
Reverse Engineering through Formal TransformationKnuths \Polynomial Addition" AlgorithmM.P. WardMartin.Ward@durham.ac.ukComputer Science DeptScience LabsSouth RdDurham DH1 3LEPhone: 091 374 3655August 12, 1994AbstractIn this paper we will take a detailed look at a larger example of program analysis by transformation. We willbe considering Algorithm 2.3.3.A from Knuth's \Fundamental Algorithms" Knuth (1968) (P.357) which is analgorithm for the addition of polynomials represented using four-directional links. Knuth (1974) describes thisas having \a complicated structure with excessively unrestrained goto statements" and goes on to say \I hopesomeday to see the algorithm cleaned up without loss of its e�ciency". Our aim is to manipulate the program,using semantics-preserving operations, into an equivalent high-level speci�cation. The transformations are carriedout in the WSL language, a \wide spectrum language" which includes both low-level program operations andhigh level speci�cations, and which has been speci�cally designed to be easy to transform.1 IntroductionThere has been much research in recent years on theformal development of programs by re�ning a spe-ci�cation to an executable program via a sequence ofintermediate stages, where each stage is proved to beequivalent to the previous one, and hence the �nalprogram is a correct implementation of the speci�ca-tion. However, there has been very little work on ap-plying program transformations to reverse-engineeringand program understanding. This may be becauseof the considerable technical di�culties involved: inparticular, a re�nement method has total control overthe structure and organisation of the �nal program,while a reverse-engineering method has to cope withany code that gets thrown at it: including unstructured(\spaghetti") code, poor documentation, misuse of datastructures, programming \tricks", and undiscoverederrors. A particular problem with most re�nementmethods is that the introduction of a loop constructrequires the user to determine a suitable invariant forthe loop, together with a variant expression, and toprove:1. That the invariant is preserved by the body of theloop;2. The variant function is decreased by the body ofthe loop;3. The invariant plus terminating condition are suf-�cient to implement the speci�cation.

To use this method for reverse engineering would re-quire the user to determine the invariants for arbitrary(possibly large and complex) loop statements. This isextremely di�cult to do for all but the smallest \toy"programs. A di�erent approach to reverse engineeringis therefore required: the approach presented in thispaper does not require the use of loop invariants todeal with arbitrary loops, (although if invariants areavailable, they can provide useful information).There are several distinct advantages to a trans-formational approach to program development and re-verse engineering:� The �nal developed program, or derived speci�c-ation, is correct by construction;� Transformations can be described by semanticrules and can thus by used for a whole class ofproblems and situations;� Due to formality, the whole process of programdevelopment, and reverse engineering, can be sup-ported by the computer. The computer can checkthe correctness conditions for each step, apply thetransformation, store di�erent versions, attachcomments and documentation to code, preservethe links between code and speci�cations etc.;� Provided the set of transformations is su�cientlypowerful, and is capable of dealing with all thelow-level constructs in the language, then it be-comes possible to use program transformations as1



a means of restructuring and reverse-engineeringexisting source code (which has not been de-veloped in accordance with any particular formalmethod);� The user does not have to fully understand thecode before starting to transform it: the programcan be transformed into a more understandableform before it is analysed. This (parital) un-derstanding is then used as a guide in decidingwhat to do next. Thus transformations provide apowerful program understanding tool.Our aim in this paper is to demonstrate that ourprogram transformation theory, based on weakest pre-conditions and in�nitary logic, and described in Ward(1989), Ward (1993) can form the basis for a method forreverse engineering programs with complex data struc-tures and control 
ow. This transformation theory isused for forward engineering (transforming a high-levelabstract speci�cation into an e�cient implementation)in Ward (1992b) and Priestley & Ward (1993).The reverse engineering method is a heuristicmethod based on the selection and application of formaltransformations, with tool support to check correctnessconditions, apply the transformations and store theresults. No reverse engineering process can be totallyautomated, for fundamental theoretical reasons, but aswe gain more experience with this approach, we are�nding that more and more of the process is capable ofbeing automated.In Ward (1993) we present a simple example ofprogram analysis by transformation. The paper de-scribes a formal method for reverse engineering existingcode which uses program transformations to restructurethe code and extract high-level speci�cations. By a\speci�cation" we mean a su�ciently precise de�ni-tion of the input-output behaviour of the program.A \su�ciently precise" description is one which canbe expressed in �rst order logic and set theory: thisincludes Z, VDM Jones (1986), and all other formalspeci�cation languages. We did not consider timingconstraints in that paper: although the method hasbeen extended to model time as an extra output of aprogram Younger & Ward (1993).In this paper we treat a much more challengingexample than the one in Ward (1993): a program whichexhibits a high degree of both control 
ow complexityand data representation complexity. The program isAlgorithm 2.3.3.A from Knuth (1968) (P.357) which isan algorithm for the addition of polynomials in severalvariables. The polynomials are represented in a treestructure using four-directional links. Knuth describesthis as having \a complicated structure with excessivelyunrestrained goto statements" Knuth (1974) and goeson to say \I hope someday to see the algorithm cleanedup without loss of its e�ciency".

1.1 Transformation MethodsThe Re�nement Calculus approach to program deriv-ation Hoare et al. (1987), Morgan (1990), Morgan,Robinson & Gardiner (1988) is super�cially similar toour program transformation method. It is based ona wide spectrum language, using Morgan's speci�ca-tion statement Morgan (1988) and Dijkstra's guardedcommands Dijkstra (1976). However, this language hasvery limited programming constructs: lacking loopswith multiple exits, action systems with a \termin-ating" action, and side-e�ects. These extensions areessential if transformations are to be used for reverseengineering. The most serious limitation is that thetransformations for introducing and manipulating loopsrequire that any loops introduced must be accompan-ied by suitable invariant conditions and variant func-tions. This makes the method unsuitable for a practicalreverse-engineering method.A second approach to transformational develop-ment, which is generally favoured in the Z communityand elsewhere, is to allow the user to select the next re-�nement step (for example, introducing a loop) at eachstage in the process, rather than selecting a transform-ation to be applied to the current step. Each step willtherefore carry with it a set of proof obligations, whichare theorems which must be proved for the re�nementstep to be valid. Systems such as mural Jones et al.(1991), RAISE Neilson et al. (1989) and the B-tool Ab-rial et al. (1991) take this approach. These systems thushave a much greater emphasis on proofs, rather thanthe selection and application of transformation rules.Discharging these proof obligations can often involve alot of tedious work, and much e�ort is being exertedto apply automatic theorem provers to aid with thesimpler proofs. However, Sennett (1990) indicates thatfor \real" sized programs it is impractical to dischargemuch more than a tiny fraction of the proof obligations.He presents a case study of the development of a simplealgorithm, for which the implementation of one functiongave rise to over one hundred theorems which requiredproofs. Larger programs will require many more proofs.In practice, since few if any of these proofs will berigorously carried out, what claims to be a formalmethod for program development turns out to be aformal method for program speci�cation, together withan informal development method. For this approachto be used as a reverse-engineering method, it would benecessary to discover suitable loop invariants for each ofthe loops in the given program, and this is very di�cultin general, especially for programs which have not beendeveloped according to some structured programmingmethod.The well known Munich project CIP (Computer-aided Intuition-guided Programming) Bauer et al.(1989), Bauer & (The CIP Language Group) (1985),Bauer & (The CIP System Group) (1987) uses a wide-spectrum language based on algebraic speci�cationsand an applicative kernel language. They provide a2



large library of transformations, and an engine forperforming transformations and discharging proof ob-ligations. The kernel is a simple applicative languagewhich uses only function calls and the conditional (if : : :then) statement. This language is provided with a setof \axiomatic transformations" consisting of: �-, �-and�-reduction of the Lambda calculus Church (1951), thede�nition of the if-statement, and some error axioms.Two programs are considered \equivalent" if one canbe reduced to the other by a sequence of axiomatictransformations. The core language is extended untilit resembles a functional programming language. Im-perative constructs (variables, assignment, procedures,while-loops etc.) are introduced by de�ning themin terms of this \applicative core" and giving furtheraxioms which enable the new constructs to be reducedto those already de�ned. Similar methods are used inBroy, Gnatz & Wirsig (1979), Pepper (1979), Wossneret al. (1979) and Bauer &Wossner (1982). However thisapproach does have some problems with the numbers ofaxioms required, and the di�culty of determining theexact correctness conditions of transformations. Theseproblems are greatly exacerbated when imperative con-structs are added to the system.Problems with purely algebraic speci�cation meth-ods have been noted by Majester (1977). She presentsan abstract data type with a simple constructive de�n-ition, but which requires several in�nite sets of axiomsto de�ne algebraically. In addition, it is important forany algebraic speci�cation to be consistent, and theusual method of proving consistency is to exhibit amodel of the axioms. Since every algebraic speci�cationrequires a model, while not every model can be speci�edalgebraically, there seems to be some advantages inrejecting algebraic speci�cations and working directlywith models.1.2 Our ApproachIn developing a model based theory of semantic equi-valence, we use the popular approach of de�ning a core\kernel" language with denotational semantics, andpermitting de�nitional extensions in terms of the basicconstructs. In contrast to other work (for example,Bauer et al. (1989), Bird (1988), Partsch (1984)) we donot use a purely applicative kernel; instead, the conceptof state is included, using a speci�cation statementwhich also allows speci�cations expressed in �rst orderlogic as part of the language, thus providing a genuinewide spectrum language.Fundamental to our approach is the use of in�nitary�rst order logic (see Karp (1964)) both to express theweakest preconditions of programs Dijkstra (1976) andto de�ne assertions and guards in the kernel language.Engeler (1968) was the �rst to use in�nitary logicto describe properties of programs; Back (1980) usedsuch a logic to express the weakest precondition ofa program as a logical formula. His kernel languagewas limited to simple iterative programs. We use a

di�erent kernel language which includes recursion andguards, so that Back's language is a subset of ours. Weshow that the introduction of in�nitary logic as partof the language (rather than just the metalanguage ofweakest preconditions), together with a combination ofproof methods using both denotational semantics andweakest preconditions, is a powerful theoretical toolwhich allows us to prove some general transformationsand representation theorems Ward (1993).Over the last eight years we have been developing awide spectrum language (called WSL), in parallel withthe development of a transformation theory and proofmethods, together with methods for program develop-ment and inverse engineering. Recently an interactiveprogram transformation system (called FermaT) hasbeen developed which is designed to automate muchof the process of transforming code into speci�cationsand speci�cations into code. This process can never becompletely automated|there are many ways of writingthe speci�cation of a program, several of which may beuseful for di�erent purposes. So the tool must workinteractively with the tedious checking and manipula-tion carried out automatically, while the maintainerprovides high-level \guidance" to the transformationprocess. In the course of the development of the proto-type, we have been able to capture much of the know-ledge and expertise that we have developed throughmanual experiments, and case studies with earlier ver-sions of the tool, and incorporate this knowledge withinthe tool itself. For example, restructuring a regularaction system (a collection of gotos and labels) can nowbe handled completely automatically through a singletransformation.Any practical program transformation system forreverse engineering has to meet the following require-ments:1. It has to be able to cope with all the usual pro-gramming constructs: loops with exits from themiddle, gotos, recursion etc.;2. Techniques are needed for dealing with variablealiasing, side-e�ects and pointers;3. It cannot be assumed that the code was developed(or maintained) according to a particular pro-gramming method: real code (\warts and all")must be acceptable to the system: in particular,signi�cant restructuring may be required beforethe real reverse engineering can take place. It isimportant that this restructuring can be carriedout automatically or semi-automatically by thetransformation system;4. It should be based on a formal language andformal transformation theory, so that it is possibleto prove that all the transformations used aresemantic-preserving. This allows a high degreeof con�dence to be placed in the results;5. The formal language should ideally be a widespectrum language which can cope with both3



low-level constructs such as gotos, and high-levelconstructs, including nonexecutable speci�cationsexpressed in �rst order logic and set theory;6. Translators are required from the source lan-guage(s) to the formal language: many largesoftware systems are written in a combination ofdi�erent languages;7. It must be possible to apply transformationswithout needing to understand the program �rst:this is so that transformations can be used as aprogram understanding and reverse engineeringtool;8. It must be possible to extract a module, or smal-ler component, from the system for analysis andtransformation, with the transformations guar-anteed to preserve all the interactions of thatcomponent with the rest of the system. Thisallows the maintainer to concentrate on \mainten-ance hot spots" in the system, without having toprocess the entire source code (which may amountto millions of lines);9. An extensive catalogue of proven transformationsis required, with mechanically checkable correct-ness conditions and some means of composingtransformations to develop new ones;10. An interactive interface which pretty-prints eachversion on the display will allow the user to in-stantly see the structure of the program from theindentation structure;11. The correctness of the transformation system it-self must be well-established, since all resultsdepend of the transformations being implementedcorrectly;12. A method for reverse engineering by programtransformation needs to be developed alongsidethe transformation system.1.3 The FermaT ProjectThe WSL language and transformation theory formsthe basis of the FermaT project Bull (1990), Ward, Cal-liss & Munro (1989) at Durham University and DurhamSystems Engineering Ltd. which aims to develop an in-dustrial strength program transformation tool for soft-ware maintenance, reverse engineering and migrationbetween programming languages (for example, Assem-bler to COBOL). The tool consists of a structure editor,a browser and pretty-printer, a transformation engineand library of proven transformations, and a collectionof translators for various source languages.The initial prototype tool was developed as part ofan Alvey project at the University of Durham Ward,Calliss & Munro (1989). This work on applying pro-gram transformation theory to software maintenanceformed the basis for a joint research project betweenthe University of Durham, CSM Ltd and IBM UKLtd. whose aim was to develop a tool to interactively

transform assembly code into high-level language codeand Z speci�cations. A prototype translator has beencompleted and tested on sample sections of up to 80,000lines assembler code, taken from very large commercialassembler systems. One particular module had beenrepeatedly modi�ed over a period of many years untilthe control 
ow structure had become highly convo-luted. Using the prototype translator and ReFormtool we were able to transform this into a hierarchyof (single-entry, single-exit) subroutines resulting in amodule which was slightly shorter and considerablyeasier to read and maintain. The transformed versionwas hand-translated back into Assembler which (after�xing a single mis-translated instruction) \worked �rsttime". See Ward & Bennett (1993), Ward & Bennett(1994) for a description of this work and the methodsused.For the next version of the tool (i.e. FermaT it-self) we decided to extend WSL to add domain-speci�cconstructs, creating a language for writing programtransformations. This was called METAWSL. The ex-tensions include an abstract data type for representingprograms as tree structures and constructs for patternmatching, pattern �lling and iterating over componentsof a program structure. The \transformation engine" ofFermaT is implemented entirely inMETAWSL. The im-plementation of METAWSL involves a translator fromMETAWSL to LISP, a small LISP runtime library (forthe main abstract data types) and a WSL runtimelibrary (for the high-levelMETAWSL constructs such asifmatch, foreach, �ll etc.). One aim was so that thetool could be used to maintain its own source code: andthis has already proved possible, with transformationsbeing applied to simplify the source code for othertransformations! Another aim was to test our theorieson language oriented programming (Ward (1994)): weexpected to see a reduction in the total amount ofsource code required to implement a more e�cient,more powerful and more rugged system. We also anti-cipated noticeable improvements in maintainability andportability. These expectations have been ful�lled, andwe are achieving a high degree of functionality from asmall total amount of easily maintainable code: thecurrent prototype consists of around 16,000 lines ofMETAWSL and LISP code, while the previous versionrequired over 100,000 lines of LISP.The tool is designed to be interactive because thereverse engineering process can never be completelyautomated|there are many ways of writing the spe-ci�cation of a program, several of which may be usefulfor di�erent purposes. So the tool must work interact-ively, with the tedious checking and manipulation car-ried out automatically, while the maintainer provideshigh-level \guidance" to the transformation process.In the course of the development of the prototype,we have been able to capture much of the knowledgeand expertise that we have developed through manualexperiments and case studies with earlier versions of4



the tool, and incorporate this knowledge within thetool itself. For example, restructuring a regular ac-tion system (a collection of gotos and labels) can nowbe handled completely automatically through a singletransformation. See Ward (1994) for more details.FermaT can also be used as a software developmentsystem (but this is not the focus of this paper): startingwith a high-level speci�cation expressed in set-theoryand logic notation (similar to Z orVDM Jones (1986)),the user can successively transform it into an e�cient,executable program. See Priestley & Ward (1993),Ward (1992b) for examples of program development inWSL using formal transformations. Within FermaT,transformations are themselves coded in an extensionof WSL called METAWSL: in fact, much of the codefor the prototype is written in WSL, and this makes itpossible to use the system to maintain its own code.2 The Language WSLWSL is the \Wide Spectrum Language" used in ourprogram transformation work, which includes low-levelprogramming constructs and high-level abstract spe-ci�cations within a single language. By working withina single formal language we are able to prove that aprogram correctly implements a speci�cation, or thata speci�cation correctly captures the behaviour of aprogram, by means of formal transformations in thelanguage. We don't have to develop transformationsbetween the \programming" and \speci�cation" lan-guages. An added advantage is that di�erent partsof the program can be expressed at di�erent levels ofabstraction, if required.A program transformation is an operation whichmodi�es a program into a di�erent form which hasthe same external behaviour (it is equivalent under aprecisely de�ned denotational semantics). Since bothprograms and speci�cations are part of the same lan-guage, transformations can be used to demonstrate thata given program is a correct implementation of a givenspeci�cation. We write S1 � S2 if statements S1 andS2 are semantically equivalent.A re�nement is an operation which modi�es a pro-gram to make its behaviour more de�ned and/or moredeterministic. Typically, the author of a speci�cationwill allow some latitude to the implementor, by re-stricting the initial states for which the speci�cationis de�ned, or by de�ning a nondeterministic behaviour(for example, the program is speci�ed to calculate aroot of an equation, but is allowed to choose whichof several roots it returns). In this case, a typicalimplementation will be a re�nement of the speci�ca-tion rather than a strict equivalence. The opposite ofre�nement is abstraction: we say that a speci�cation isan abstraction of a program which implements it. SeeMorgan (1990), Morgan, Robinson & Gardiner (1988)and Back (1980) for a description of re�nement. We

write S1 � S2 if S2 is a re�nement of S1, or if S1 is anabstraction of S2.2.1 Syntax and SemanticsThe syntax and semantics of WSL are described inPriestley & Ward (1993), Ward (1989), Ward (1993),Ward (1993) so will not be discussed in detail here.Note that we do not distinguish between arrays andsequences, both the \array notations" and \sequencenotations" can be used on the same objects. Forexample if a is the sequence ha1; a2; : : : ; ani then:� `(a) denotes the length of the sequence a;� a[i] is the ith element ai;� a[i : : j] denotes the subsequencehai; ai+1; : : : ; aji;� last(a) denotes the element a[`(a)];� butlast(a) denotes the subsequencea[1 : : `(a) - 1];� reverse(a) denotes the sequence han; : : : ; a2; a1i;� set(a) denotes the set of elements in thesequence, i.e. fa1; a2; : : : ; ang;� The statement x pop � a sets x to a1 and a toha2; a3; : : : ; ani;� The statement a push � x sets a tohx; a1; a2; : : : ; ani;� The statement x last � a sets x to an and a toha1; a2; : : : ; an-1i.The concatenation of two sequences is written a ++ b.Most of the constructs in WSL, for example ifstatements, while loops, procedures and functions, arecommon to many programming languages. Howeverthere are some features relating to the \speci�cationlevel" of the language which are unusual.Expressions and conditions (formulae) in WSL aretaken directly from �rst order logic: in fact, an in�nit-ary �rst order logic (see Karp (1964) for details), whichallows countably in�nite disjunctions and conjunctions,but this is not essential for this paper. This meansthat statements in WSL can include existential anduniversal quanti�cation over in�nite sets, and similar(non-executable) operations.An example of a non-executable operation is thenondeterministic assignment statement (or speci�ca-tion statement) hx1; : : : ; xni := hx01; : : : ; x0ni:Q whichassigns new values to the variables x1; : : : ; xn. In theformula Q, xi represent the old values and x0i representthe new values. The new values are chosen so that Qwill be true, then they are assigned to the variables. Ifthere are several sets of values which satisfy Q then oneset is chosen nondeterministically. If there are no valueswhich satisfy Q then the statement does not terminate.For example, the assignment hxi := hx0i:(x = 2:x0)halves x if it is even and aborts if x is odd. If the5



sequence contains one variable then the sequence brack-ets may be omitted, for example: x := x0:(x = 2:x0).The assignment x := x0:(y = 0) assigns an arbitraryvalue to x if y = 0 initially, and aborts if y 6= 0initially: it does not change the value of y. Anotherexample is the statement x := x0:(x0 2 B) which picksan arbitrary element of the set B and assigns it to x(without changing B). The statement aborts if B isempty, while if B is a singleton set, then there is onlyone possible �nal value for x.The simple assignment hx1; : : : ; xni := he1; : : : ; eniassigns the values of the expressions ei to the variablesxi. The assignments are carried out simultaneously, sofor example hx; yi := hy; xi swaps the values of x andy. The single assignment hxi := hei can be abbreviatedto x := e.The local variable statement var x : S end in-troduces a new local variable x whose initial value isarbitrary, and which only exists while the statement Sis executed. If x also exists as a global variable, thenits value is saved and restored at the end of the block.A collection of local variables can be introduced andinitialised using the notation var hx1 := e1; : : : ; xn :=eni : S end.An action is a parameterless procedure acting onglobal variables (cf Arsac (1982a), Arsac (1982b)). Itis written in the form A �S. where A is a statement variable (the name of theaction) and S is a statement (the action body). A setof mutually recursive actions is called an action system.There may sometimes be a special action Z, executionof which causes termination of the whole action systemeven if there are un�nished recursive calls. An occur-rence of a statement call X within the action body is acall of another action.An action system is written as follows, with the �rstaction to be executed named at the beginning. In thisexample, the system starts by calling A1:actions A1 :A1 �S1.A2 �S2.: : :An �Sn. endactionsFor example, this action system is equivalent to thewhile loop while B do S od:actions A :A �if :B then call Z �;S; call A. endactionsWith this action system, each action call must lead toanother action call, so the system can only terminateby calling the Z action (which causes immediate ter-mination). Such action systems are called regular.

For a given set X, the nondeterministic iterationover X is written for i 2 X do S od. This executesthe body S once for each element in X, with i takingon the value of each element. It is equivalent to thefollowing:var hi := 0; X0 := Xi :while X0 6= ? doi := i0:(i0 2 X0); X0 := X0 n fig;S od endFor a sequence X, the iteration over the elementsof X is written for x pop � X do S od. The elementsare taken in their order in the sequence, so the loop isdeterministic. The loop is equivalent to:var hi := 0; X0 := Xi :while X0 6= ? doi pop � X0;S od end3 Example TransformationsIn this section we give some examples of the transform-ations to be used later in the paper.3.1 Loop InversionThe �rst example is a simple restructuring transforma-tion. Suppose statement S1 is a proper sequence, i.e. itcannot cause termination of an enclosing loop. Then ifS1 appears at the beginning of a loop body, we can takeit out of the loop provided we insert a second copy of S1at the end of the loop. In other words, the statementdo S1; S2 od is equivalent to S1; do S2; S1 od.This transformation is useful in both directions, forexample we may convert a loop with an exit in themiddle to a while loop:do S1; if B then exit �; S2 od�S1; while :B do S2; S1 odwhen S1 and S2 are both proper sequences. Or wemay use it in the reverse direction to reduce the size ofa program by merging two copies of S1.3.2 Loop UnrollingThe simplest loop unrolling transformation is the fol-lowing:while B do S od�if B then S; while B do S od �This simply unrolls the �rst step of the loop. The nexttransformation unrolls a step of the loop within the loopbody. For any condition Q:while B do S od�while B do S; if B ^ Q then S � odThis can be useful when the body S is able to besimpli�ed when condition Q is true. An extension of6



this transformation is to unroll an arbitrary number ofiterations into the loop body:while B do S od�while B do S; while B ^ Q do S od odAs an example of the e�ect of several unrollingoperations, consider the following program schema:while B doif B1 then S1elsf B2 then S2else S3 � odwhere executing S1 makes B2 true and B1 false (i.e.fB1g; S1 6 fB1g; S1; fB2 ^ :B1g), and S2 is theonly statement which can a�ect condition B1. If weselectively unroll after S2, then B will still be true, B1will be false, and B2 will be true. So we can prune theinserted if statement to get:while B doif B1 then S1elsf B2 then S2; S3else S3 � odSince S1 does not a�ect B, we can selectively unrollthe entire loop after S1 under the condition B ^ B1(which reduces to B1 since B is true initially and nota�ected by S1):while B doif B1 then S1; while B1 do S1 odelsf B2 then S2; S3else S3 � odConvert the elsf to else if, take out S3, and roll up onestep of the inner while loop to get:while B dowhile B1 do S1 odif :B2 then S2 �;S3 od3.3 General Recursion RemovalOur next transformation is a general transformationfrom a recursive procedure into an equivalent iterativeprocedure, using a stack. It can also be applied inreverse, to turn an iterative program into an equivalentrecursive procedure (which may well be easier to under-stand). The theorem was presented in Ward (1992a),and the proof may be found in Ward (1991).Suppose we have a recursive procedure whose bodyis a regular action system in the following form:proc F(x) �actions A1 :A1 �S1.: : :Ai �Si.: : :Bj �

Sj0; F(gj1(x)); Sj1; F(gj2(x)); : : :F(gjnj(x)); Sjnj .: : : endactions.where the statements Sj1; : : : ;Sjnj preserve the value ofx and no S contains a call to F (i.e. all the calls to F arelisted explicitly in the Bj actions) and the statementsSj0;Sj1 : : : ;Sjnj-1 contain no action calls. There areM+N actions in total: A1; : : : ; AM; B1; : : : ; BN. Notethat the since the action system is regular, it can onlybe terminated by executing call Z, which will terminatethe current invocation of the procedure.The aim is to remove the recursion by introducinga local stack K which records \postponed" operations:When a recursive call is required we \postpone" it bypushing the pair h0; ei onto K (where e is the parameterrequired for the recursive call). Execution of the state-ments Sjk also has to be postponed (since they occurbetween recursive calls), we record the postponementof Sjk by pushing hhj; ki; xi onto K. Where the proced-ure body would normally terminate (by calling Z) weinstead call a new action F̂ which pops the top item o�K and carries out the postponed operation. If we callF̂ with the stack empty then all postponed operationshave been completed and the procedure terminates bycalling Z.Theorem 3.1 The procedure F(x) above is equivalentto the following iterative procedure which uses a newlocal stack K and a new local variable m:proc F0(x) �var K := hi;m :actions A1 :A1 �S1[call F̂=call Z].: : :Ai �Si[call F̂=call Z].: : :Bj �Sj0; K := hh0; gj1(x)i; hhj; 1i; xi; h0; gj2(x)i; : : :h0; gjnj(x)i; hhj; nji; xii ++ K;call F̂.: : :F̂ �if K = hithen call Zelse hm;xi pop � K;if m = 0 ! call A1ut : : :ut m = hj; ki ! Sjk[call F̂=call Z]: : : � �. endactions end.By unfolding the calls to F̂ in Bj we can avoid pushingand popping h0; gj1(x)i onto K and instead, call A1directly. So we have the corollary:Corollary 3.2 F(x) is equivalent to:proc F(x) �7



var K := hi;m := 0 :actions A1 :: : :Ai �Si[call F̂=call Z].: : :Bj �Sj0; K := hhhj; 1i; xi; h0; gj2(x)i; : : : ;h0; gjnj(x)i; hhj; nji; xii ++ K;x := gj1(x); call A1.: : :F̂ �if K = hithen call Zelse hm;xi pop � K;if m = 0 ! call A1ut : : :ut m = hj; ki ! Sjk[call F̂=call Z]: : : � �. endactions end.Note that any procedure F(x) can be restructured intothe form of Theorem 3.1; in fact there may be severaldi�erent ways of structuring F(x) which meet thesecriteria. The simplest such restructuring is to puteach recursive call into its own B action (with no otherstatements apart from a call to the next action). Sinceit is always applicable, this is the method used by mostcompilers. See Ward (1992a) for further applications ofthe theorem.3.4 Tail RecursionA simple case of tail recursion is the following:proc F(x) � if B1 then S1; F(y)else S2 �.where S1 and S2 may both call F(). The terminal callcan be implemented with a while loop as follows:proc F(x) � while B1 do S1; x := y od; S2.A slightly more complicated example:proc F(x) � if B1 then if B2 then S1; F(y)else S2 �else S3 �.is equivalent to:proc F(x) � while B1 ^ B2 do S1; x := y od;if B1 then S2 else S3 �.4 Polynomial AdditionA polynomial P in several variables may be expressedas: P = X06j6ngjxej(1)where x is a variable (the primary variable), n > 0,0 = e0 < e1 < � � � < en are non-negative integersand for each 0 � j � n, gj (the coe�cient of the jthterm) is either a number or a polynomial whose primary

variable is alphabetically less than x. Each polynomialhas a constant term (which may have coe�cient zero)and one or more other terms (which must have non-zerocoe�cients).This de�nition lends itself to a tree structure, Knuthuses nodes with four links each to implement the treestructure, we will represent these nodes using the fol-lowing six arrays:For each integer i:D[i] is either � (for a constant polynomial), or pointsdown the tree to the constant term of a circularly-linked list of terms.C[i] If D[i] = � then C[i] is a number (the value of thecoe�cient), otherwise it is a symbol (the variableof the polynomial).E[i] is the value of the exponent for this term.L[i] points to the previous term in the circular list.R[i] points to the next term in the circular list.U[i] points up the tree, from each term of a polynomialto the polynomial itself.The \next term" is either the term with the nextlargest exponent, or the term with zero exponent. Thealgorithm assumes that there is a \su�ciently large"number of free nodes available on the stack avail.The root node P of a polynomial stores the followingvalues:C[P] is either the constant value (for a constant poly-nomial) or the primary variable.E[P] is zero.L[P] points to P.R[P] points to P.U[P] is �: an otherwise unused pointer value.D[P] is either � (for a constant polynomial) or pointsto the constant term of a circular list of terms.If D[P] 6= � then D[P] is the �rst term of a list,E[D[P]] = 0, the term L[D[P]] has the largest exponent(which must be greater than zero), the last term P0 inthe list (with the lowest exponent) can be recognisedby the fact that E[L[P0]] = 0.4.1 Knuth's AlgorithmKnuth (1968) includes an algorithm for adding poly-nomials represented as tree structures with four-waylinked nodes. The algorithm is written in an informalnotation, using labels and gotos. We have translatedthe algorithm into WSL, using an action system withone action for each label.ADD �if D[P] = �then while D[Q] 6= � do Q := D[Q] od;call A3else if D[Q] = � _ C[Q] < C[P] then call A28



elsf C[Q] = C[P]then P := D[P]; Q := D[Q]; call ADDelse Q := D[Q]; call ADD � �.A2 �r pop � avail; s := D[Q];if s 6= � then do U[s] := r; s := R[s];if E[s] = 0 then exit � od �;U[r] := Q; D[r] := D[Q]; L[r] := r;R[r] := r; C[r] := C[Q]; E[r] := 0;C[Q] := C[P]; D[Q] := r; call ADD.A3 �fE[Q] 6= 0) (E[P] = E[Q] ^ C[U[P]] = C[U[Q]])g;C[Q] := C[Q]+C[P];if C[Q] = 0 ^ E[Q] 6= 0 then call A8 �;if E[Q] = 0 then call A7 �;call A4.A4 �P := L[P];if E[P] = 0then call A6else do Q := L[Q];if E[Q] � E[P] then exit � od;if E[Q] = E[P] then call ADD � �;call A5.A5 �r pop � avail;U[r] := U[Q]; D[r] := �; L[r] := Q;R[r] := R[Q]; L[R[r]] := r; R[Q] := r;E[r] := E[P]; C[r] := 0; Q := r;call ADD.A6 �P := U[P]; call A7.A7 �if U[P] = �then call A11else while C[U[Q]] 6= C[U[P]] doQ := U[Q] od;call A4 �.A8 �fE[P] = E[Q] ^ C[U[P]] = C[U[Q]]g;r := Q; Q := R[r]; s := L[r]; R[s] := Q;L[Q] := s; avail push � r;if E[L[P]] = 0 ^ Q = s then call A9else call A4 �.A9 �r := Q; Q := U[Q]; D[Q] := D[r];C[Q] := C[r]; avail push � r;s := D[Q];if s 6= �then do U[s] := Q; s := R[s];if E[s] = 0 then exit � od �;call A10.A10 �if D[Q] = � ^ C[Q] = 0 ^ E[Q] 6= 0then P := U[P]; call A8else call A6 �.A11 �while U[Q] 6= � do Q := U[Q] od;

call Z.See Figure 1 for the call graph of this program.ADDA3 A2A9 A8A10 A7 A4 A5A11 A6Z
2

Figure 1: The Call Graph of Knuth's PolynomialAddition AlgorithmThe two assertions have been taken from the com-ments Knuth makes about the algorithm. We will provethat they are valid later on, because this will be mucheasier with the recursive version of the program.5 Analysis by TransformationWe will now show how such an algorithm can be ana-lysed by applying a sequence of transformation stepswhich �rst transform it into a structured form and thenderive a mathematical speci�cation of the algorithm.Since each of the transformation steps has been provento preserve the semantics of a program, the correctnessof the speci�cation so derived is guaranteed.The program exhibits both control 
ow complexityand data representation complexity, with the control
ow directed by the data structures. With the aid ofprogram transformations it is possible to \factor out"these two complexities, dealing �rst with the control
ow and then changing the data representation. Bothcontrol and data restructuring can be carried out usingonly local information, it is not until near the end ofthe analysis (when much of the complexity has beeneliminated, and the program is greatly reduced in size)that we need to determine the \big picture" of how thevarious components �t together. This feature of thetransformational approach is essential in scaling up tolarge programs, where it is only possible in practice toexamine a small part of the program at a time.5.1 RestructuringThe �rst step in analysing the program involves simplerestructuring. We begin by looking for proceduresand variables which can be \localised". In this casethere are a number of blocks of code which can be9



extracted out as procedures, some of which use localvariables. The names for the procedures are taken fromthe comments in the original program: This reducesthe size of the main body of tangled \spaghetti code"in preparation for the restructuring.beginactions ADD :ADD �if D[P] = �then while D[Q] 6= � do Q := D[Q] od; call A3else if (D[Q] = �) _ (C[Q] < C[P]) then call A2elsf C[Q] = C[P]then P := D[P];Q := D[Q]; call ADDelse Q := D[Q]; call ADD � �.A2 �Insert Below Q; call ADD.A3 �fE[Q] 6= 0) (E[P] = E[Q] ^ C[U[P]] = C[U[Q]])g;C[Q] := C[Q]+C[P];if (C[Q] = 0) ^ (E[Q] 6= 0) then call A8 �;if E[Q] = 0 then call A7 �;call A4.A4 �P := L[P];if E[P] = 0then call A6else Move Left Q;if E[P] = E[Q] then call ADD � �;call A5.A5 �Insert to Right; call ADD.A6 �P := U[P]; call A7.A7 �if U[P] = � then call A11else Move Up Q; call A4 �.A8 �fE[P] = E[Q] ^ C[U[P]] = C[U[Q]]g;Delete Zero Term;if (E[L[P]] = 0) ^ (Q = L[Q])then call A9else call A4 �.A9 �Delete Const Poly; call A10.A10 �if ((D[Q] = �) ^ (C[Q] = 0)) ^ (E[Q] 6= 0)then P := U[P]; call A8else call A6 �.A11 �while U[Q] 6= � do Q := U[Q] od;call Z. endactionswhereproc Insert Below Q �r pop � avail; s := D[Q];if s 6= �then do U[s] := r; r := R[s];if E[s] = 0 then exit � od �;hU[r] := Q;D[r] := D[Q]; L[r] := r;R[r] := ri;hC[r] := C[Q];E[r] := 0i;hC[Q] := C[P];D[Q] := ri.proc Move Left Q �do Q := L[Q]; if E[Q] 6 E[P] then exit � od.

proc Insert to Right �r pop � avail;hU[r] := U[Q];D[r] := �;L[r] := Q;R[r] := R[Q]i;L[R[r]] := r; R[Q] := r;hE[r] := E[P];C[r] := 0i;Q := r.proc Move Up Q �while C[U[Q]] 6= C[U[P]] do Q := U[Q] od.proc Delete Zero Term �r := Q;hQ := R[r]; s := L[r]i;R[s] := Q; L[Q] := s;avail push � r.proc Delete Const Poly �r := Q; Q := U[Q];hD[Q] := D[r];C[Q] := C[r]i;avail push � r; s := D[Q];if s 6= �then do U[s] := Q; s := R[s];if E[s] = 0 then exit � od �.The next stage is to restructure the \spaghetti" oflabels and jumps by unfolding action calls, introducingloops, re-arranging if statements, merging action calls,and so on. In the Maintainer's Assistant this wholeprocess has been automated in a single transformationCollapse Action System which follows heuristics wehave developed over a long period of time: selectingthe sequence of transformations required to restructurea program. The result of this single transformation isas follows:do do if D[P] = �then while D[Q] 6= � do Q := D[Q] od;fE[Q] 6= 0) (E[P] = E[Q] ^ C[U[P]] = C[U[Q]])g;C[Q] := C[Q]+C[P];if (U[P] = � ^ E[Q] = 0)^ (C[Q] 6= 0 _ E[Q] = 0)then while U[Q] 6= � do Q := U[Q] od;exit(2)elsf (C[Q] 6= 0) _ (E[Q] = 0)then if E[Q] = 0 then Move Up Q �;exit �;do fE[P] = E[Q] ^ C[U[P]] = C[U[Q]]g;Delete Zero Term;if (E[L[P]] 6= 0) _ (Q 6= L[Q])then exit �;Delete Const Poly;P := U[P];if (U[P] = �)^ (C[Q] 6= 0 _ D[Q] 6= � _ E[Q] = 0)then while U[Q] 6= � doQ := U[Q] od;exit(2)elsf (C[Q] 6= 0) _ (D[Q] 6= �)_ (E[Q] = 0)then Move Up Q; exit � odelsf (D[Q] = �) _ (C[Q] < C[P])then Insert Below Q10



elsf C[Q] = C[P] then P := D[P];Q := D[Q]else Q := D[Q] � od;do P := L[P];if E[P] 6= 0then Move Left Q;if E[P] 6= E[Q] then Insert To Right �;exit �;P := U[P];if U[P] = �then while U[Q] 6= � do Q := U[Q] od;exit(2) �;Move Up Q od odAs can be seen above, most of the restructuring hasbeen carried out by this single transformation. Thereis some potential for further simpli�cation transforma-tions, taking code out of loops and if statements andso on:do while D[P] 6= � doif D[Q] = � _ C[Q] < C[P] then Insert Below Qelsif C[Q] = C[P] then P := D[P];Q := D[Q]else Q := D[Q] � od;while D[Q] 6= � do Q := D[Q] od;fE[Q] 6= 0) (E[P] = E[Q] ^ C[U[P]] = C[U[Q]])g;C[Q] := C[Q]+C[P];if C[Q] = 0 ^ E[Q] 6= 0then do fE[P] = E[Q] ^ C[U[P]] = C[U[Q]]g;Delete Zero Term;if E[L[P]] 6= 0 _ Q 6= s then exit �;Delete Const Poly;P := U[P];if U[P] = �^ (C[Q] 6= 0 _ E[Q] = 0 _ D[Q] 6= �)then exit(2) �;if D[Q] 6= � _ C[Q] 6= 0 _ E[Q] = 0then Move Up Q; exit � odelse if U[P] = � then if E[Q] = 0 then exit � �;if E[Q] = 0 then Move Up Q � �;do P := L[P];if E[P] 6= 0 then exit �;P := U[P];if U[P] = � then exit(2) �;Move Up Q od;Move Left Q;if E[P] 6= E[Q] then Insert to Right � od;while U[Q] 6= � do Q := U[Q] odTurning our attention to the loop while D[P] 6=� do : : : od we see that only one of the arms ofthe inner if statement can a�ect the value of D[P]:for the other two cases, the loop test is redundant.Secondly, the procedure Insert Below Q is guaranteedto make D[Q] 6= � and C[Q] = C[P]. The loop canbe made more e�cient by entire loop unrolling for thecase D[Q] 6= � _ C[Q] > C[P] followed by loop bodyunrolling after Insert Below Q. The result is:while D[P] 6= � dowhile D[Q] 6= � ^ C[Q] > C[P] do Q := D[Q] od;if D[Q] = � _ C[Q] < C[P] then Insert Below Q �;P := D[P]; Q := D[Q] odOn termination of this loop we clearly have D[P] = �.A little later, we test if U[P] = �. The only possibility

for both D[P] = � and U[P] = � is if the original Ppolynomial was a constant. It is rather ine�cient to re-peatedly test for this trivial case, so instead we assumethat constant polynomials are treated as a special case,outside the main loop. This allows us to remove thetest U[P] = � from the body of the main loop.Next we consider the �nal do : : : od loop:do P := L[P];if E[P] 6= 0 then exit �;P := U[P];if U[P] = � then exit(2) �;Move Up Q od;By pushing the statement P := L[P] into the following ifstatement and then taking it out of the loop, we get thepair of assignments P := L[P]; P := U[P] which can besimpli�ed to P := U[P] (since each node in each circularlist has the same U value). So the loop simpli�es to:do if E[L[P]] 6= 0 then exit �;P := U[P];if U[P] = � then exit(2) �;Move Up Q od;P := L[P];Finally, the test U[P] = � ^ (D[Q] 6= � _ C[Q] 6=0 _ E[Q] = 0) is more complicated than it needs tobe. If, as in this case, we have just deleted a constantpolynomial in Q which has resulted in a zero termhigher up the structure ofQ, then D[Q] = � ^ C[Q] =0 ^ E[Q] 6= 0. But in this case, Q is somewhere in themiddle of a list of terms of a polynomial in a certainvariable, and therefore P must also be somewhere inthe list of terms of a polynomial in the same variable(the addition of two of the terms having resulted ina zero term). So we cannot also have U[P] = �.Conversely, if it happens that U[P] = �, then the testfor a zero term must fail and there is no need to alsotest (D[Q] 6= � _ C[Q] 6= 0 _ E[Q] = 0).Putting these results together we get the simpli�edmain body:do while D[P] 6= � dowhile D[Q] 6= � ^ C[Q] > C[P] doQ := D[Q] od;if D[Q] = � _ C[Q] < C[P]then Insert Below Q �;P := D[P];Q := D[Q] od;while D[Q] 6= � do Q := D[Q] od;fE[Q] 6= 0) (E[P] = E[Q] ^ C[U[P]] = C[U[Q]])g;C[Q] := C[Q]+C[P];if C[Q] = 0 ^ E[Q] 6= 0thendo fE[P] = E[Q] ^ C[U[P]] = C[U[Q]]g;Delete Zero Term;if E[L[P]] 6= 0 _ Q 6= L[Q] then exit �;Delete Const Poly;P := U[P];if U[P] = �then fD[Q] 6= � _ C[Q] 6= 0 _ E[Q] = 0g;exit(2) �;if D[Q] 6= � _ C[Q] 6= 0 _ E[Q] = 011



then Move Up Q; exit � odelse if E[Q] = 0 then Move Up Q � �;do if E[L[P]] 6= 0 then exit �;P := U[P];if U[P] = � then exit(2) �;Move Up Q od;P := L[P];Move Left Q;if E[P] 6= E[Q] then Insert to Right � od;while U[Q] 6= � do Q := U[Q] od5.2 Introduce recursionThe next step is to introduce recursion. We havediscovered that for a great many program analysis prob-lems, it is very important to get to a recursive form ofthe program as early as possible in the analysis process.Discovering the overall structure and operation of aprogram, such as this one, is enormously easier oncea recursive form has been arrived at.Before we can introduce recursion, we need to re-structure the program into a suitable action system.This will make explicit the places where recursive callswill ultimately appear, and where the test(s) for ter-mination occurs. Note that P starts out with U[P] = �and the program terminates as soon as U[P] = � again:which suggests that P will ultimately be a parameter.Also, note that the tree structure reachable through theinitial value of P is not changed by the program, andP is restored to its original value. There are two placeswhere the assignment P := U[P] occurs, and wheretermination is possible. These are separated out intothe two actions Â1 and Â2 below.actions A :A �if D[P] = �then while D[Q] 6= � do Q := D[Q] od;fE[Q] 6= 0) (E[P] = E[Q] ^ C[U[P]] = C[U[Q]])g;C[Q] := C[Q]+C[P];if E[Q] = 0 then Move Up Q �;call Â1else while D[Q] 6= � ^ C[Q] > C[P] doQ := D[Q] od;if D[Q] = � _ C[Q] < C[P]then Insert Below Q �;P := D[P]; Q := D[Q]; call A �.Â1 �if D[Q] 6= � _ C[Q] 6= 0 _ E[Q] = 0then call Â2 �;fE[P] = E[Q] ^ C[U[P]] = C[U[Q]]g;Delete Zero Term;if E[L[P]] = 0 ^ Q = L[Q]then Delete Const Poly;P := U[P];if U[P] = �then while U[Q] 6= � do Q := U[Q] od;call Z �;call Â1else call Â2 �.Â2 �if E[L[P]] = 0

then P := U[P];if U[P] = �then while U[Q] 6= � do Q := U[Q] od;call Z �;Move Up Q;call Â2else call B �.B �P := L[P]; Move Left Q;if E[P] 6= E[Q] then Insert to Right �;call A.endactionsWithin the two \�nishing" actions, Â1 and Â2, thepointer P is moved up and U[P] tested against �. Forthe recursion introduction theorem, we must have onlyone occurrence of call Z, and in this case we wouldprefer to have only one occurrence of P := U[P]. This isbecause kind of structure we would like for the recursiveprocedure is something like this:proc ADD �if D[P] = �then deal with a constant polynomialelse set up a polynomial in Q;P := D[P]; Q := D[Q];do ADD; Add a pair of terms;deal with a zero result;P := L[P];if E[P] = 0 then exit �;set up a term in Q od;Deal with a constant polynomial result;P := U[P];Move up Q if needed �.Fortunately, any two similar (or even dissimilar) actionscan be merged by creating a composite action and usinga 
ag to determine which action the composite actionis simulating. In the next version Â is equivalent to Â1when 
ag is true, and equivalent to Â2 when 
ag isfalse:actions A :A �if D[P] = �then while D[Q] 6= � do Q := D[Q] od;fE[Q] 6= 0) (E[P] = E[Q] ^ C[U[P]] = C[U[Q]])g;C[Q] := C[Q] +C[P];if E[Q] = 0 then Move Up Q �;
ag := true; call Âelse while D[Q] 6= � ^ C[Q] > C[P] doQ := D[Q] od;if D[Q] = � _ C[Q] < C[P] then Insert Below Q �;P := D[P]; Q := D[Q]; call A �.Â �if 
ag ^ D[Q] = � ^ C[Q] = 0 ^ E[Q] 6= 0then fE[P] = E[Q] ^ C[U[P]] = C[U[Q]]g;Delete Zero Termelse 
ag := false �;if E[L[P]] = 0then if 
ag ^ Q = L[Q]then Delete Const Polyelse 
ag := false �;P := U[P];12



if U[P] = �then while U[Q] 6= � do Q := U[Q] od;call Z �;if :
ag then Move Up Q �;call Âelse 
ag := false; call B �.B �P := L[P];Move Left Q;if E[P] 6= E[Q] then Insert to Right �;call A.endactionsNow we can apply Theorem 3.1 in reverse to get anequivalent recursive procedure:beginif D[P] = � then while D[Q] 6= � do Q := D[Q] od;C[Q] := C[Q] +C[P];while U[Q] 6= � do Q := U[Q] odelse ADD �whereproc ADD �if D[P] = �then while D[Q] 6= � do Q := D[Q] od;fE[Q] 6= 0) (E[P] = E[Q] ^ C[U[P]] = C[U[Q]])g;C[Q] := C[Q]+C[P];if E[Q] = 0 then Move Up Q �;
ag := trueelse while D[Q] 6= � ^ C[Q] > C[P] doQ := D[Q] od;if D[Q] = � _ C[Q] < C[P] then Insert Below Q �;P := D[P]; Q := D[Q];do ADD;if 
ag ^ D[Q] = � ^ C[Q] = 0 ^ E[Q] 6= 0then fE[P] = E[Q] ^ C[U[P]] = C[U[Q]]g;Delete Zero Termelse 
ag := false �;if E[L[P]] = 0 then exit �;
ag := false;P := L[P];Move Left Q;if E[P] 6= E[Q] then Insert to Right � od;if 
ag ^ Q = L[Q]then Delete Const Polyelse 
ag := false �;P := U[P];if U[P] = �then while U[Q] 6= � do Q := U[Q] odelsif :
ag then Move Up Q � �.endWith a recursive program, we can see that ADD pre-serves P, since the sequence of operations applied to Pis: P := D[P] followed by P := L[P] zero or more times,and �nally P := U[P], which restores P to its originalvalue. It is also easier with the recursive version toprove that the 
ag can be removed. First we provethat::
ag =) :(D[Q] = � ^ C[Q] = 0 ^ E[Q] 6= 0)on termination of ADD; and:
ag =) Q 6= L[Q]on termination of the do : : : od loop.

When the loop terminates, the only way a zeropolynomial could have been created (with Q = L[Q]) isif we just deleted the only non-zero term. If we have justdeleted a term then 
ag is true, otherwise 
ag is falseand there is no need to test for a constant polynomial.Similarly, the only way a zero term could be created isif we have just deleted a constant polynomial, in whichcase 
ag is true. If 
ag is false on returning from ADD,there is no need to test for a zero term.On termination of the loop, if the 
ag is false, thenthere must still be a non-zero exponent term in the Qlist of terms. (Recall that initially, every list of termsin P and Q contains a constant (zero exponent) termplus at least one non-zero exponent term). In this case,Q 6= L[Q].On termination of an inner procedure call, if the
ag is false, then we have either just added two con-stant elements and possibly moved up Q (in which caseE[Q] = 0), or we have just added a list of terms, andmoved up Q. In either case E[Q] = 0.One �nal optimisation (missed by Knuth) uses thefact that C[U[Q]] = C[U[P]] on termination of the loop.If we do not delete a constant polynomial, then afterthe assignment P := U[P], the while loop in Move Up Qmust be executed at least once. So we can save a testby unrolling one execution of the loop in this case.It should be noted that the arguments stated aboveare much easier to state prove in terms of the recursiveversion of the program, rather than the original iterat-ive version. In addition, these facts are not required inorder to transform the iterative version to the recursiveversion. We need only a very limited and localisedanalysis of the program in order to reach a recursiveequivalent, from which a more extensive analysis be-comes feasible.We are now in a position to eliminate 
ag from theprocedure:beginif D[P] = � then while D[Q] 6= � do Q := D[Q] od;C[Q] := C[Q]+ C[P]else ADD �;whereproc ADD �if D[P] = �then while D[Q] 6= � do Q := D[Q] od;fE[Q] 6= 0) (E[P] = E[Q] ^ C[U[P]] = C[U[Q]])g;C[Q] := C[Q] +C[P];if E[Q] = 0 then Move Up Q �;fE[P] = E[Q] ^ C[U[P]] = C[U[Q]]gelse while D[Q] 6= � ^ C[Q] > C[P] doQ := D[Q] od;if D[Q] = � _ C[Q] < C[P] then Insert Below Q �;P := D[P]; Q := D[Q];do ADD;if D[Q] = � ^ C[Q] = 0 ^ E[Q] 6= 0then fE[P] = E[Q] ^ C[U[P]] = C[U[Q]]g;Delete Zero Term �;P := L[P];13



if E[P] = 0 then exit �;Move Left Q;if E[P] 6= E[Q] then Insert to Right � od;P := U[P];if Q = L[Q] then Delete Const Polyelse Q := U[Q] �;if U[P] = �then while U[Q] 6= � do Q := U[Q] odelse Move Up Q �.end5.3 E�ciency of the Restructured AlgorithmThis version of the program (or its iterative equivalent)ful�lls Knuth's desire for a cleaned up version, withoutloss of e�ciency. The cleaned up version does carry outa small number of extra tests, which Knuth's versionwas able to avoid with the use of tortuous control 
ow.However, it also avoids a number of the redundant testspresent in Knuth's version: for example the repeatedtest for a constant polynomial P and the immediatetesting of the new node introduced by Insert Below Q.We have carried out number of empirical tests onboth algorithms, with polynomials of various sizes andshapes. For these tests we measure \e�ciency" bycounting the total number of array accesses; since formodern RISC processors, main memory access is likelyto be the dominant factor in execution speed.For the pathological cases where virtually all theterms in Q are cancelled out by terms in P, our ver-sion of the algorithm can run up to 10% slower thanKnuth's. However, for more usual cases, including alarge number of teasts carried out with random poly-nomials of various shapes and sizes, our version ofthe algorithm is consistently faster than Knuth's, andaverages around 5% faster.5.4 Add Parameters to the ProcedureWith this recursive version it is easy to show that ADDpreserves the values of P and Q. For P the proof issimple since the only assignments to P are P := D[P],followed by one or more P := L[P], followed by oneP := U[P], which restores P (since for every nodeU[L[P]] = U[P]). For Q there are two cases to consider:1. U[P] = � initially. This is true for the outermostcall only. In this case U[Q] = � is also trueinitially. The assignments to Q are one or moreQ := D[Q] followed by zero or more Q := L[Q]and then repeatedly assigning Q := U[Q] untilU[Q] = � again. The only node in the Q treewith a U value of � is the original root, and allthe assignments to Q keep it within a valid tree;2. U[P] 6= � initially. This is true for the re-cursive calls. Within the body of the proced-ure, ADD is only called with E[Q] = E[P] andC[U[Q]] = C[U[P]]. The assignments to Q areone or more Q := D[Q] followed by zero or moreQ := L[Q] followed by one or more Q := U[P]until C[U[Q]] = C[U[P]] again (where P has now

been restored to its original value). This willresore Qs original value since each \level" in theP and Q trees have di�erent C values; so Q mustbe returned to the same \level" and the \down: : : left : : : up" sequence means that Q must beat the same position in that level.Since P and Q are both preserved by ADD, they can beturned into parameters, and the code for \restoring" Pand Q can be deleted. We get:beginif D[P] = � then while D[Q] 6= � do Q := D[Q] od;C[Q] := C[Q]+ C[P]while U[Q] 6= � do Q := U[Q] odelse ADD(P;Q) �;whereproc ADD(P;Q) �if D[P] = �then while D[Q] 6= � do Q := D[Q] od;fE[Q] 6= 0) (E[P] = E[Q] ^ C[U[P]] = C[U[Q]])g;C[Q] := C[Q] +C[P];else while D[Q] 6= � ^ C[Q] > C[P] doQ := D[Q] od;if D[Q] = � _ C[Q] < C[P] then Insert Below Q �;P := D[P]; Q := D[Q];do ADD(P;Q);if D[Q] = � ^ C[Q] = 0 ^ E[Q] 6= 0then fE[P] = E[Q] ^ C[U[P]] = C[U[Q]]g;Delete Zero Term �;P := L[P];if E[P] = 0 then exit �;Move Left Q;if E[P] 6= E[Q] then Insert to Right � od;if Q = L[Q] then Delete Const Poly �.endWith the parameterised version, it is no longer neces-sary to treat a constant polynomial in P as a specialcase. If P is a constant polynomial, then ADD(P;Q) isequivalent to:var Q0 := Q :while D[Q] 6= � do Q := D[Q] od;C[Q] := C[Q]+ C[P];Q := Q0 endwhich gives the correct result.6 Introduce Abstract Data TypesThe abstract data type \polynomial" is de�ned inform-ally by the equation:p = �hvi if p is a constant polynomialhx; ti otherwisewhere v is the value of the constant polynomial, x is thesymbol of the non-constant polynomial, and t is the listof terms for the non-constant polynomial.Each term in the list t is of the form he; ci wheree is the exponent of this term and c is the coe�cient(which is another polynomial whose variables, if any,14



are smaller than x). The �rst term always has a zeroexponent, and the coe�cient of the �rst term only maybe a zero polynomial (i.e. h0i). There is at least oneother term, and all other terms have non-zero expo-nents and coe�cients, and are in order of increasingexponents. So t is of the form:t = hh0; c0i; he1; c1i; : : : ; hek; ckiiwhere k > 1 and 0 < e1 < � � � < ek and ci 6= h0i for1 6 i 6 n.More formally, we de�ne the set of abstract polyno-mials as follows:De�nition 6.1 Abstract Polynomials. Suppose wehave an ordered set VARS of variable names, and a setVALS of values. De�ne:POLYS =DF [n<!POLYSnwhere POLYS0 =DF f hvi j v 2 VALS gis the set of constant polynomials, and for each n > 0POLYSn+1 =DF POLYSn [� hx; ti �� x 2 VARS ^ t 2 TERMSn^ 8i; 1 6 i 6 `(t): 8y 2 vars(t[i][2]): y < x	The set TERMSn is the set of term lists which useelements of POLYSn as coe�cients:TERMSn =DF 
hh0; c0i; he1; c1i; : : : ; hek; ckii jk > 0 ^ 8i; 1 6 i 6 k: ck 2 POLYSn^ 0 < e1 < � � � < ek�The function vars(p) returns the set of variables usedin polynomial p:vars(p) =DF 8<:? if p = hvifxg [ [06i6k vars(ci) otherwiseNow we can de�ne the abstraction function poly(P)which returns the abstract polynomial represented bythe pointer P and the current values of arrays E, C, L,R, U and D:De�nition 6.2 The polynomial abstraction function:poly(P) =DF �hC[P]i if D[P] = �hC[P]; terms(D[P])i if D[P] 6= �where terms(P) =DF term � (hPi ++ list(P; L; P))The notation term � L denotes the list formed byapplying the function term to each element of list L.The term function is de�ned:term(P) =DF hE[P]; poly(C[P])i

For abstract polynomials we de�ne the followingfunctions:const?(p) =DF �true if p is constant, i.e. `(p) = 1false otherwisev(p) =DF variable of p = p[1]c(p) =DF value of the constant poly = p[1]T(p) =DF list of terms for p = p[2]ei(p) =DF exponent of the ith term = p[2][i][1]ci(p) =DF coe�cient of the ith term = p[2][i][2]7 Adding Abstract VariablesThe �rst step towards creating an equivalent abstractprogram is to \build the sca�olding" by adding abstractvariables p, q and r to the program as ghost variables.These are variables which are assigned to within theprogram, but (at the moment) their values are neverreferenced, so they can have no e�ect on the behaviourof the program. We assume the following invariant istrue at the beginning of ADD and add assignments toensure that it is true before the recursive call:p = poly(P) ^ q = poly(Q)Wewill also add assignments to r so that on terminationr = poly(Q).It is convenient to replace the two inner while loopsby the equivalent tail recursions:proc ADD(P;Q) �var p0 := p;q0 := q :if D[P] = �then if D[Q] 6= �then Q := D[Q]; q := c0(q0); ADD(P;Q);r := hv(q0); hhe0(q0); rii ++ T(q0)[2 : :]ielse C[Q] := C[Q]+ C[P];r := hc(q0)+ c(p0)i �elsif D[Q] 6= � ^ C[Q] > C[P]then Q := D[Q]; q := c0(q0); ADD(P;Q);r := hv(q0); hhe0(q0); rii ++ T(q0)[2 : :]ielse if D[Q] = � _ C[Q] < C[P]then Insert Below Q; q := hv(p0); hh0; q0iii �;P := D[P]; Q := D[Q];var i := 1; j := 1; t := T(q0) :do p := ci(p0); q := t[j];ADD(P;Q);if D[Q] = � ^ C[Q] = 0 ^ E[Q] 6= 0then Delete Zero Term;t := t[1 : : j- 1] ++ t[j+ 1 : :]else t[j][2] := r �;P := L[P]; i := i- 1;if i = 0 then i := `(T(p0)) �;if E[P] = 0 then exit �;do Q := L[Q]; j := j- 1;if j = 0 then j := `(t) �;if E[Q] 6 E[P] then exit � od;if E[P] 6= E[Q]then Insert to Right;t :=t[1 : : j- 1] ++ hhei(p0); h0iii++ t[j : :] � od;15



if Q = L[Q] then Delete Const Poly; r := ht[1][2]ielse r := hv(p0); ti � � end.With this version, the abstract variables p, q, r etc.are pure ghost variables which have no e�ect on theoperation of the program. But now that we have bothabstract and concrete variables available, we can workthrough the program, replacing references to concretevariables by the equivalent references to abstract vari-ables. For example the test D[P] = � is equivalent tothe test const?(p) given that p = poly(P). The e�ect isto \demolish the building" leaving the abstract \scaf-folding" to hold everything up. This \ghost variables"technique has been used for program development inBroy & Pepper (1982), Jorring & Scherlis (1987), Wile(1981). Assuming that what we are really interested inis the r result for a given p and q, we can delete theconcrete variables from the procedure to leave an equi-valent abstract procedure (equivalent as far as its e�ecton r anyway). The procedure add(p; q) is equivalent toADD(P;Q); r := poly(Q).proc add(p;q) �var p0 := p;q0 := q :if const?(p)then if :const(q)then q := c0(q0); add(p;q);r := hv(q0); hhe0(q0); rii ++ T(q0)[2 : :]ielse r := hc(q0) + c(p0)i �elsif :const?(q) ^ v(q) > v(p)then q := c0(q0); add(p;q);r := hv(q0); hhe0(q0); rii ++ T(q0)[2 : :]ielse if const?(q) _ v(q) < v(p)then q := hv(p0); hh0; q0iii �;var i := 1; j := 1; t := T(q0) :do p := ci(p0); q := t[j];add(p;q);if const?(r) ^ c(r) = 0 ^ j > 1then t := t[1 : : j - 1] ++ t[j+ 1 : :]else t[j][2] := r �;i := i- 1; if i = 0 then i := `(T(p0)) �;if ei(p0) = 0 then exit �;do j := j- 1; if j = 0 then j := `(t) �;if t[j][1]6 ei(p0) then exit � od;if ei(p0) 6= t[j][1]then t :=t[1 : : j- 1] ++ hhei(p0); h0iii++ t[j : :] � od end;if `(t) = 1 then r := ht[1][2]ielse r := hv(p0); ti � � end.The �rst iteration of the do : : : od loop is a specialcase, since: (1) The loop is guaranteed to execute atleast twice, because every non-constant polynomial hasat least two terms, and (2) For the �rst iteration weknow that e1(p0) = e1(q0) = 0 and i = j = 1, so bothindexes will \cycle round" on the �rst iteration, andwill not do so on subsequent iterations. So we unroll the�rst iteration and convert the loop to a while loop:var i := 1; j := 1; t := T(q0) :add(c1(p0); c1(q0));t[1][1] := r;i := `(T(p0)); j := `(t);while i > 1 do

while t[j][1] > ei(p0) do j := j- 1 od;if ei(p0) 6= t[j][1]then t := t[1 : : j - 1] ++ hhei(p0); h0iii ++ t[j : :] �;add(ci(p0); t[j]);if const?(r) ^ c(r) = 0then t := t[1 : : j - 1] ++ t[j+ 1 : :]else t[j][1] := r �;i := i- 1 od endThe while loop is adding two lists of terms. We canmake this behaviour more explicit (and get rid of thei and j variables) by putting T(p0) into tp, T(q0) intotq and deleting elements from the ends of tp and tqonce they have been dealt with. The new value of t isbuilt up in a new variable tr, so that t is represented bytq ++ tr. Since the loop adds the elements in reverse or-der, it makes sense to move the add(c1(p0); c1(q0)) callto the end, especially since at this point tp = hc1(p0)iand tq := hc1(q0); : : :i:var tp := T(p0); tq := T(q0); tr := hi :i := `(T(p0)); j := `(s);while `(tp) > 1 dowhile last(tq)[1] > last(tp)[1] dotr push � last(tq); tq := butlast(tq) od;if last(tp)[1] 6= last(tq)[1]then tr push � hlast(tp)[1]; h0iielse tr push � last(tq); tq := butlast(tq) �;add(last(tp)[2]; tr[1][2]);if const?(r) ^ c(r) = 0 then tr := tr[2 : :]else tr[1][2] := r �;tp := butlast(tp) odadd(tp[1][2]; tq[1][2]);tr := h0; ri ++ tq[2 : :] ++ tr;The next step is to make this while loop into a tail-recursive procedure which takes tp and tq as argu-ments, and returns the result in tr. We can apply thetail-recursion transformation of Section 3.4 to removethe inner while loop:proc add(p;q) �if const?(p)then if :const(q)then q := c0(q); add(p;q);r := hv(q); hhe0(q); rii ++ T(q)[2: :]ielse r := hc(q)+ c(p)i �elsif :const?(q) ^ v(q) > v(p)then q := c0(q); add(p;q);r := hv(q); hhe0(q); rii ++ T(q)[2: :]ielse if const?(q) _ v(q) < v(p)then q := hv(p); hh0; qiii �;var tr := hi : add list(T(p);T(q)) end;if `(tr) = 1 then r := htr[1][2]ielse r := hv(p); tri � �.proc add list(tp; tq) �if `(tp) = 1then add(tp[1][2]; tq[1][2]);tr := h0; ri ++ tq[2 : :] ++ trelsif last(tq)[1] > last(tp)[1]then tr push � last(tq); add list(tp;butlast(tq))else if last(tp)[1] 6= last(tq)[1]then tr push � hlast(tp)[1]; h0iielse tr push � last(tq); tq := butlast(tq) �;16



add(last(tp)[2]; tr[1][2]);if const?(r) ^ c(r) = 0 then tr := tr[2 : :]else tr[1][2] := r �;tp := butlast(tp);add list(tp; tq) �.Finally, we can convert the procedures into theequivalent functions:funct add(p;q) �if const?(p)then if :const(q)then hv(q);hhe0(q); add(p; c0(q))ii++ T(q)[2: :]ielse hc(q)+ c(p)i �else if :const?(q) ^ v(q) > v(p)then hv(q);hhe0(q); add(p;c0(q))ii++ T(q)[2: :]ielse if const?(q) _ v(q) < v(p)then q := hv(p); hh0; qiii �;var tr := add list(T(p);T(q));if `(tr) = 1 then htr[1][2]ielse hv(p); tri � � �.funct add list(tp; tq) �if `(tp) = 1then h0; add(tp[1][2]; tq[1][2])i ++ tq[2 : :]else if last(tq)[1] > last(tp)[1]then add list(tp;butlast(tq)) ++ hlast(tq)ielse var r := hi :if last(tp)[1] 6= last(tq)[1]then r := h0ielse r := last(tq)[2];tq := butlast(tq) �;r := add(last(tp)[2]; r);if const?(r) ^ c(r) = 0then add list(butlast(tp); tq)else add list(butlast(tp); tq)++ hhlast(tp)[1]; rii � � �.A �nal optimisation to add list is to absorb the state-ment r := add(last(tp)[2]; r) into the preceding if state-ment and avoid adding a zero polynomial.funct add list(tp; tq) �if `(tp) = 1then h0; add(tp[1][2]; tq[1][2])i++ tq[2 : :]else if last(tq)[1] > last(tp)[1]then add list(tp;butlast(tq)) ++ hlast(tq)ielse var r := hi :if last(tp)[1] 6= last(tq)[1]then r := last(tp)[2]else r := add(last(tp)[2]; last(tq)[2]);tq := butlast(tq) �;if const?(r) ^ c(r) = 0then add list(butlast(tp); tq)else add list(butlast(tp); tq)++ hhlast(tp)[1]; rii � � �.

From this version of the program it is a trivialmatter to derive the following speci�cation:add(p; q) =DF8>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>:hc(q) + c(p)iif const(p) ^ const(q)hv(q); hhe0(q); add(p; c0(q))ii ++ T(q)[2 : :]iif const(p) ^ :const(q)or :const(p) ^ :const(q) ^ v(q) > v(p)add(p; hv(p); hh0; qiiiif :const(p) ^ :const(q) ^ v(q) < v(p)A(p; q)otherwisewhereA(p; q) =DF 8>>><>>>:hv(p); add list(T(p); T(q))iif `(add list(T(p); T(q))) > 1hadd list(T(p); T(q))[1][2]iotherwiseandadd list(tp; tq) =DF8>>>>>>>><>>>>>>>>:h0; add(tp[1][2]; tq[1][2])i++ tq[2 : :]if `(tp) = 1add list(tp; butlast(tq)) ++ hlast(tq)iif `(tp) > 1 ^ last(tq)[1] > last(tp)[1]AL(tp; tq)otherwisewhereAL(tp; tq) =DF8>>><>>>:AL0(tp; tq; last(tp)[2])if last(tp)[1] 6= last(tq)[1]AL0(tp; butlast(tq); add(last(tp)[2]; last(tq)[2]))otherwiseandAL0(tp; tq; r) =DF8>>><>>>:add list(butlast(tp); tq; last(tp)[2])if const?(r) ^ c(r) = 0add list(butlast(tp); tq) ++ hhlast(tp)[1]; riiotherwise8 ConclusionReverse engineering in particular, and program analysisin general, are becoming increasingly important as theamounts spent on maintaining and enhancing existingsoftware systems continue to rise year by year. Weclaim that reverse engineering based on the applica-tion of proven semantic-preserving transformations in17



a formal wide spectrum language is a practical solutionto the problem. In Ward (1993) we outlined a methodfor using formal transformations in reverse engineering.In this paper the method has been further developedand applied to a much more challenging example pro-gram. Although our sample program is only a coupleof pages long, it exhibits a high degree of control 
owcomplexity (as can be seen in Figure 1) together with acomplicated data structure which is updated as the al-gorithm progresses. Our approach does not require theuser to develop and prove loop invariants, nor does itrequire the user to determine an abstract version of theprogram and then verify equivalence. Instead, the �rststages involve the application of general purpose trans-formations for restructuring, simpli�cation, and intro-ducing recursion. Because these are general-purposetransformations, they require no advance knowledge ofthe programs behaviour before they can be applied.This is essential in a reverse engineering application,since the whole purpose of the exercise is to determinethe behaviour of the program! Once a recursive versionof the program has been arrived at, it becomes possibleto deduce various properties of the program, whichallow further simpli�cations to take place. The datastructure complexity is dealt with in several stages:�rst an abstract data type is developed and abstractvariables are added to the program alongside the \real"(concrete) variables. At this stage, the abstract vari-ables are \ghost" variables whose values have no e�ecton the program's operation. It is now possible to de-termine the relationships between abstract and concretevariables (these relationships can be proved using localinformation rather than requiring global invariants).One by one, the references to concrete variables arereplaced by equivalent references to abstract variables.Once all references to concrete variables have beenremoved, they become \ghost" variables and can beeliminated from the program. The result is an abstractprogram which is guaranteed to be equivalent to theoriginal concrete program. This abstract program canthen be further simpli�ed, again using general-purposetransformations, until a high-level abstract speci�ca-tion is arrived at. For our case study, the reverseengineering process takes the following stages:1. Restructure;2. Introduce recursion using a 
ag;3. Remove the 
ag in the recursive version;4. Add parameters;5. Add abstract variables;6. Remove the concrete variables;7. Restructure;8. Introduce more recursion;9. Rewrite as a recursive speci�cation.

AcknowledgementsThe research described in this paper has been suppor-ted by SERC1 project \A Proof Theory for ProgramRe�nement and Equivalence: Extensions".9 ReferencesAbrial, J. R., Davis, S. T., Lee, M. K. O., Neilson, D. S.,Scharbach, P. N. & S�rensen, I. H. (1991): The B Method.BP Research, Sunbury Research Centre, U.K.Arsac, J. (1982a): Transformation of Recursive Procedures.In: Neel, D. (ed.) Tools and Notations for ProgramConstruction. Cambridge University Press, Cambridge,pp. 211{265Arsac, J. (1982b): Syntactic Source to Source ProgramTransformations and Program Manipulation. Comm. ACM22, 43{54Back, R. J. R. (1980): Correctness Preserving ProgramRe�nements. (Mathematical Centre Tracts, vol. 131)Mathematisch Centrum, AmsterdamBauer, F. L., Moller, B., Partsch, H. & Pepper, P. (1989):Formal Construction by Transformation|Computer AidedIntuition Guided Programming. IEEE Trans. SoftwareEng. 15Bauer, F. L. & (The CIP Language Group) (1985): TheMunich Project CIP, Volume I: The Wide SpectrumLanguage CIP-L. (Lecture Notes in Computer Science,vol. 183) Springer, New York Berlin HeidelbergBauer, F. L. & (The CIP System Group) (1987): TheMunich Project CIP, Volume II: The ProgramTransformation System CIP-S. (Lecture Notes inComputer Science, vol. 292) Springer, New York BerlinHeidelbergBauer, F. L. & Wossner, H. (1982): Algorithmic Languageand Program Development. Springer, New York BerlinHeidelbergBird, R. (1988): Lectures on Constructive FunctionalProgramming. Oxford University, Technical MonographPRG-69Broy, M., Gnatz, R. & Wirsig, M. (1979): Semantics ofNondeterminism and Noncontinuous Constructs. In: Goos,G. & Hartmanis, H. (eds.) Program Construction. (Lect.Notes in Comp. Sci., vol. 69 Springer, New York BerlinHeidelberg, pp. 563{592Broy, M. & Pepper, P. (1982): Combining Algebraic andAlgorithmic Reasoning: an Approach to the Schorr-WaiteAlgorithm. Trans. Programming Lang. and Syst. 4Bull, T. (1990): An Introduction to the WSL ProgramTransformer. Conference on Software Maintenance26th{29th November 1990, San DiegoChurch, A. (1951): The Calculi of Lambda Conversion.Annals of Mathematical Studies 6Dijkstra, E. W. (1976): A Discipline of Programming.Prentice-Hall, Englewood Cli�s, NJ1The UK Science and Engineering Research Council 18



Engeler, E. (1968): Formal Languages: Automata andStructures. Markham, ChicagoHoare, C. A. R., Hayes, I. J., Jifeng, H. E., Morgan, C. C.,Roscoe, A. W., Sanders, J. W., S�rensen, I. H., Spivey, J.M. & Sufrin, B. A. (1987): Laws of Programming. Comm.ACM 30, 672{686Jones, C. B. (1986): Systematic Software Developmentusing VDM. Prentice-Hall, Englewood Cli�s, NJJones, C. B., Jones, K. D., Lindsay, P. A. & Moore, R.(1991): mural: A Formal Development Support System.Springer, New York Berlin HeidelbergJorring & Scherlis (1987): Deriving and Using DestructiveData Types. In: Meertens, L. G. L. T. (ed.) ProgramSpeci�cation and Transformation: Proceedings of the IFIPTC2/WG 2.1 Working Conference, Bad T�olz, FRG, 15-17April, 1986. North-Holland, AmsterdamKarp, C. R. (1964): Languages with Expressions of In�niteLength. North-Holland, AmsterdamKnuth, D. E. (1974): Structured Programming with theGOTO Statement. Comput. Surveys 6, 261{301Knuth, D. K. (1968): Fundamental Algorithms. (The Artof Computer Programming, vol. 1) Addison Wesley,Reading, MAMajester, M. E. (1977): Limits of the `Algebraic'Speci�cation of Abstract Data Types. SIGPLAN Notices12, 37{42Morgan, C. (1990): Programming from Speci�cations.Prentice-Hall, Englewood Cli�s, NJMorgan, C. C. (1988): The Speci�cation Statement. Trans.Programming Lang. and Syst. 10, 403{419Morgan, C. C., Robinson, K. & Gardiner, P. (1988): Onthe Re�nement Calculus. Oxford University, TechnicalMonograph PRG-70Neilson, M., Havelund, K., Wagner, K. R. & Saaman, E.(1989): The RAISE Language, Method and Tools. FormalAspects of Computing 1 , 85{114Partsch, H. (1984): The CIP Transformation System. In:Pepper, P. (ed.) Program Transformation andProgramming Environments. Report on a Workshopdirected by F. L. Bauer and H. Remus Springer, New YorkBerlin Heidelberg, pp. 305{323Pepper, P. (1979): A Study on TransformationalSemantics. In: Goos, G. & Hartmanis, H. (eds.) ProgramConstruction. (Lect. Notes in Comp. Sci., vol. 69 Springer,New York Berlin Heidelberg, pp. 232{405Priestley, H. A. & Ward, M. (1993): A MultipurposeBacktracking Algorithm. J. Symb. Comput.. to appear

Sennett, C. T. (1990): Using Re�nement to Convince:Lessons Learned from a Case Study. Re�nementWorkshop, 8th{11th January, Hursley Park, WinchesterWard, M. (1989): Proving Program Re�nements andTransformations. Oxford University, DPhil ThesisWard, M. (1991): A Recursion Removal Theorem - Proofand Applications. Durham University, Technical ReportWard, M. (1992a): A Recursion Removal Theorem.Springer, New York Berlin Heidelberg. Proceedings of the5th Re�nement Workshop, London, 8th{11th JanuaryWard, M. (1992b): Derivation of Data IntensiveAlgorithms by Formal Transformation. Submitted to IEEETrans. Software Eng.Ward, M. (1993): Foundations for a Practical Theory ofProgram Re�nement and Transformation. Submitted toFormal Aspects of Computing, New York BerlinHeidelbergWard, M. (1994): Language Oriented Programming.Software Concepts and Tools. To appearWard, M. (1993): Abstracting a Speci�cation from Code. J.Software Maintenance: Research and Practice 5, 101{122Ward, M. (1994): Speci�cations from SourceCode|Alchemists' Dream or Practical Reality?. 4THReengineering Forum, September 19-21, 1994, Victoria,CanadaWard, M. & Bennett, K. H. (1993): A Practical ProgramTransformation System For Reverse Engineering. WorkingConference on Reverse Engineering, May 21{23, 1993,Baltimore MAWard, M. & Bennett, K. H. (1994): A Practical Solutionto Reverse Engineering Legacy Systems using FormalMethods. Submitted to IEEE ComputingWard, M., Calliss, F. W. & Munro, M. (1989): TheMaintainer's Assistant. Conference on SoftwareMaintenance 16th{19th October 1989, Miami FloridaWile, D. (1981): Type Transformations. IEEE Trans.Software Eng. 7Wossner, H., Pepper, P., Partsch, H. & Bauer, F. L.(1979): Special Transformation Techniques. In: Goos, G. &Hartmanis, H. (eds.) Program Construction. (Lect. Notesin Comp. Sci., vol. 69 Springer, New York BerlinHeidelberg, pp. 290{321Younger, E. J. & Ward, M. (1993): Inverse Engineering asimple Real Time program. J. Software Maintenance:Research and Practice, New York, NY. To appear
19


