terminate
the current invocation of the procedure.

The aim is to remove the recursion by introducing
a local stack K which records “postponed” operations:
When a recursive call is required we “postpone” it by
pushing the pair {0, e) onto K (where e is the parameter
required for the recursive call). Execution of the state-
ments S;i also has to be postponed (since they occur
between recursive calls), we record the postponement
of Sji by pushing {{j, k), x) onto K. Where the proced-
ure body would normally terminate (by calling Z) we
instead call a new action F which pops the top item off
K and carries out the postponed operation. If we call
F with the stack empty then all postponed operations
have been completed and the procedure terminates by
calling Z.

Theorem 3.1 The procedure F(x) above is equivalent
to the following iterative procedure which uses a new
local stack K and a new local variable m:

proc F(x) =
var K := (), m:
actions Aq:
A] =
Si[call F/call Z].

Ai =
Si[call F/call Z].

if K = ()
then call Z
else (m,x) &= K;
ifm=0— call A;
O...
Om = (j,k) = Sj[eall F/call 7]

... fi fi. endactions end.

By unfolding the calls to Fin B; we can avoid pushing
and popping (0, gj1(x)} onto K and instead, call A,
directly. So we have the corollary:

Corollary 3.2 F(x) is equivalent to:
proc F(x) =



var K:={),m:=0:
actions Aj:

Ai =
Si[call F/call Z].

Sio; K = ({(j> 1), x), (0, g52()), ..,
(0, i, (X)), (3 13), ) 4 K;
x 1= gj1(x); call Aj.

then call Z
else (m, x) €= K;
ifm=0— call Ay
O...
O m=(j,k) — Sjcleall /call 7]

... fi fi. endactions end.

Note that any procedure F(x) can be restructured into
the form of Theorem 3.1; in fact there may be several
different ways of structuring F(x) which meet these
criteria. The simplest such restructuring is to put
each recursive call into its own B action (with no other
statements apart from a call to the next action). Since
it is always applicable, this is the method used by most
compilers. See Ward (1992a) for further applications of

the theorem.

3.4 Tail Recursion

A simple case of tail recursion is the following:
proc F(x) = if By then S¢; F(y)

else S, fi.
where S; and S, may both call F(). The terminal call
can be implemented with a while loop as follows:

proc F(x) = while B; do S¢; x:=y od; S>.

A slightly more complicated example:
proc F(x) = if By then if B, then S;; F(y)
else S; fi
else S; fi.

is equivalent to:

proc F(x) = while B; A B> do S¢; x:=y od;
if B; then S, else S3 fi.

4 Polynomial Addition

A polynomial P in several variables may be expressed
as:

(1) P= > g

ogign

where x is a variable (the primary variable), n > 0,
0 = e < e} < --- < en are non-negative integers
and for each 0 < j < n, g; (the coeflicient of the jth
term) is either a number or a polynomial whose primary

variable is alphabetically less than x. Each polynomial
has a constant term (which may have coefficient zero)
and one or more other terms (which must have non-zero
coeflicients).

This definition lends itself to a tree structure, Knuth
uses nodes with four links each to implement the tree
structure, we will represent these nodes using the fol-
lowing six arrays:

For each integer i:

DIil] is either A (for a constant polynomial), or points
down the tree to the constant term of a circularly-
linked list of terms.

Cli] If D[i] = A then C[i] is a number (the value of the
coeflicient), otherwise it is a symbol (the variable
of the polynomial).

1] is the value of the exponent for this term.
i] points to the previous term in the circular list.
i] points to the next term in the circular list.

1] points up the tree, from each term of a polynomial
to the polynomial itself.

The “next term” is either the term with the next
largest exponent, or the term with zero exponent. The
algorithm assumes that there is a “sufficiently large”
number of free nodes available on the stack avail.

The root node P of a polynomial stores the following
values:

C[P] is either the constant value (for a constant poly-
nomial) or the primary variable.

E
L[P] points to P.

[P]
[P]

R[P] points to P.
[P]
[P]

1s zero.

U[P] is A: an otherwise unused pointer value.

DI[P] is either A (for a constant polynomial) or points
to the constant term of a circular list of terms.

If DIP] # A then DI[P] is the first term of a list,
E[D[P]] = 0, the term L[D[P]] has the largest exponent
(which must be greater than zero), the last term P’ in
the list (with the lowest exponent) can be recognised

by the fact that E[L[P']] = 0.

4.1 Knuth’s Algorithm

Knuth (1968) includes an algorithm for adding poly-
nomials represented as tree structures with four-way
linked nodes. The algorithm is written in an informal
notation, using labels and gotos. We have translated
the algorithm into WSL, using an action system with
one action for each label.
ADD =
ifD[P[=A
then while D[Q] # A do Q :=DI[Q] od;
call A3
else if D[Q] = A Vv C[Q] < C[P] then call A;




elsf C[Q] = C[P]
then P := DI[P]; Q := D[Q]; call ADD
else Q := D[Q]; call ADD fi fi.

Az =
1 &% avail; s :=D[Q];
if s # A then do U[s] :=1; s :=R[s];
if E[s] = 0 then exit fi od fi;
U] :=Q; D[] :=DIQI; Llv] :=;

Rb :=7; Chl:=CIQJ; El] :=0;
CIQ] := C[P]; D[Q] :=; call ADD.
A3 =

{E[Q] # 0 = (E[P] = E[Q] A C[U[P]] = CIUQI]};
CIQl := CIQl + C[P];
if C[Q] =0 A E[Q] # 0 then call Ag fi;
if E[Q] =0 then call A7 fi;
call A,.
A4 =
P :=L[P];
if E[P] =0
then call Ag
else do Q :=L[Q];
if E[Q] < E[P] then exit fi od;
if E[Q] = E[P] then call ADD fi fi;

A5 =
T &2 avail;
Ufr] := U[Ql; Dlr] := A; LIvl := Q;
Ri := RIQJ; LIR[] :=7; R[Q] :=7;
E[r] :=E[P]; C[] :=0; Q :=1;
call ADD
A6 =
P := UI[P]; call A7.
Ay =
if U[P] =
then call A1
else while C[U[Q]] # C[U[P]] do
Q :=U[Q] od;
call Ay fi.
Ag =
{E[P] = E[Q] A CIU[P]] = CIU[QII};
T:=Q; Q:=Rp; s:=L[r; Rls]:=Q;

L[Q] :=s; avail &2 v
if E[L[P]] =0 A Q = s then call Ao
else call A4 fi.

A9 =

1:=Q; Q:=U[Q]; DIQ] := D[]

ClQl ZC[] avail &2 1

s := D[QJ;

ifs#A

then do Us] := Q; s := RJs];

if E[s] = 0 then exit fi od fi;

call Aqp.
A]o =

ifDIQl=A A C[Ql=0 A EIQI £0
then P := U[P]; call Ag
else call Ag fi.
A]] =
while U[Q] # A do Q :=U[Q] od;

call Z.
See Figure 1 for the call graph of this program.
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Figure 1: The Call Graph of Knuth’s Polynomial
Addition Algorithm

The two assertions have been taken from the com-
ments Knuth makes about the algorithm. We will prove
that they are valid later on, because this will be much
easier with the recursive version of the program.

5 Analysis by Transformation

We will now show how such an algorithm can be ana-
lysed by applying a sequence of transformation steps
which first transform it into a structured form and then
derive a mathematical specification of the algorithm.
Since each of the transformation steps has been proven
to preserve the semantics of a program, the correctness
of the specification so derived is guaranteed.

The program exhibits both control flow complexity
and data representation complexity, with the control
flow directed by the data structures. With the aid of
program transformations it is possible to “factor out”
these two complexities, dealing first with the control
flow and then changing the data representation. Both
control and data restructuring can be carried out using
only local information, it is not until near the end of
the analysis (when much of the complexity has been
eliminated, and the program is greatly reduced in size)
that we need to determine the “big picture” of how the
various components fit together. This feature of the
transformational approach is essential in scaling up to
large programs, where it is only possible in practice to
examine a small part of the program at a time.

5.1 Restructuring

The first step in analysing the program involves simple
restructuring. We begin by looking for procedures
and variables which can be “localised”. In this case
there are a number of blocks of code which can be



extracted out as procedures, some of which use local
variables. The names for the procedures are taken from
the comments in the original program: This reduces
the size of the main body of tangled “spaghetti code”
in preparation for the restructuring.

begin
actions ADD :
ADD =

if D[P =A

then while D[Q] # A do Q := D[Q] od; call A;
else if (DIQ] = A) v (C[Q] < CIP]) then call A,
elsf C[Q] = C[P]
then P := D[P],Q := D[Q]; call ADD
else Q := D[Q]; call ADD fi fi.

Ar =

Insert_Below_Q; call ADD.
A3 =
(EIQI #0 = (EIP) = EIQI A CIUIPI) = CIUIQI);
[Q CIQI + C[P;
(C[Q 0) A (E[Q] # 0) then call A fi;
E[Q = 0 then call A7 fi;

1 As.

° |'-n|'-n 0

Al
P :=LI[P];
if E[P] =0
then call A
else Move_Left_Q;
if E[P] = E[Q] then call ADD fi fi;
call As.
A5 =
Insert_to_Right; call ADD.

6 =
P :=U[P]; call A7.

if U[P] = A then call Ay,
else Move Up_Q; call A, fi.
Ag =
(E[P] = EIQ] A CIUIPY] = CIUIQIT);

Delete_Zero_Term:;

if (E[L[P]] =0} A (Q =L[Q])
then call Ay
else call A4 fi.
A9 =
Delete_Const_Poly; call A1y.
Ao =

if (DIQI=A) A (CIQI=0)) A
then P := U[P]; call Ag
else call A, fi.
A1l =
while U[Q] £ A do Q :— U[Q] od;
call 7. endactions
where
proc Insert Below_ Q =
r &2 avail; s :=D[Q];
ifs#AA
then do Uls] :=1; 1 :=R[s];
i_fE[]*Othenexﬂ;ﬁodﬁ

(E[Q] #0)

(U] := Q, DIr] := DIQI, L[t] := 7, R[r] :=1};
{Clr] := CIQ], E[r] := 0);
(CIQ] := C[P],D[Q] := ).

proc Move_ Left Q =

do Q = L[QJ; if E[Q] < E[P] then exit fi od.

proc Insert_to_Right =
r &2 avail;
(U[r] := U[Q],D[T] = A, L[] == Q, R[] := RIQI);
L[R[r]] :=7; R[Q] :
(Elr] :=E[P],Clt] := )
Q:=m.

proc Move Up_Q =

while C[U[Q]] # C[U[P]] do Q := U[Q] ed.

proc Delete_Zero_Term =
Ti=Q;
(Q :=R[r],s:=L[r]);
R[s] := Q; L[Q] :=s;

avail 2 1.
proc Delete_Const_Poly =
r:=Q; Q :=U[Q];
(D[Q] = DI[r], CIQ] == Clrl);
avail 22* r; s :=DI[Ql;
ifs#AA
then do Uls] := Q; s := Rls];

i_fE[]*Othenexﬂ;ﬁodﬁ

The next stage is to restructure the “spaghetti” of
labels and jumps by unfolding action calls, introducing
loops, re-arranging if statements, merging action calls,
In the Maintainer’s Assistant this whole
process has been automated in a single transformation
Collapse_Action System which follows heuristics we
have developed over a long period of time: selecting

and so on.

the sequence of transformations required to restructure
a program. The result of this single transformation is
as follows:
do do if D[P =A
then while D[Q] £ A do Q :— D[Q] od;
{E[Q] #0
= (E[P] =EIQI A
CIQl == CIQl + CIP};
i_f(U[] A A E[Q] =0)
A (CIQI#0 Vv EQ] =
then while U[Q] £ A
exit (2)
elsf (C[Q] #0) V (E[Q] = 0)
then if E[Q] = 0 then Move_Up_Q fi;
exit fi;
do (E[P] — E[Q] A C[U[P]] = CUIQIT};
Delete_Zero_Term:;
if (E[L[P]] #0) Vv
then exit fi;
Delete_Const_Poly;
P := U[P];
if (U[P]=A)
A (CIQI#£0 v DIQI £A V E[Q] =0)
then while U[Q] £ A do
Q = U[Q] od;
exit (2]
elsf (C[Q] £ 0) v (DIQ] £ A)
Vv (E[Q] =0)
then Move Up_Q; exit fi od
elsf (DIQ] = A) v (CIQ] < CIP])
then Insert_Below_Q

CIU[P]] = C[U[QIN;

)
do Q :=U[Q] ed;

(Q # LIQD



elsf C[Q] = C[P] then P := D[P],Q := D[Q]
else Q :— D[Q] i od;
do P :— L[P];
if E[P] £ 0

then Move_Left_Q;
if E[P] # E[Q] then Insert_To_Right fi;
exit fi;
P := U[P];
if U[P]=A
then while U[Q] # A do Q :— U[Q] od;
exit(2) fi;
Move_Up_Q od od

As can be seen above, most of the restructuring has
been carried out by this single transformation. There
is some potential for further simplification transforma-
tions, taking code out of loops and if statements and
so on:
do while D[P] £ A do

if D[Q] = A Vv C[Q] < C[P] then Insert_Below_Q

elsif C[Q] = C[P] then P :=DIP],Q := D[Q]

else Q :=D[Q] fi od;
while D[Q] £ A do Q i D[Q] od;

{EIQ] # 0 = (E[P] =E[Q] A CIU[P]] = C[U[QI)};
C[Q] := C[Q] + C[P];
if C[Ql =0 A E[Q] #£0

then do (E[P] = E[Q] A C[U[P]] = CIU[QI]};

Delete_Zero_Term:;
if E[L[P]] #0 V Q # s then exit fi;
Delete_Const_Poly;

P := U[P];

if U[P] = A
A (CIQI#0 VvV E[QI =0 v DIQI #A)
then exit(2) fi;

if DIQI #A v CIQl #0 Vv E[Q] =0
then Move Up_Q; exit fi od
else if U[P] = A then if E[Q] = 0 then exit fi fi;

if E[Q] = 0 then Move Up Q fi fi;

do P:=L[P];
if E[P] # 0 then exit fi;
P := U[P];
if U[P] = A then exit(2) fi;
Move_Up_Q od;

Move_Left_Q;

if E[P] # E[Q] then Insert_to_Right fi od;

while U[Q] # A do Q := U[Q] od

Turning our attention to the loop while DI[P] #
A do ... od we see that only one of the arms of
the inner if statement can affect the value of D[P]:
for the other two cases, the loop test is redundant.
Secondly, the procedure Insert_Below_Q is guaranteed
to make D[Q] # A and C[Q] = C[P]. The loop can
be made more efficient by entire loop unrolling for the
case D[Q] # A Vv C[Q] > C[P] followed by loop body
unrolling after Insert_Below_Q. The result is:
while D[P] # A do
while D[Q] # A A C[Q] > C[P] do Q :=DIQ] od;
if D[Q] = A Vv C[Q] < C[P] then Insert_Below_Q fi;
P:=DIP]; Q:=DI[Q] od

On termination of this loop we clearly have D[P] = A.
A little later, we test if U[P] = A. The only possibility
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for both D[P] = A and U[P] = A is if the original P
polynomial was a constant. It is rather inefficient to re-
peatedly test for this trivial case, so instead we assume
that constant polynomials are treated as a special case,
outside the main loop. This allows us to remove the
test U[P] = A from the body of the main loop.

Next we consider the final do ... od loop:
do P:=L[P];

if E[P] # 0 then exit fi;

P := U[P];

if U[P] = A then exit(2) fi;

Move_Up_Q od;

By pushing the statement P := L[P] into the following if
statement and then taking it out of the loop, we get the
pair of assignments P := L[P]; P := U[P] which can be
simplified to P := U[P] (since each node in each circular
list has the same U value). So the loop simplifies to:
do if E[L[P]] # O then exit fi;

P := U[P];

if U[P] = A then exit(2) i

Move_Up_Q od;
P:=L[P];

Finally, the test U[P] = A A (DIQ] # A v CIQ] #
0 Vv E[Q] = 0) is more complicated than it needs to
be. If, as in this case, we have just deleted a constant
polynomial in Q which has resulted in a zero term
higher up the structure of Q, then D[Q] = A A C[Q] =
0 A E[Q] # 0. But in this case, Q is somewhere in the
middle of a list of terms of a polynomial in a certain
variable, and therefore P must also be somewhere in
the list of terms of a polynomial in the same variable
(the addition of two of the terms having resulted in
a zero term). So we cannot also have UJ[P] A.
Conversely, if it happens that U[P] = A, then the test
for a zero term must fail and there is no need to also

test (D[Q] #A Vv C[Q] #0 Vv E[Q] =0).

Putting these results together we get the simplified
main body:
do while D[P] # A do
while D[Q] £ A A C[Q] > C[P] do
Q = DIQ] od;
if DIQ] = A v CIQ] < C[P]
then Insert_Below_Q fi;
P :=DI[P],Q := D[Q] od;
while D[Q] £ A do Q - D[Q] od;
{E[Q] # 0= (E[P] = E[Q] A CIU[P]] = C[U[QIN)};

ClQ] := CIQI + CI[PI;
if C[Ql =0 A E[Q]#£0
then

do (E[P] = E[Q] A C[U[P]] =
Delete_Zero_Term:;
if E[LIP]] £0 v Q # LIQ] then exit fi;
Delete_Const_Poly;
P := U[P];
if UP]=A
then (DIQ] £ A V CIQ] £0 Vv EIQ] = 0};
exit (2) fi;
if DIQI £ A V CIQ] £0 Vv E[Q] =0

CuUlQ};




then Move Up_Q; exit fi od
else if E[Q] = 0 then Move Up_Q fi fi;
do if E[L[P]] # 0 then exit fi;

P := U[P];
if U[P] = A then exit(2) fi;
Move_Up_Q od;

P := L[P];

Move_Left_Q;

if E[P] # E[Q] then Insert_to_Right fi od;
while U[Q] /£ A de Q i~ U[Q] od

5.2 Introduce recursion

The next step is to introduce recursion. We have
discovered that for a great many program analysis prob-
lems, it is very important to get to a recursive form of
the program as early as possible in the analysis process.
Discovering the overall structure and operation of a
program, such as this one, is enormously easier once
a recursive form has been arrived at.

Before we can introduce recursion, we need to re-
structure the program into a suitable action system.
This will make explicit the places where recursive calls
will ultimately appear, and where the test(s) for ter-
mination occurs. Note that P starts out with U[P] = A
and the program terminates as soon as U[P] = A again:
which suggests that P will ultimately be a parameter.
Also, note that the tree structure reachable through the
initial value of P is not changed by the program, and
P is restored to its original value. There are two places
where the assignment P := U[P] occurs, and where
termination is possible. These are separated out into
the two actions A] and Az below.
actions A :

A =
if D[P]=A
then while D[Q] # A do Q := D[Q] ed;
{(E[Q] #0
= (E[P] = EIQ] A CIU[P]] = C[UIQID)};
CIQI] := CIQI + C[P;
if E[Q] = 0 then Move Up_Q fi;

call A,
else while D[Q] # A A C[Q] > C[P] do
Q :=DIQ] od;
if D[Q] = A v CIQ] < C[P]

then Insert_Below_Q fi;
P :—DIP]; Q := DIQJ; call A fi.

Al =
If DIQI £ A v CIQI £0 v E[Q) =0
then call A; fi;
(EIP] = E[Q] A CIUIP]] = CIUIQII};
Delete_Zero_Term:;
i E[LPI =0 A Q= LIQ]
then Delete_Const_Poly;
P := U[P];
if UP]=A
then while U[Q] # A do Q := U[Q] od;
call 7 fi;
call A,
else call A, fi.
Az =
if E[L[P]] = C

then P := U[P];
if U[P]=A
then while U[Q] £ A do Q :— U[Q] od;
call Z fi;
Move_Up_Q;
call A,
else call B fi.
B =
P := L[P]; Move_Left Q;
if E[P] # E[Q] then Insert_to_Right fi;
call A.
endactions

Within the two “finishing” actions, A1 and Az, the
pointer P is moved up and U[P] tested against A. For
the recursion introduction theorem, we must have only
one occurrence of call Z, and in this case we would
prefer to have only one occurrence of P := U[P]. This is
because kind of structure we would like for the recursive
procedure is something like this:
proc ADD =
ifDIP]=A
then deal with a constant polynomial
else set up a polynomial in Q;
P:=DIPl; Q :=DIQ);
do ADD; Add a pair of terms;
deal with a zero result;
P :=L[P];
if E[P] = 0 then exit fi;
set up a term in Q od,;
Deal with a constant polynomial result;
P := U[P];
Move up Q if needed fi.

Fortunately, any two similar (or even dissimilar) actions
can be merged by creating a composite action and using
a flag to determine which action the composite action
is simulating. In the next version Ais equivalent to Al
when flag is true, and equivalent to A, when flag 1s
false:

actions A :
A =
if D[P = A
then while D[Q] # A do Q := D[Q] od;
{EIQ] # 0 = (E[P] = E[Q] A CI[U[P]] = C[U[QI)};
ClQ] := C[Q] + CI[PI;

if E[Q] = 0 then Move Up_Q fi;
flag := true; call A
else while D[Q] £ A A C[Q] > C[P] do
Q = DIQ od;
if D[Q] = A Vv C[Q] < C[P] then Insert_Below_Q fi;
P = DIPJ; Q := D[QJ; call A fi.

A =
if flag A DIQI = A A CIQI =0 A EIQI £0
then {E[P] — E[Q] A C[U[P]] = CIU[QI));
Delete_Zero_Term
else flag := false fi;
if E[L[P]] =0
then if flag A Q = L[Q]
then Delete_Const_Poly
else flag := false fi;
P := U[P];



if UP]=A
then while U[Q] # A do Q = U[Q] od;
call Z fi;
if —flag then Move_Up_Q fi;
call A
else flag := false; call B fi.
B =
P :=LI[P];
Move_Left_Q;
if E[P] # E[Q] then Insert_to_Right fi;
call A.
endactions

Now we can apply Theorem 3.1 in reverse to get an
equivalent recursive procedure:

begin

if D[P] = A then while D[Q] £ A do Q = DIQ] od;
CIQl := CIQ] + C[P];
while U[Q] # A do Q := U[Q] od

else ADD fi
where
proc ADD =
if D[P =A
then while D[Q] # A do Q := DI[Q] od;
(EIQI £0 = (E[P] = EIQ] A CIUIPI] = CIUIQI)};
C[Q] ClQl + CIP;

if E[Q] — 0 then Move Up_Q fi;
flag := true
else while D[Q] £ A A C[Q] > CIP] do
Q :=DIQl od;

if D[Q] = A Vv C[Q] < C[P] then Insert Below_Q fi;
P:=D[P]; Q :=DIQJ;
do ADD;
if flag A DIQI = A A CIQ] =0 A E[Q] #0
then (E[P] = E[Q] A C[U[P]] = C[U[QI]};

Delete_Zero_Term
else flag := false fi;
if E[L[P]] = 0 then exit fi;
flag := false;
P :=LI[P];
Move_Left_Q;
if E[P] # E[Q] then Insert_to_Right fi od;
if flag A Q = L[Q]
then Delete_Const_Poly
else flag := false fi;
P := U[P];
if U[P]=A
then while U[Q] # A do Q := U[Q] od
elsif —flag then Move_Up_Q fi fi.
end

With a recursive program, we can see that ADD pre-
serves P, since the sequence of operations applied to P
is: P := D[P] followed by P := L[P] zero or more times,
and finally P := U[P], which restores P to its original
value. It is also easier with the recursive version to
prove that the flag can be removed. First we prove
that:

—flag — —(DIQl =A A CIQl =0 A E[Q] #£0)
on termination of ADD; and

~flag = Q #L[Ql

on termination of the do ... od loop.
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When the loop terminates, the only way a zero
polynomial could have been created (with Q = L[Q]) is
if we just deleted the only non-zero term. If we have just
deleted a term then flag is true, otherwise flag is false
and there is no need to test for a constant polynomial.
Similarly, the only way a zero term could be created is
if we have just deleted a constant polynomial, in which
case flag is true. If flag is false on returning from ADD,
there is no need to test for a zero term.

On termination of the loop, if the flag is false, then
there must still be a non-zero exponent term in the Q
list of terms. (Recall that initially, every list of terms
in P and Q contains a constant (zero exponent) term
plus at least one non-zero exponent term). In this case,

Q # LIQl.

On termination of an inner procedure call, if the
flag is false, then we have either just added two con-
stant elements and possibly moved up Q (in which case
E[Q] = 0), or we have just added a list of terms, and
moved up Q. In either case E[Q] = 0.

One final optimisation (missed by Knuth) uses the
fact that C[U[Q]] = C[U[P]] on termination of the loop.
If we do not delete a constant polynomial, then after
the assignment P := U[P], the while loop in Move_Up_Q
must be executed at least once. So we can save a test
by unrolling one execution of the loop in this case.

It should be noted that the arguments stated above
are much easier to state prove in terms of the recursive
version of the program, rather than the original iterat-
ive version. In addition, these facts are not required in
order to transform the iterative version to the recursive
version. We need only a very limited and localised
analysis of the program in order to reach a recursive
equivalent, from which a more extensive analysis be-
comes feasible.

We are now in a position to eliminate flag from the
procedure:

begin
if D[P] = A then while D[Q] # A do Q := D[Q)] od;
ClQ] := CIQ] + CIP]
else ADD £i;
where
proc ADD =
if D[P = A
then while D[Q] # A do Q := D[Q] od;
{EIQ] # 0 = (E[P] = E[Q] A CI[U[P]] = C[U[QI)};
ClQI := CIQ] + CIPI;
if E[Q] = 0 then Move Up_Q fi;
{E[P] =E[Q] A C[U[P]] = C[UIQIN}
else while D[Q] £ A A C[Q] > C[P] do
Q := DIQ] od;
if D[Q] = A Vv C[Q] < C[P] then Insert_Below_Q fi;
P:=D[P]; Q :=DIQJ;
do ADD;
if D[Q] =A A CIQl =0 A E[Q] #£0
then (E[P] = E[Q] A C[U[P]] = C[U[QII};
Delete_Zero_Term fi;
P := L[P];



if E[P] = 0 then exit fi;
Move_Left_Q;
if E[P] # E[Q] then Insert_to_Right fi od;
P := U[P];
if Q = L[Q] then Delete_Const_Poly
else Q i— U[Q] fi;
if UP]=A
then while U[Q] /£ A do Q i~ U[Q] od
else Move Up_Q fi.
end

5.3 Efficiency of the Restructured Algorithm

This version of the program (or its iterative equivalent)
fulfills Knuth’s desire for a cleaned up version, without
loss of efficiency. The cleaned up version does carry out
a small number of extra tests, which Knuth’s version
was able to avoid with the use of tortuous control flow.
However, it also avoids a number of the redundant tests
present in Knuth’s version: for example the repeated
test for a constant polynomial P and the immediate
testing of the new node introduced by Insert_Below_Q.
We have carried out number of empirical tests on
both algorithms, with polynomials of various sizes and
shapes. For these tests we measure “efficiency” by
counting the total number of array accesses; since for
modern RISC processors, main memory access is likely
to be the dominant factor in execution speed.

For the pathological cases where virtually all the
terms in Q are cancelled out by terms in P, our ver-
sion of the algorithm can run up to 10% slower than
Knuth’s. However, for more usual cases, including a
large number of teasts carried out with random poly-
nomials of various shapes and sizes, our version of
the algorithm is consistently faster than Knuth’s, and
averages around 5% faster.

5.4 Add Parameters to the Procedure

With this recursive version it is easy to show that ADD
preserves the values of P and Q. For P the proof is
simple since the only assignments to P are P := D[P],
followed by one or more P := L[P], followed by one
P := UJ[P], which restores P (since for every node
U[L[P]] = U[P]). For Q there are two cases to consider:

1. U[P] = A initially. This is true for the outermost
call only. In this case U[Q] = A is also true
initially. The assignments to Q are one or more
Q := DI[Q] followed by zero or more Q := L[Q]
and then repeatedly assigning Q := U[Q] until
U[Q] = A again. The only node in the Q tree
with a U value of A is the original root, and all
the assignments to Q keep it within a valid tree;

2. U[P] # A initially. This is true for the re-
cursive calls. Within the body of the proced-
ure, ADD is only called with E[Q] E[P] and
Clu[Qll C[U[P]]. The assignments to Q are
one or more Q := D[Q] followed by zero or more
Q := L[Q] followed by one or more Q := U[P]
until C[U[Q]] = C[U[P]] again (where P has now
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been restored to its original value). This will
resore Qs original value since each “level” in the
P and Q trees have different C values; so Q must
be returned to the same “level” and the “down
... left ... up” sequence means that Q must be
at the same position in that level.

Since P and Q are both preserved by ADD, they can be
turned into parameters, and the code for “restoring” P
and Q can be deleted. We get:
begin
if D[P] = A then while D[Q] # A do Q := D[Q] od;

CIQI == CIQ] + CI[P]

while U[Q] £ A do Q :— U[Q] od

else ADD(P, Q) fi;

where
proc ADD(P,Q) =
if D[P = A
then while DIQ] # A do Q = DIQ] od;
(EIQI #£ 0 = (E[P] = EIQ] A CIUIPII = CIUIQI)};
ClQI := CIQ] + CIPI;
else while D[Q] # A A C[Q] > C[P] do

Q = DIQl od;
if D[Q] = A Vv C[Q] < C[P] then Insert_Below_Q fi;
P:=D[P]; Q :=DIQJ;
do ADD(P,Q);
EDIQI=AACIQI =0 A E[Q]#0
then (E[P] = EIQ] A CIU[P)] = CIUIQ);
Delete_Zero_Term fi;
P := L[P];
if E[P] = 0 then exit fi;
Move_Left_Q;
if E[P] # E[Q] then Insert_to_Right fi od;
if Q = L[Q] then Delete_Const_Poly fi.
end

With the parameterised version, it is no longer neces-
sary to treat a constant polynomial in P as a special
case. If P is a constant polynomial, then ADD(P, Q) is
equivalent to:

var Qo :=Q:

while D[Q] # A do Q := DIQ) od;

ClQJ := CIQl + C[PJ;

Q:=Qo end

which gives the correct result.

6 Introduce Abstract Data Types

The abstract data type “polynomial” is defined inform-
ally by the equation:

W)
P {<x, b

where v is the value of the constant polynomial, x is the
symbol of the non-constant polynomial, and t is the list
of terms for the non-constant polynomial.

if p is a constant polynomial

otherwise

Each term in the list t is of the form {e,c) where
e is the exponent of this term and c is the coefficient
(which is another polynomial whose variables, if any,



are smaller than x). The first term always has a zero
exponent, and the coefficient of the first term only may
be a zero polynomial (i.e. (0)). There is at least one
other term, and all other terms have non-zero expo-
nents and coeflicients, and are in order of increasing
exponents. So t is of the form:

t={(0,co0),{er,c1),..., (e, cx))
where k > 1 and 0 < e7 < --- < e and ¢; # (0) for
1<ign
More formally, we define the set of abstract polyno-

mials as follows:

Definition 6.1 Abstract Polynomials. Suppose we
have an ordered set VARS of variable names, and a set

VALS of values. Define:
POLYS =, [ J PoOLYS™

n<<w

where

POLYS® =__ {(v)| v e VALS}

is the set of constant polynomials, and for each n > 0

POLYS™' =__ POLYS™U
{{x,t) | x € VARS A t € TERMS™
A VLT <) Yy evars(tfil[2]).y < x}
The set TERMS™ is the set of term lists which use
elements of POLYS™ as coefficients:
TERMS™ =, {((0,co),(e1,c1),, (e, c)) |
k>0 A Vi,1<1igk ¢k €POLYS™

/\0<€1<"'<€k}

The function vars(p) returns the set of variables used
in polynomial p:

@ if p=(v)

{xju U vars(ci) otherwise
ogigk

vars(p) =,

Now we can define the abstraction function poly(P)
which returns the abstract polynomial represented by
the pointer P and the current values of arrays E, C, L,

R, U and D:

Definition 6.2 The polynomial abstraction function:

oly(P) = (CIPI} if D[P] = A
POYITY Zoe ) (CIP], terms(DIP])) if DIP] # A
where
terms(P) =__ term % ({P) + list(P,L, P))

The notation term #* L denotes the list formed by
applying the function term to each element of lList L.
The term function is defined:

term(P) =, (E[P], poly(C[PI])}

For abstract polynomials we define the following
functions:

true if p is constant, i.e. £(p) =1

false otherwise

const?(p) =, {

v(p) =, variable of p =7p[l]

c(p) =,r value of the constant poly = pl[1]
T(p) =, list of terms for p =7pl2]

ei(p) =, exponent of the ith term = p[2][il[1]
Ci(p) =g coefficient of the ith term = p[2][i][2]

7 Adding Abstract Variables

The first step towards creating an equivalent abstract
program is to “build the scaffolding” by adding abstract
variables p, g and 1 to the program as ghost variables.
These are variables which are assigned to within the
program, but (at the moment) their values are never
referenced, so they can have no effect on the behaviour
of the program. We assume the following invariant is
true at the beginning of ADD and add assignments to
ensure that it is true before the recursive call:

p =poly(P) A g=poly(Q)
We will also add assignments to 1 so that on termination
T = poly(Q).

It is convenient to replace the two inner while loops
by the equivalent tail recursions:

if D[PI=A
then if D[Q] # A
then Q := D[Q]; g :=co(qo); ADD(P,Q);

r:={c
elsif D[Q] #A A C

C[P]
then Q := DI[QI]; g :=colqo); ADD(P,Q);
T:={v(qo),{{eo(qo), ™)) H T(qo)l2..)

else if DIQ] = A v CIQ] < C[P)
then Insert_Below_Q; ¢ :=
P:=D[P]; Q :=DIQJ;
var i:=1,j:=1,t:=T(qo):
do p :=ci(po); d :=tlj];
ADD(P,Q);
ifD[QI=A A C[Ql=0 A E[Q] #0
then Delete_Zero_Term:;
te=t[1.. =1 Htj+1.]
else t[j][2] :=r fi;
P:=L[P;i:=1—1;
if i =0 then i:=¢£(T(po)) fi;
if E[P] = 0 then exit fi;
do Q:=L[QLj:==j—T1;
if j = 0 then j := {(t) fi;
if £/Q] < E[P] then exit fi od;
if E[P] £ E[Q]
then Insert_to_Right;
it — 1] 4 ((ei(po), ()
+tlj. ] i od;



if Q = L[Q] then Delete_Const_Poly; 1 := {t[1][2]}
else 1:= (v(po),t) fi fi end.

With this version, the abstract variables p, q, v etc.
are pure ghost variables which have no effect on the
operation of the program. But now that we have both
abstract and concrete variables available, we can work
through the program, replacing references to concrete
variables by the equivalent references to abstract vari-
ables. For example the test D[P] = A is equivalent to
the test const?(p) given that p = poly(P). The effect is
to “demolish the building” leaving the abstract
folding” to hold everything up. This “ghost variables”
technique has been used for program development in
Broy & Pepper (1982), Jorring & Scherlis (1987), Wile
(1981). Assuming that what we are really interested in

“scaf-

is the r result for a given p and ¢, we can delete the
concrete variables from the procedure to leave an equi-
valent abstract procedure (equivalent as far as its effect
on 1 anyway). The procedure add(p, q) is equivalent to
ADD(P, Q); r:=poly(Q).
proc add(p,q) =
var po :=p,do
if const?(p)
then if —const(q)
then ¢ := co(do); add(p, q);
= (v(do), {{eo(do), 1)) + T(do)[2..])
else 1 := (c(qo) + c(po)) fi
elsif —const?(q) A v(q) > v(p]
then ¢ := co(do); add(p, q);
= (v(dol, {{eo(do), 1)) + T(do)[2..])
else if const?(q) V v(q] <v(p)
then q := (v(po), ({0, o)) fi;
var i:=1,j:=1,t:=T(qo) :

=(:

do p :=ci(po); d :=tlj];
add(p, q};
if const?(r) A c(r)=0 A j>1
then t :=t[1..5 1] H tj+1.1]

else t[j][2] := 7 fi;
i:=1—1; if i=0 then i:={(T(po
if ei(po) = 0 then exit fi;
doj:=j—1; if j =0 then j := {(t) fi;
if t[jl[1] < ei(po) then exit fi od;
if ei(po) # thill1]

) fi;

then t:=t[1..j — 1] H {({ei(po), (0)})
+tlj. ] fi od end;
if ¢(t) = 1 then v := (t[1][2])
else r:= (v(po),t) fi fi end.

The first iteration of the do ...
case, since:

od loop is a special
(1) The loop is guaranteed to execute at
least twice, because every non-constant polynomial has
at least two terms, and (2) For the first iteration we
know that ej(po) = ei1(go) =0 and i =j =1, so both
indexes will “cycle round” on the first iteration, and
will not do so on subsequent iterations. So we unroll the
first iteration and convert the loop to a while loop:
var i:=1,j:=1,t:=T(qo):

add(c1(po),c1(do));

1] := 1

Li={(T(po)); j = L(t);

while i > 1 do

while t[j][1] > ei(po) do j :=j—1 od;
if ei(po) # tljl1]

I

then t:= t[1..5 — 1] 4 ({e:(po), (O))) + t}j. ] s
add(ci(po), tljl);
if const?(r) A c(r) =0

then t:=t[1..j—1] 4 tj+1.]

else t[j][1] :=r fi;
i:=1—1 od end

The while loop is adding two lists of terms. We can

make this behaviour more explicit (and get rid of the
i and j variables) by putting T(po) into t,, T(qo) into
tq and deleting elements from the ends of t, and tq
once they have been dealt with. The new value of t is
built up in a new variable t,, so that t is represented by
tq H tr. Since the loop adds the elements in reverse or-
der, it makes sense to move the add(cy(po),c1(qo)) call
to the end, especially since at this point t, = {c1(po))
and tq :={c1(do),...):

var t, :=T(po), tq := T(do), tr := (} :

=0T (po)); j :=t(s);
while £(t,) > 1 do
while last(tq)[1] > last(t, )[1] do
t, 2P last(tq); tq := butlast(tq) od;

if last(ty, )[1] # last(tq)[1]
then t, 222 (last(t,)[1], (0))
else t, i last(tq); tq := butlast(tq
add(last(t})[2], t-[1](2]);
if const?(r) A c(r) = 0 then t, := t,[2. ]
else t.[1][2] :=r fi;

) fi;

t, := butlast(t,)
add(t,[11[2], tq[1]]2]
tr:={0,7T) H tql2. ] H tr;

od
)i

The next step is to make this while loop into a tail-
recursive procedure which takes t, and tq as argu-
ments, and returns the result in t.. We can apply the
tail-recursion transformation of Section 3.4 to remove

the inner while loop:
proc add(p,q) =
if const?(p)
then if —const(q)

then q := co(q); add(p, q);
ri=(v(q),{{eola),r)) H T(q)[2. ])
else 1:={(c(q) +c(p)) fi

elsif —const?(q) A v(q) > v(p)
then ¢ *Co q); add(p, ql;

(
= (v(a), {(eo (q),r>>)

else g'const"(q) Vv v(q

then q := (v(p),{ fi;
var t := () : add.list(T (p),T(q)) end;
I ¢(t,) — 1 then r :— (t,[1][2])
else 1 := (v(p), t:) fi fi.
proc add list(t,, tq) =
if L(t,) =1
then add (ty, [1][2], t4[1]121};

tr = (0, r) tql2.] + t.

elsif last(tq)[1] > last(t,)

(1]
q); add.|

then t. pusk last(t ist(t,, butlast(tg))
else if last(t,)[1] 7é last (tq)[1]
then t, & (Iast(tp)[]

(o0

else t, 22 last(tq); tq := butlast(ty) fi;
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add(last (t,)(2], t-[1](2]);

if const?(r) A c(r) =0 then t, :=t,[2. ]
else t.[1][2] :=r fi;

t, := butlast(t,);

add_list(t,, tq) fi.

Finally, we can convert the procedures into the
equivalent functions:
funct add(p,q) =
if const?(p)
then if —const(q)

o+
=
o
=
—~
o
I~
=
o
<
o
o —
5]
N oa
[%
ety
0
<
o
=
Nt

else (c(q) + c(p)
else if —const?(q) A

funct addlist(t,,tq)
i e(t,) — 1
then (0, add(t,[11[2], t4[1112)) 4 t4[2. ]
else if last(t, )[1] > last(t, )[1]
then add_list(t,, butlast(tq
else [var 1 := () :
if last(t, )[1] # last(tq
then r := (0}
else 1 :— last(t,)[2];
tq := butlast(tq) fi;
T := add(last(t,)[2], 1);
if const?(r) A c(r) =0
then add_list(butlast(t, ), tq)
else add_ Iist(butlast( 2 ), )

+ ((last(t)[1], 7)) 18

)) + (last(tq))

)]

A final optimisation to add_list is to absorb the state-
ment 1 := add(last(t,)[2], r) into the preceding if state-
ment and avoid adding a zero polynomial.
funct add list(t,, tq) =
i e(t,) — 1
then (0, add(t, [1][2], t4[112])) + tq[2. ]
else if last (tq)[1] > last(t, )[1]
then add_list(t,, butlast(t
else [var 1 := () :
if last(t, )[1] £ last(t)[1]
then r:=last(t,)[2]
else 1 := add(last(t,)[2], last(t
tq := butlast(tq) fi;
if const?(r) A c(r) =0
then add_list(butlast(t,),t
else add_ Iist(butlast(tp),
H ((last(t,)(1],1) B | &

q)) H (last(tq)}

q)[z])§

al
)
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From this version of the program it is a trivial
matter to derive the following specification:

add(p,q) ~pF
{clq) +c(p))
if const(p) A const(q)
(v(a),{{eolq),add(p,co(q)))) # T(q)[2.])
if const(p) A —const(q)
or —|const( ) A —const(q) A v(g) > vip)
add(p, (v(p), ({0, q)))
if =const(p) A —const(q) A v(q) < v(p)
Alp,q)
otherwise
where
(v(p),add-list (T (p), T(q)))
B if £(add_list(T(p), T(q))) >
AP Zor st (T (p), T(a)1]12)
otherwise
and

addlist(tp, tq) =pp
(0,add(t,[1112], tq[1112])) # tql2. ]
if (tp) =1
add_list(t,, butlast(tq)) H (last(tq))
if £(tp) > 1 A last(tq)[1] > last(t,)[1]
AL(ty, tq)

otherwise

where

AL(tv» tq) ~pr
AL (tp, tq, last(ty)[2])
if last(ty,)[1] # last(tq)[1]
AL'(tp, butlast (tq), add(last(t, ) [2], last(tq)[2]))

otherwise
and

Al'(tp, tq, 1) =
add_list (butlast (t,), tq, last(t,)[2])
if const?(r) A ¢(r) =0
add_list (butlast (t,, ), tq) H ({last(t,)[1], 7))

otherwise

DF

8 Conclusion

Reverse engineering in particular, and program analysis
in general, are becoming increasingly important as the
amounts spent on maintaining and enhancing existing
software systems continue to rise year by year. We
claim that reverse engineering based on the applica-
tion of proven semantic-preserving transformations in



a formal wide spectrum language is a practical solution
to the problem. In Ward (1993) we outlined a method
for using formal transformations in reverse engineering.
In this paper the method has been further developed
and applied to a much more challenging example pro-
gram. Although our sample program is only a couple
of pages long, it exhibits a high degree of control flow
complexity (as can be seen in Figure 1) together with a
complicated data structure which is updated as the al-
gorithm progresses. Our approach does not require the
user to develop and prove loop invariants, nor does it
require the user to determine an abstract version of the
program and then verify equivalence. Instead, the first
stages involve the application of general purpose trans-
formations for restructuring, simplification, and intro-
ducing recursion. Because these are general-purpose
transformations, they require no advance knowledge of
the programs behaviour before they can be applied.
This is essential in a reverse engineering application,
since the whole purpose of the exercise is to determine
the behaviour of the program! Once a recursive version
of the program has been arrived at, it becomes possible
to deduce various properties of the program, which
allow further simplifications to take place. The data
structure complexity is dealt with in several stages:
first an abstract data type is developed and abstract
variables are added to the program alongside the “real”
(concrete) variables. At this stage, the abstract vari-
ables are “ghost” variables whose values have no effect
on the program’s operation. It is now possible to de-
termine the relationships between abstract and concrete
variables (these relationships can be proved using local
information rather than requiring global invariants).
One by one, the references to concrete variables are
replaced by equivalent references to abstract variables.
Once all references to concrete variables have been
removed, they become “ghost” variables and can be
eliminated from the program. The result is an abstract
program which is guaranteed to be equivalent to the
original concrete program. This abstract program can
then be further simplified, again using general-purpose
transformations, until a high-level abstract specifica-
tion is arrived at. For our case study, the reverse
engineering process takes the following stages:

1. Restructure;
. Introduce recursion using a flag;
. Remove the flag in the recursive version;

. Add parameters;

2

3

4

5. Add abstract variables;
6. Remove the concrete variables;
7. Restructure;

8. Introduce more recursion;

9

. Rewrite as a recursive specification.
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