Abstracting a Specification from Code

Martin Ward
Computer Science Dept

Science Labs
South Rd
Durham DH1 3LE

July 16, 1993

Abstract

Much of the work on developing program transformation systems has concentrated on sys-
tems to assist in program development. However, the four separate surveys carried out between
1977 and 1990 [18,20,22,24], summarised in [17], show that between 40% and 60% of all com-
mercial software effort is devoted to software maintenance rather than the development of new
systems. In this paper we describe a joint project between the University of Durham and CSM
Ltd to develop a method and tool for reverse engineering and software maintenance based on
program transformation theory. We present an example which illustrates how such a tool can
extract a high-level abstract specification from the low-level source code of a program by a
process of formal program transformation based on a theory of program equivalence [27]. All
the code-level reverse engineering of the example program was carried out on the prototype tool
with the resulting code pasted directly into the paper.

1 Introduction

Four separate surveys carried out between 1977 and 1990 [18,20,22,24] and summarised in [17],
show that between 40% and 60% of all commercial software effort is devoted to software mainten-
ance. Despite this, much of the research in software engineering has concentrated on methods for
developing new code rather than methods for analysing, correcting and enhancing existing code. In
this paper we describe a formal method for reverse engineering existing code which uses program
transformations to restructure the code and extract high-level specifications. By a “specification”
we mean a sufficiently precise definition of the input-output behaviour of the program. We do not
consider timing constraints in this paper: although the method can be extended to model time as
an extra output of a program. A “sufficiently precise” description is one which can be expressed
in first order logic and set theory: this includes Z, VDM [19], and all other formal specification
languages.

The method uses a Wide Spectrum Language (called WSL), developed in [27,30,34] which
includes low-level programming constructs and high-level abstract specifications within a single
language. Naturally, the translation of specifications or source code written in an informal lan-
guage (including incompletely or inconsistently defined programming languages) into WSL cannot
be formally proved correct. The semantics of a source file may depend on the particular com-
piler /interpreter and target machine used to execute it. The best that can be done in such cases
is to make the translator as simple as possible by translating each statement as fully as possible,
including all the implied details, and explicitly record any assumptions made about the com-
piler /interpreter and operating environment. Redundant details in the translated WSL program,
introduced by this process, are easily removed by optimising transformations.

Working within a single formal language means that the proof that a program correctly im-
plements a specification, or that a specification correctly captures the behaviour of a program,

can be achieved by means of formal transformations in the language. We don’t have to develop
transformations between the “programming” and “specification” languages. An added advantage
is that different parts of the program can be expressed at different levels of abstraction, if required.
(Feather [12] refers to a narrow-spectrum language as one which picks up some relatively narrow
style of program of specification description and focuses on finding notations and manipulations to
support the expression and application of transformations within that style).

A program transformation is an operation which modifies a program into a different form which
has the same external behaviour (it is equivalent under a precisely-defined denotational semantics).
Since both programs and specifications are part of the same language, transformations can be
used to demonstrate that a given program is a correct implementation of a given specification.
In [28,29,31,33] program transformations are used to derive a variety of efficient algorithms from
abstract specifications. In this paper we apply the transformations in the reverse direction: starting
with a small but tangled and obscure program we are able to use transformations to restructure
the program and derive a concise abstract representation of its specification. The transformation
process also reveals a bug in the program which is difficult to spot in the original version but trivial
to spot and correct in the transformed version.

1.1 Transformational Development

Producing a program (or a large part of it) from a specification in a single step is a difficult task to
carry out, to survey and to verify [6]. Moreover, programmers tend to underestimate the complexity
of given problems and to overestimate their own mental capacity [25] and this exacerbates the
situation further.

A solution in which a program is developed incrementally by stepwise refinement was proposed
by Wirth [37]. However, the problem still remains that each step is done intuitively and must then
be validated to determine whether the changes that have been made preserve the correctness of the
program with respect to some specification, yet do not introduce unwanted side effects.

The next logical stage, improving on stepwise refinement, is to only allow provably semantic-
preserving changes to the program. Such changes are called transformations. There are several
distinct advantages to this approach [6]:

e The final program is correct (according to the initial specification) by construction.

e Transformations can be described by semantic rules and can thus by used for a whole class
of problems and situations.

e Due to formality, the whole process of program development can be supported by the com-
puter. A significant part of transformational programming involves the use of a large number
of small changes to be made to the code. Performing such changes by hand would introduce
clerical errors and the situation would be no better than the original ad hoc methods. How-
ever, such clerical work is ideally suited to automation, allowing the computer itself to carry
out the monotonous part of the work, allowing the programmer to concentrate on the actual
design decisions.

1.2 Transformation Systems

Many workers have recognised that developing a program by successive transformation can be
made much easier and less error-prone if an interactive system is provided which can carry out the
transformations, perhaps check that they are used in a valid way, and keep a record of the various
versions of the program. Thus, there has been much research into transformational programming
and this has resulted in a large number of experimental systems. For a detailed overview of these
see the papers by Partsch and Steinbriigen [25] and Feather [12].

The three main types of transformation system are:

1. A manual system makes the user responsible for every single transformation step. It is the
simplest implementation and the system must provide some means for building up compact
and powerful transformation rules.

2. A fully automatic system enables the selection and appropriate rules to be completely de-
termined by the system using built-in heuristics, machine evaluation of different possibilities,
or other strategic consideration.

3. A semi-automatic system works both autonomously for predefined subtasks and manually for
unsolvable problems.

For such systems there are two main ways of organising the transformations: The first is as an
extensible catalogue of specific transformations, the second is to have a small “generative set” of very
simple transformations which are combined in various ways to provide more powerful manipulations.

The Cornell Program Synthesiser of [5,26] can be thought of as a totally manual system. It is
an interactive system for program writing and editing which acts directly on the structure of the
program by inserting and deleting structures in such a way as to ensure that the edited program
is always syntactically correct: used as a transformation system, the user would be responsible for
the semantic correctness of the manipulations. Arsac [1| describes using a simple manual system
to carry out transformations of a program and store the various versions. His system knows some
transformations but makes no attempt to check that the correctness conditions of a transformation
hold when it is applied.

The first work on automatic program transformation was done by Burstall and Darlington in the
mid-1970’s [9]. Their first system was based on a schema-driven method for transforming applic-
ative recursive programs into imperative ones: with the ultimate goal of improved efficiency. The
system worked largely automatically, according to a set of built-in rules, with only a small amount
user control. The rules were simple transformations, including recursion removal, elimination of
redundant computations, unfolding and structure sharing.

Their second system, implemented in POP-2 and designed to manipulate applicative programs,
is a typical representative of the generative set approach and consists of only six rules: definition,
instantiation, unfolding, folding, abstraction, and laws (actually a set of data-structure-specific
rules). “Definition” allows the introduction of the new functions (in the form of recursion equations).

Balzer built a program transformation system in the early 1980’s [3]. The system used a separate
specification language GIST, rather than a single wide-spectrum language.

CIP-S is the approach of the Project CIP (Computer-aided, Intuition-guided Programming).
The objective is to develop an integrated environment for the transformational development of
programs from algebraic specifications. This includes manipulation of concrete programs, derivation
of new transformational rules within the system, transformation of algebraic types, and verification
of applicability conditions, and the documentation of developments and their manipulation.

CIP-L [Bauer 85] is the language on which the CIP project was based. CIP-L is a wide-spectrum
language which includes constructs for writing high-level specifications, functional programs, im-
perative programs and unstructured programs with gotos. The language provides constructs for
the specification and implementation of data structures and control structures. Algebraic data
types are implemented by computation structures combining data and algorithms. Modes are de-
scribed by specific types for which computation structures can be provided automatically. Based
on algebraic types and/or computation structures, program can be specified using predicate logic,
description, comprehensive choice, and fully typed set operations.

The DRACO System is a general mechanism for software construction based on the paradigm of
“reusable software”. “Reusable” here means that the analysis and design of some library program
can be reused, but not its code. DRACO is an interactive system that enables a user to refine a
problem, stated in a high level problem domain specific language, into an efficient LISP program.

Accordingly, DRACO supplies mechanisms for defining problem domains as special purpose domain
languages and for manipulating statements in these languages into an executable form.

Another automatic system, the DEDALUS system (DEDuctive ALgorithm Ur-Synthesizer) by
Manna and Waldinger is implemented in QLISP. Its goal is to derive LISP programs automatically
and deductively from high-level input-output specifications in a LISP-like representation of math-
ematical logic notation. A goal-directed deductive approach is used whereby the reduction of a goal
(to synthesize a program satisfying a given specification) to one or more subgoals, by means of a
transformation rules, results in the generation of a program fragment which computes the desired
result, once it is completed with program fragments corresponding the subgoal(s). So, for example,
reducing a goal to two subgoals by means of a case analysis corresponds to the introduction of a
conditional expression.

The long-running SETL project at the Courant Institute of New York University [11] has served
as the context for a wide variety of transformation research. Their very high level programming
language, SETL, has syntax and semantics based on standard mathematical set theory. SETL
programs can always be executed; however, naive execution of programs that make liberal use of
the high-level language features may be very inefficient. The SETL compiler has been built to
compile SETL programs into efficient interpretable code or machine code. Used in this manner,
the SETL compiler would fall into the category of a traditional compiler, albeit a very sophisticated
one.

Boyle’s TAMPR (Transformation-Assisted Multiple Program Realization) system provides a
variety of support for programming in FORTRAN at the Argonne National Laboratory [7]. Ap-
plications include small language extensions (e.g., complex and quaternion abstract data types,
automatic declaration of undeclared variables), optimisations (e.g., loop unrolling, unfolding of
some subroutine calls), conversions (e.g., single to double precision, multi-dimensional arrays to
one- dimensional ones), and miscellaneous support (e.g., instrumenting programs, recognising inher-
ent program structure). The modest nature of the tasks enables TAMPR’s transformation process
to be entirely automatic. In addition to transformation within the FORTRAN language, TAMPR
has also been applied to help in FORTRAN-to-PASCAL translation, and in converting the bulk of
the TAMPR system itself from its (almost) pure applicative LISP version into FORTRAN (which
runs faster the compiled LISP form on the same machine). This latter application demonstrates
the feasibility of the approach on moderately large programs (1300 lines, 42 functions, converted
into 3000 lines of FORTRAN). Boyle stresses that approaching these tasks by means of program
transformation encourages organising it in a modular fashion, with many consequent benefits.

Feather’s ZAP system and language [13] is based on the fold /unfold work of Burstall and Dar-
lington on transforming applicative programs expressed in recursion equations. The ZAP system’s
language is a language for expressing transformations and developments.

1.3 Automating the Process
There are currently three main ways of automating more of the transformation process (see [16]):

Jittering: The method used in the Transformational Implementation (TI) system developed by
Balzer [3], and also in Fickas” GLITTER system [15] is that of jittering. In this system, if
a transformation is applied, but fails due to some minor technical detail, the system auto-
matically modifies the program (using transformations) so that the initial transformation can
succeed.

Means-end analysis: A variant of jittering, called means-end analysis, is used by Mostow 23] to
guide rule selection. The user provides the pattern to be matched in order to apply the rule,
and the system computes the difference between this and the actual current pattern. The
computed difference then indexes further rules which could be used to reduce the difference.

Optimal “Next” Transformations: In this approach, the system is tried manually on many
different programs and the order of transformations used is recorded; this is a knowledge
elicitation process (and will also be used in the next approach to determine what metrics to
use). From these results it will be possible to determine which transformations form sequences
and to make suggestions as to the next transformation to use based on the previous one. For
example, removing a redundant variable may follow merging two assignments.

The Metric Approach: The final approach is, perhaps, the most ambitious. This is to determine
a metric which quantifies the “ease of understanding”, or “niceness”, of a program and uses
“hill-climbing” methods to find a sequence of transformations which manipulate the program
into an equivalent form which maximises this metric.

Note that total automation is extremely difficult and probably undesirable: the best approach is
an interactive system which is highly automated in some areas (eg restructuring).

1.4 The Maintainer’s Assistant

Much of the current research in program transformation systems is directed purely at software de-
velopment and has little applicability to software maintenance, including all the systems discussed
above, where the code to be analysed often has little structure, and was certainly not developed in
accordance with the rules of any particular transformational development system. One method of
performing maintenance which was suggested by Balzer [4], that of modifying the code’s specifica-
tion and then reimplementing it formally, seems well suited to the transformational method. But,
for old code, no specification may be available, so we have nothing we can edit and re-transform to
produce a new version of the program. This has led to the work described in this paper which using
program transformations, aims among other things, to help the maintainer recover specifications
from code. A major aim of this work is the development of a tool, the Maintainer’s Assistant,
which will automate much of the process of transforming code into specifications and specifications
into code. The process can never be completely automated—there are many ways of writing the
specification of a program, several of which may be useful for different purposes. So the tool must
work interactively with the tedious checking and manipulation carried out automatically, while the
maintainer provides high-level “guidance” to the transformation process. Ultimately we hope to
capture much of the knowledge and expertise that we have developed over the course of several
case studies, and incorporate it within the tool itself.

The Maintainer’s Assistant can be used as a transformation development system, starting with
a high-level specification expressed in set-theory and logic notation (similar to Z or VDM [19]. It
can also act on existing program code as a tool to aid comprehension by producing specifications
(which can then be modified). The system can work with any language by first translating into the
system’s internal language, which is the Wide Spectrum Language WSL. Prototype stand-alone
translators have been developed for IBM 370 assembler and a subset of BASIC. Transformations
are themselves coded in an extension of WSL called Meta-WSL, this makes it possible to use the
system to maintain its own code.

The initial prototype Maintainer’s assistant was developed as part of an Alvey project at the
University of Durham [35,36] whose aim was to develop a tool assist a maintenance programmer
in understanding and modifying an initially unfamiliar program, given only the source code. This
work on applying program transformation theory to software maintenance formed the basis for
a joint research project between the University of Durham, CSM Ltd and IBM UK Ltd. whose
aim is to develop a tool which will interactively transform assembly code into high-level language
code and Z specifications. We have been able to transform the assembler code to a high-level
language representation, replace the “areas of store” by the data structures they implement (using
transformations which change the data representation of a program), and then transform this high-
level language version into a specification. A prototype translator has been completed and tested
on sample sections of assembler code from IBM’s CICS product (ranging up to 5500 lines) with

very encouraging results (see Section 5).

The tool consists of a structure editor, a library of proven transformations and a knowledge-
based system which analyses the programs and specifications under consideration and uses heuristic
knowledge to determine which transformations will achieve a given end (for example, deriving
the specification of a section of code, finding the most suitable technique for recursion removal,
optimising for efficiency etc.)

The system is interactive and incorporates a graphical front end, pretty-printer and browser.
This allows the programmer to move through the program, apply transformations, undo changes
he has made, and in special circumstances, edit the program manually: but always in such a way
that it is syntactically correct. The system automatically checks the applicability conditions of a
transformation before it is applied; or even presented in one of the menus. This means that the
correctness of the resulting transformed program is guaranteed by the system rather than being
dependent on the user. A history/future structure is built-in to allow back-tracking and forward-
tracking enabling the programmer to change his mind. The system stores the results of its analysis
of a program fragment as part of the program, so that re-calculation of the analysis is avoided
wherever possible. An interactive knowledge base to suggest transformations in a given situation
will be built in to the system at a later stage.

The system will use knowledge based heuristics to analyse large programs and suggest suitable
transformations as well as carrying out the transformations and checking the applicability condi-
tions. Presenting the programmer with a variety of different but equivalent representations of the
program can greatly aid the comprehension process, making best use of human problem solving
abilities (visualisation, logical inference, kinetic reasoning etc).

Note that the theoretical foundation work which proves that each transformation in the system
preserves the semantics of any applicable program is essential if this method is to be applied to
practical software maintenance. It must be possible to work with programs which are poorly (or
not at all) understood, and it must be possible to apply many transformations which drastically
change the structure of the program (as in the example below) with a very high degree of confidence
in the correctness of the result. An additional benefit of this formal link between specification and
code is in the application to safety-critical systems. Such systems can be developed by transforming
high-level specifications down to efficient low level code with a very high degree of confidence that
the code correctly implements every part of the specification. There are also applications to the
reuse of software—both specification, code, and development history can be stored in a repository
and whenever a similar specification needs to be implemented the code and/or development history
can be re-used. See [32] for more details.

2 A Method for Reverse Engineering

The method we have developed for reverse engineering a system is based on inverse engineering,
which is the process of extracting high-level abstract specifications from source code using formal
program transformations. The benefits of this formal approach apply to maintenance generally, as
well as the specific reverse engineering task. These are:

o Increased reliability: bugs and inconsistencies are easier to spot;
e Formal links between specification and code can be maintained;
e Maintenance can be carried out at the specification level;

o Large restructuring changes can be made to the program with the confidence that the func-
tionality is unchanged;

e Programs can be incrementally improved—instead of being incrementally degraded!

e Data structures and the implementations of abstract data types can be changed easily.

The method is based on the following stages:

1.

6.

Establish the reverse engineering environment. This will involve a CASE tool to record
results, maintain different versions of code, specifications, and documentation and the links
between them; together with a WSL code browser and transformation system.

. Collect the software to be reverse engineered. This involved finding the current versions of

each subsystem and making these available to the CASE tool.

. Produce a high-level description of the system. This may already be available in the docu-

mentation, since the documentation at this level rarely needs to be changed, and is therefore
more likely to be up to date. The documentation is supplemented by the results of a cross
reference analysis which records the control flow and data dependencies among the subsys-
tems.

Translate the source code into WSL. This will usually be an automatic process involving
parsing the source files and translating the language structures into equivalent WSIL struc-
tures.

“Inverse FEngineering”, i.e. reverse engineering through formal transformations. This is the
stage we illustrate in this paper. It involves the automatic and manual application of vari-
ous transformations to restructure the system and express it at increasingly higher levels of
abstraction. We do this by iterating over the following four steps:

(a) Restructuring transformations. These include removing goto statements, eliminating
flags, removing redundant tests, and other optimisations. The effect of this restruc-
turing is to reveal the “true” structure of the program which may be obscured by poor
design or subsequent patching and enhancements. This stage is more radical than can be
achieved by existing automatic restructuring systems [10,21] since it takes note of both
data flow and control flow, and includes both syntactic and semantic transformations
[2]. We have however had considerable success with automating the simpler restruc-
turing transformations, by implementing heuristics elicited from experienced program
transformation users. See section 4.1.

(b) Analyse the resulting structures to determine suitable higher-level data representations
and control structures. In the example below we determine that the double-nested loop
is treating the input sequence as a sequence of subsequences.

(c) Redocument: record the discoveries made so far and any other useful information about
the code and its data structures.

(d) Implement the higher-level data representations and control structures using suitable
transformations. A powerful technique we have developed for carrying out these data
refinements is to introduce the abstract variables into the program as “ghost” variables
(variables whose values are changed, but which do not affect the operation of the pro-
gram in any way), together with invariants which make explicit the relationship between
abstract and concrete variables. Then, one by one, the references to concrete variables
are replaced by references to the new abstract variables. Finally, the concrete variables
become “ghost” variables and can be removed. See section 4.2 below for a small ex-
ample of this process; it is used extensively in [33]. In the example below we represent
the input sequence as a sequence of sequences and this allows us to express the inner
loop as a single statement. This in turn enables us to collapse the outer loop to a single
statement. In general, if our analysis in step 5b is correct then the result of this stage is
likely to be in a form suitable for further restructuring.

Acceptance test: We now have a high-level specification of the whole system which should go
through the usual Q.A. and acceptance tests.

3 Example Transformations

3.1 Theoretical Foundation

A transformation is an operation which maps any program satisfying the applicability conditions
of the transformation to an “equivalent” program. Equivalence is defined in terms of the external
“black box” behaviour (or semantics) of the program. We define the semantics of a program to be
a function which maps from an initial state to a final set of states: this abstracts away from all the
internal operations of the program. The set of final states represents all the possible output states
of the program for the given input state. Using a set of states enables us to model nondeterministic
programs and partially defined (or incomplete) specifications. See [27] and [30] for a description of
the semantics of WSI and the methods used for proving the correctness of transformations.

3.2 Notation

Sequences: s = (a;,as,...,a,) is a sequence, the ith element a; is denoted s[¢], s[i..j]| is the
subsequence (s|i],s[i 4+ 1],...,s[j]), where s[i..j] = () (the empty sequence) if ¢ > j. The
length of sequence s is denoted {(s), so s[{(s)] is the last element of s. We use s[i..| as an
abbreviation for s[i..{(s)].

Sequence concatenation: s 4+ ¢ = (s[1],...,s[l(s)],[1],...,t[(1)]).

Subsequences: The assignment s[i..j| := ¢[k..l] where j — i = [— k assigns s the value
(1] o sli = UKo 1], 8L 5 1] sl
Sets: We have the usual set operations U (union), N (intersection) and — (set difference), C

(subset), € (element), & (powerset). {z € A| P(x)} is the set of all elements in A which
satisfy predicate P. For the sequence s, set(s) is the set of elements of the sequence, i.e.

set(s) = { s[¢] | 1 <@ < L(s) }.

Relations and Functions: A relation is a (finite or infinite) set of pairs, a subset of A x B =
{(a,b)] a € A AN b€ B} where A is the domain and B the range. A relation f is a function
if Va, g1, ys. (((w,yl) €f A (z,y2) € f) =y = yz). In this case we write f(z) = y when
(z,y) € f. We write f- g for the composition of functions or relations. (f-g)(z) = f(g(z)).

Currying: If 4 is a binary operator and a and b are values, then (&), (a®) and ($b) are functions
with ()(a) = (a), (a)(y) = a & y and (8b)(z) = 7 & b.

Constant Functions: K, is the constant function with value a, K,(z) = a for any z. An identity
element of & is denoted idg. The function (-) maps any value to the corresponding singleton
sequence: (-)(z)= ().

Map: The map operator * returns the sequence obtained by applying a given function to each
element of a given sequence: (f * (ay,as,...,a,)) = (f(ayr), f(as),..., f(a,)).

Reduce: The reduce operator / applies an associative binary operator to a list and returns the
resulting value: (§/(ay,aq,...,a,)) = a1 BasB- - -Pa,. So, for example, if s is a list of integers
then +/s is the sum of all the integers in the list, if ¢ is a list of lists then +/(¢ % q) = {(4+/q)
is the total length of all the lists in g¢.

Projection: The projection functions 7y, 7s, ... are defined as m({(z,¥)) = z, m({(z,¥)) = v,
and more generally, for any sequence s: m;(s) = s|i].

The operation of splitting a sequence into a sequence of non-empty sections at some point where
a predicate fails is generally useful so we will define the following notation:

Suppose we have a sequence p which we want to split into sections at those points ¢ where the
predicate B(p[t], p[i + 1]) is false, i.e. we want to define a new sequence of non-empty sequences ¢
such that the concatenation of the sequences in ¢ is equal to p (#/¢ = p) and B is true within
each section and false from one section to the next.

Define the function index,: NxN — N by index,(j,k) = +/({ * ¢[1..j—1])+k. This function
maps a position in the ¢ structure into the corresponding position in the p structure, i.e. for all
j€1l..4(q) and k € 1..L(q|j]) we have p = 4 /¢ = plindex,(j, k)] = q[j|[k]. On this domain,
index, is 1-1, so it has a well-defined inverse. This inverse 1'11dexq_1 maps an index ¢ of p to a pair
(J, k) such that p[:] = ¢[j][k]. So the function section, = m -1'ndexq_1 will give the section in ¢ in
which an element of p occurs.

With this notation, we can define a split function split(p, B) = ¢ which splits p into non-empty
sections with the section breaks occurring between those pairs of elements of p where B is false.
The formal definition uses section, to find the “section breaks”:

Definition 3.1 split(p, B) = ¢ where:

(/@) =p A () & set(q)
AViel. l(p)—1. ((B(p[i],p[i+ 1]) = section, (i + 1) = section,(7))

A (= B(pli, pli + 1]) = section, (¢ + 1) = section,(7) + 1))

3.3 Examples of Transformations

In this section we describe a few of the transformations we will use later:

3.3.1 EXPAND IF STATEMENT

The if statement:
if B then S, else S, fi; S

can be expanded over the following statement to give:

if B then S;; Selse S,; S fi

3.3.2 Loopr INVERSION

If the statement S; contains no exits which can cause termination of an enclosing loop (i.e. in the
notation of [27] it is a proper sequence) then the loop:

do S;; S, od

can be inverted to:
Si; do S,; S; od

This transformation may be used in the forwards direction to move the termination test of a loop to
the beginning, prior to transforming it into a while loop, or it may be used in the reverse direction
to merge two copies of the statement S;.

3.3.3 ACTION SYSTEMS

We use “Actions” (parameterless procedures [1,2]) to represent labels and gotos, an action system
is a collection of mutually recursive actions. Within an action system, a call to the special procedure
Z causes immediate termination of the whole system: any statements pending a procedure return
will not be executed if Z is called. A regular action system is one in which the execution of any
action always leads to an action call. In this case the whole system can only be terminated by a
call to Z; so no action call can return in a regular action system.

Within an action system, any call to an action can be replaced by a copy of the body of that
action. This is called “unfolding” and applies equally well to a recursive call within the body of
the action. The inverse transformation, i.e. folding, can be applied in any case where it results in
the opposite effect to an unfolding operation. This prevents pathological cases where, for example,
the body of the action: P = S. is “folded” to get: P = call P. This case is invalid, but folding can
be applied to (for example) P = S[S/call P]. to get P = S.

4 The Program

The program is taken from a programming textbook [14], it originally took its input from a database
file, in translating it to WSL we have represented the file by a pair of arrays, item and number.
The procedure INHERFE was originally a label in the middle of an if statement in the middle of a
loop! This loop is represented by procedure L below:

var (m:=0,p:=0,last := “ 7):
actions PROG:
PROG =
(line := “ 7, m:=0,7:=1); call INHERE.
L =
S
if i = n+ 1 then call ALLDONE fi;
m = 1;
if item|i| # last
then write(line); line := “ 7; m:= 0; call INHERF fi;
call MORE.
INHERE =
p := number[i]; line := item|i|; line := line 4+ “ 7 4 p; call MORE.
MORE =
if m = 1 then p := number|i|; line := line H “, 7 4+ p fi;
last := item]i]; call L.
ALLDONE =

write(line); call 7. endactions end

This and subsequent versions of the program code were generated by the prototype tool in the form
of IATRX source files which were inserted in the paper.

4.1 Restructuring Transformations

In the first stages of simplifying and restructuring the program, little or no information is needed
about the purpose of the program or its domain of operation. The simplifications work from the
source code alone. This is important in maintenance applications where often the source code is the
only reliable documentation in existence! In the later stages (deriving the specification) high-level
domain information is used to guide the transformation process into giving a specification expressed
in a usable form. This is because there are many ways of writing a correct specification of a given
piece of code, some of which will be more useful than others. This “high-level” information includes
information about the purpose and domain of the program (such as can be obtained from a user
manual or discussions with the users of the program).

Although such information can be difficult, or impossible, to deduce from the source code
alone, it is often readily available to the maintainer. We have found that this combination of
semi-automatic and interactive operations is very powerful. The tedious low-level transformations
and verifications can be carried out automatically while allowing the human to carry out the
high-level analysis and structuring of the program. The results of this analysis can be recorded
as documentation linked to the code which will be instantly available for later maintainers of
the program. The maintainer uses high-level information (including hints gained from comments,
variable names and other documentation) to guide the system in its selection of transformations.
The automatic checking ensures that the correctness of the derivation is not compromised if the hints
prove to be invalid: in these circumstances, failure to derive the expected structure provides valuable
information as to the nature of the differences between the documentation and the source code.
Such differences may be due to bugs in the software (which will be uncovered by the transformation
process) or out-of-date documentation (which can now be updated to bring it in line with the code).

10

In the first stages we aim to restructure the program by removing procedures, moving flag tests
closer to where the flag is set, introducing loops and merging identical code. All the transformations
required at this stage have been implemented on the prototype system; the different versions of the
program shown here were generated by the system and copied directly into the paper.

First we copy INHERE and MORE into PROG to move a test of m next to the place where it
is set:

var (m:=0,p:=0,last := “ 7):
actions : PROG :
PROG =
(line :=“ 7 m:=0,i:=1);

p = number][i];
line := item]i];
line := line H “ 7 H p;
if m = 1 then p := number|i|; line := line H “, 7 4+ p fi;
last := item|i];
call L.
L =
S
if i = n+ 1 then call ALLDONE fi;
m = 1;
if item|i] # last then write(line); line := “ 7; m := 0; call INHERE fi;
call MORE.
INHERE =
p = number[i]; line := item|i];
line := line # “ 7 H p; call MORE.
MORE =
if m = 1 then p := number|i|; line := line H “, 7 4+ p fi;
last := item]i]; call L.
ALLDONE =

write(line); call 7. endactions end

Use the value of m in PROG to eliminate the subsequent test:
PROG =

(line := “ 7 m:=0,i:=1);
p = number][i];

line := item]i];

line := line # “ 7 H p;
last := item|i];

call L.

We could continue unfolding action calls and introducing loops in this way. However, this whole
process has been automated in a single transformation Collapse_Action System which follows
heuristics we have developed, selecting the sequence of transformations required to restructure a
program. The result of this single transformation is as follows:

var (m:=0,p:=0,last := “ 7):
(line := « 7, m:=0,7i:= 1);
p := number|il;
line := item]i];
line := line # “ 7 H# p;
last := item|i];
doi:=1+1;

11

if i = n + 1 then write(line); exit(1) fi;
m = 1;
if item|i| # last
then write(line); line := “ 7; m := 0;
p = number[i]; line := item|i];
line := line H+ “ 7 H# p fi;
if m = 1 then p := number|i|; line := line H “, 7 4+ p fi;
last := item|i] od end

By absorbing the statement if m = 1 then ... fi into the preceding if statement we can
eliminate the remaining test of m. m becomes a redundant variable and can be removed entirely
from the program in a single transformation. This transformation also notices that p is redundant

and removes it.

The resulting program has two copies of the statement last := item]i|, one outside the loop and
the other at the end of the loop body. So “loop inversion” can be applied to give:

var last := “ 7:

(line := « 7, i:=1);
line := item[i] + “ 7 number][i];
do last := item]i];
S
if i = n + 1 then write(line); exit(1) fi;
if item|i] # last then write(line); line := item[i| # “ 7 + number|i
else line := line 4+ “, 7 4 number|i] fi od end

Now we have two copies of line := item|i] + “ 7 4 number|i]. We would like to apply loop
inversion again, so we convert the single loop to a double loop and take the statement outside the

inner loop:

var last := “ 7:

(line := « 7, i:=1);
line := item[i] + “ 7 number][i];
do do last := item|i];

=1+ 1

if i = n + 1 then write(line); exit(2) fi;

if item|i] # last then write(line); exit(1)

else line := line H “, 7 + number[i] fi od;
line := item[i] + “ 7 + number|i] od end

Loop inversion can now be used on the outer loop.

The inner loop is terminated in two places: we would like to combine these so that there is only
one exit from the loop. We would also like to merge the two copies of write(line). We can use the
fact that ¢ = n + 1 is true before the first write(line) and false before the second to move these
statements outside the inner loop:

var last := “ 7:

(line := « 7, i:=1);
do line := item[i] H “ 7 4 number][i];
do last := item]i];
=1+ 1
if i = n + 1 then exit(1) fi;
if item|i] # last then exit(1) else line := line + *, 7 4+ number|i] fi od;
if i # n + 1 then write(line) else write(line); exit(1) fi od end

12

(To achieve this transformation the prototype system required a “hint” which we gave by
introducing the assertions {i = n+ 1} before the first copy of write(line) and {¢ # n+ 1} before the
second. The system used these assertions to move the subsequent statements into an if statement
outside the loop). Now, within the inner loop we can merge the two if statements so there is only
one exit, we also re-arrange the if statement at the end of the outer loop:

var last := “ 7:

(line := « 7, i:=1);
do line := item[i] H “ 7 4 number][i];
do last := item]i];
=1+ 1
ifi=n-+1V item|t] # last then exit(1) fi;
line := line 4+ “, 7 4 number|i] od;
write(line);
if : = n + 1 then exit(1) fi od end

The variable last is assigned the value item|i], then ¢ is incremented and last is tested. We
can replace last by item[i — 1] in the expression and remove last from the program. (The system
automatically recognised that ¢ was incremented between the assignment to last and its use):

(line := « 7, i:=1);
do line := item[i] H “ 7 4+ number][i];
dov:=1i+1;

ifi =n+1V item|i] # item|i — 1| then exit(1) fi;
line := line H “, 7 4+ number|i| od;

write(line);

if : = n 4 1 then exit(1) fi od

Finally we convert the inner loop to a while loop:

(line := « 7, i:=1);
do line := item[i] H “ 7 4+ number][i];
=1+ 1

while ¢ # n+ 1 A item[i| = item[i — 1] do

line := line 4+ “, 7 4 numberli]; i := i+ 1 od;
write(line);
if : = n 4 1 then exit(1) fi od

The transformations have revealed the “true” structure of the program, which involves a double
loop: the “true” structure of a program is a structure which closely matches the function and
purpose of the program. This structure was uncovered by simply following certain heuristics (in
this case a technique for merging similar statements) without needing to understand the purpose
of the program. When we look at the function of the program, as described in the published
documentation [14], we see that this double loop precisely captures what the program is intended
to do. The program scans through a sorted file (here represented by the arrays item and number)
consisting of words and page references. The outer loop scans through distinct items and for each
distinct item the inner loop steps through the page references for that item. Writing the program
as a single loop whose body must distinguish the two cases of a new item and a repeated item
obscured the simple basic structure which has been revealed through transformations. This kind of
transformation has important applications in program maintenance: the second version is far easier
to understand and modify—there is only one copy of the statement which writes to the file, the flag
m which was used to direct the control flow is not needed, and the variables p and last have also
been eliminated. The transformation from first version to second used only general transformations
which have been proved to work in all cases, and so could be applied without having to understand
the program first.

13

With this knowledge of the program’s purpose we can see that the transformations have also
revealed a bug in the program: note that the outer loop has the test at the end (as in the usual
repeat ... until loop), so the body of this loop is executed at least once. Recalling that the program

reads an input file and produces some output which summerises the input, there is something rather
odd about this structure! In fact, the program will not work correctly if presented with an empty
file: from the documentation the program should produce no output for an empty input file, but
this program’s output consists of a single line composed from the contents of uninitialised data
structures! This bug is not immediately obvious in the first version of the program. For the first
version a typical “fix” would be to add a test for an empty file and a goto which jumps to a new
label at the end of the program. In that case this “fix” is also typical in that it further obscures
the program structure, increases the program length and increases the number of identifiers used.
In contrast with this, to carry out the same modification to the second version we merely change
the outer loop to a while loop. An alternative (and even less drastic) method of correcting the
bug is to introduce the assertion {n # 0} at the beginning of the program. This assertion states
that the “empty input” case can be ignored. Using it we are able to transform the outer loop into
a while loop. On removing the assertion we get a program which will work correctly for the n = 0
case and which is proven to be equivalent to the original program in all other cases. Thus we have
fixed the bug and proved that we have broken nothing else in doing so.

var (line := “ 7, i:=1):
while i #n + 1 do
line := item[t] + “ 7 number][i];
=1+ 1
while ¢ # n+ 1 A item|i| = item[i — 1] do
line := line H “, 7 4 number|i]; i := i+ 1 od;
write(line) od end

It should be re-emphasised at this point that all the transformations used so far were carried
out on the prototype Maintainer’s Assistant tool and inserted directly into the paper (see [35] and
[8] for a description of the prototype).

4.2 Data Refinement

This is about as far as we can get with transformations at the code level. The next stage involves
moving to a higher level of abstraction. To do this we read through the program looking for
a suitable control or data abstraction. The previous restructuring stages have made this task
considerably easier. In this case we have a double loop scanning through a pair of arrays: this
suggests a data refinement in which the arrays are represented as a sequence of sequences in such a
way that one subsequence is processed for each iteration of the outer loop. In other words we need
to restructure the data so that it reflects more closely the control structure of the program.

The two arrays item and number are treated in parallel, with only the first n elements of
each being accessed. So it makes sense to express them as a single data structure; an n element
sequence of pairs p = ((item|1], number[l]), (item|2], number|2]), ..., (item[n|, number[n])). The
function pairs takes two sequences of equal length and returns the corresponding sequence of pairs.

We now have a double loop which scans through the sequence p. Each step of the inner loop
processes a single element of the sequence, so each execution of the inner loop processes a segment
of the sequence. So the key to the data restructuring is to split the input sequence into sections
such that the outer loop processes one segment per iteration. This is easily achieved with the
split function defined above—the terminating condition on the inner loop provides the predicate
on which to split. Define the predicate same_head by:

funct same_head(z,y) =
z[1] = y[1].

14

Then the new variable ¢ is introduced with the assignment: ¢ := split(p, same_head).

We introduce ¢ and its two index variables 7 and k to the program as ghost variables. 7 and k
step through ¢ as ¢ steps through p: more formally we have the invariant:

i= /gl j—1])+k

which is the same as ¢ = index,(j, k). From this invariant and the relation /¢ = p we get the
invariant: pli| = ¢[j][k]. Adding these ghost variables to the program we get:

var (line := “ 7, i:=1):
var (q,j,k):
q := split(p, same_head); j := 1; k := 1;
while ¢ < {(p) do
line := plill1] + 7 4 plil[2);
=1+ 1
k:=Fk+1;if k> {(q[j]) then j:=j+1; k:=1 fi;
while ¢ < {(p) A pli|[1] = p[i — 1][1] do
line := line + “, 7 4 p[i][2]; i := @ + 1;
k:=Fk+1;if k> ((q[j]) then j:=j+1; k:=1fi od;

write(line) od end end

The next stage is to replace references to the concrete variables p and ¢ by references to the
new variables ¢, 7 and k using the invariants above. Then the concrete variables become ghost
variables and can be removed from the program. Note that due to the structure of ¢ the test
pli][1] = pli — 1][1] is true as long as we are in the same section of p, i.e. as long as we have not
just incremented j and reset k to 1. But this is the case exactly when k # 1. Also, if i > {(p) in
the inner loop we must have just incremented j (and k& will be 1), so the whole test is equivalent

to k # 1. We have:

var (line := “ 7):
var (¢, j, k):
q := split(p, same_head); j := 1; k := 1;
while j < {(¢q) do
line := q[j][K][1] + * 7 + ql5][K][2];
k:=Fk+1;if k> {(q[j]) then j:=j+1; k:=1 fi;
while £ # 1 do
line := line + “, 7 + q[7]|k][2]);
k:=Fk+1;if k> ((q[j]) then j:=j+1; k:=1fi od;

write(line) od end end

We want to show that the inner loop processes exactly one segment of ¢, to do this we need to
change its termination condition to k < {(¢[j]). The easiest way to do this is to convert the inner
loop to a do ... od loop and absorb the if statement and increment of k to get:

do k =k + 1;
if & > ((glj]) then j := j + 1; k = 1 i
if £ # 1 then exit fi;
line := line H+ “, 7 4 q[j]|k][2] od

If & > {(q]j]) at the beginning of this loop body then the if statement will be executed and the
loop terminated. Conversely if k& < {(¢g[7]) then it is certainly > 1 so after k is incremented, the if
statement has no effect and the loop is not terminated (since now k& > 1). So we can transform the
inner loop into the following while loop:

while k < ((q[j]) do

15

k:i=k+1;
line := line # “, 7 H q[j][¥][2] od;
Ji=j+ L k=1

The local variable k is only used in this loop (its value is always 1 outside the loop) so we can
transform it into a for loop. Our program now looks like this:

var line := “ 7

var (¢, J):

q := split(p, same_head); j := 1;

while j < {(¢q) do
line := q[5][1][1] 4 = 7 4+ q[7][1][2];
for k := 2 step 1 to ((¢|j]) do

line := line H+ “, 7 4 q[j]|k][2] od;

Ji=J+ L
write(line) od end end

where we have replaced the occurrences of k outside the for loop by 1.

q|j] is a sequence of pairs, but in the inner for loop we only use the second element of each pair.
So we can represent ¢[j| by the sequence of second elements, i.e. the sequence r = m, * ¢[j| where
T2({a,b)) = b is a projection function, (this is another data refinement). With this abstraction the
inner loop takes on the following form:

var r = 7y * ¢|j]:
line := line - r|[1];
for k := 2 step 1 to ((r) do
line := line 4+ *, ” 4 r[k] od end

This implements a “splice” function, it is equivalent to: line := line H (sep(“, ”)/7‘) where sep is
defined: sep(s)(a,b) = a 4+ s H b. So we can re-write this as:

var r:= 7, * ¢[j]:

line := line - (Sep(“, 77)/7‘)

The program simplifies to:

var line := “ 7

var (¢,]):
q := split(p, same_head); j := 1;
while 7 < {(¢) do
line := q[iI[1[1] 4 < 7+ (sep(*, ")/(72 = qli]);
Ji=g+ L

write(line) od end end

Finally, this program simply applies the procedure write to a function of each element of the
list ¢ so we can implement it as a (procedure) map operation:

begin var ¢ := split(pairs(item|1 . .n|, number[l . .n|), same_head):
write % (process % ¢) end
where
funct pairs(xs,ys) =
if xs = () then ()
else ((xs[1],ys[1])) H# pairs(xs[2..],ys[2..]) fi.,
funct process(xs) =

s[4 7 4 (sep(<, ")/ (m2 * x5)).

16

end

To summarise this specification: We first translate the pair (item|1..n|, number|[1..n]) of lists
into a list p of pairs. Then we split p into a list of sections ¢ starting a new section at each point
where the head of one pair differs from the head of the next pair. Finally, for each section we print
the result of applying process to that section where process concatenates the head of the first pair
(the item), a space and the list of second elements of the pairs (the numbers), separated by the
string “, 7.

This is now in the form of an abstract specification which defines the precise relationship between
the input and output states.

5 Project Status and Future Directions

The techniques illustrated here are based on a formal theory of program refinement and equival-
ence which has been used to develop and prove a large catalogue of useful transformations [27].
Experiments on small but complex programs have given very encouraging results: we have been
able to discover bugs in high-level language code which were revealed by the analysis process. We
have also discovered a performance hit in CICS Assembler code. This was introduced as a result
of maintenance, and the maintenance programmers became aware of it when they examined the
transformed version of the assembler code. The same transformations have been used to derive
several types of algorithm from high-level, abstract specifications [28,29,31,33].

We have recently completed a case study involving five modules of IBM Assembler, each con-
sisting of about 500 lines of code, taken from a large commercial banking system. Fach module
was automatically translated into WSL and interactively restructured into a high-level language
form. One particular module had been repeatedly modified over a period of many years until
the control flow structure had become highly convoluted. Using the prototype tool we were able
to transform this into a hierarchy of (single-entry, single-exit) subroutines resulting in a module
which was slightly shorter and considerably easier to read and maintain. The transformed version
was hand-translated back into Assembler which (after fixing a single mis-translated instruction)
“worked first time”.

Work is currently underway in the following areas:

e Extension of the tool to high-level transformations (to generate abstract specifications) and
more sophisticated data-flow analysis;

¢ Extension of the theory to communicating parallel programs;

e The use of metrics, including size and complexity metrics, to automate more of the trans-
formation process and guide the selection of transformations.

We are also, in conjunction with IBM UK Ltd, about to embark on some more extensive case
studies involving professional assembler programmers working on real assembler code. These will
attempt to quantify the improvements in maintainability achievable through inverse engineering.

6 Conclusion

In this paper we have taken a small, but highly complex, program and transformed it into a
concise logical specification, by applying general program transformations which have been proven
to preserve the semantics. The formal method of inverse engineering, which forms the basis of
the Maintainer’s Assistant, would appear to have reached the stage where application to real
maintenance tasks is now feasible.

7 References

17

1]

2]

3]

4]

[5]

[6]

7]

3]

19]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

J. Arsac, “Transformation of Recursive Procedures,” in Tools and Notations for Program Con-

struction, D. Neel, ed., Cambridge University Press, Cambridge, 1982, 211-265.

J. Arsac, “Syntactic Source to Source Program Transformations and Program Manipulation,”
Comm. ACM 22 (Jan., 1982), 43-54.

R. Balzer, “Transformational Implementation: An Example,” IEEE Trans. Software Eng. 7 (Jan.,
1981).

R. Balzer, “A 15 Year Perspective on Automatic Programming,” IEEE Trans. Software Eng. SE
11 (Nov., 1985), 1257-1267.

R. Barstow, H. E. Shrobe & E. Sandwall, Interactive Programming Environments, McGraw-Hill,
New York, NY, 1984.

F. L. Bauer, B. Moller, H. Partsch & P. Pepper, “Formal Construction by Transformation—
Computer Aided Intuition Guided Programming,” IEEE Trans. Software Eng. 15 (Feb., 1989).

J. M. Boyle, “LISP To FORTRAN-—Program Transformation Applied,” in Program Transform-
ation and Programming Environments Report on a Workshop directed by F. L. Bauer and H.
Remus, P. Pepper, ed., Springer-Verlag, New York—Heidelberg—Berlin, 1984, 199-222.

T. Bull, “An Introduction to the WSI Program Transformer,” Conference on Software Main-
tenance 26th-29th November 1990, San Diego (Nov., 1990).

R. M. Burstall & J. A. Darlington, “A Transformation System for Developing Recursive Pro-
grams,” J. Assoc. Comput. Mach.24 (Jan., 1977), 44-67.

F. W. Calliss, “Problems With Automatic Restructurerers,” Durham University, Technical Re-
port, 1989.

R. B. K. Dewar, E. Schonberg & J. T. Schwartz, “Higher Level Programming: Introduction to
the Use of the Set-theoretic Programming Language SETL,” Courant Institute of Mathematical
Science, New York University, Technical Report, New York, 1981.

M. S. Feather, “A Survey and Classification of Some Program Transformation Techniques,”
Program Specification and Transformation (1987).

M. S. Feather, “A System for Assisting Program Transformation,” Trans. Programming Lang.
and Syst.4 (Jan. 1982), 1-20.

M. Fenton, Developing in DataFlex, Book 2, Reports and other outputs, B.E.M. Microsystems,
1986.

S. F. Fickas, “Automating the Transformational Development of Software,” University of Cali-
fornia, Ph.D. dissertation, Irvine, 1982.

S. F. Fickas, “Automating the Transformational Development of Software,” IEEF Trans. Soft-
ware Eng. 11 (Nov., 1985).

J. R. Foster, “Program Lifetime: A Vital Statistic for Maintenance,” Conference on Software
Maintenance 15th-17th October 1991, Sorrento, Italy (Oct., 1991).

J. R. Foster & H. P. Kiekuth, “Software Maintenance Survey: Summary,” Technical Report
(Mar. 1990).

C. B. Jones, Systematic Software Development using VDM, Prentice-Hall, Englewood Cliffs,
NJ, 1986.

18

[20] B. Lientz & E. B. Swanson, Software Maintenance Management, Addison Wesley, Reading, MA,
1980.

[21] J. C. Miller & B. M. Strauss, “Implications of Automatic Restructuring of COBOL,” SIGPLAN
Notices 22 (June, 1987), 76-82.

[22] R. Moreton, “Analysis and Results from a Maintenance Survey,” Second Software Maintenance
Workshop Notes, Centre for Software Maintenance, University of Durham (1988).

[23] D. J. Mostow, “Machanical Transformation of Tasks Heuristics into Operational Procedures,”
Carnegie-Mellon University, Ph.D. dissertation, Rep. CMU-CS-81-113, Pittsburg, Pa., 1981.

[24] J. T. Nosek & P. Palvia, “Software Maintenance Management: Changes in the Last Decade,” J.
Software Maintenance: Research and Practice 2 (Sept. 1990), 157-174.

[25] H. Partsch & R. Steinbriigen, “Program Transformation Systems,” Computing Surveys 15 (Sept.,
1983).

[26] T. Teitelbaum & T. Reps, “The Cornell Program Synthesizer,” Comm. ACM 24 (Sept., 1981),
563-573.

[27] M. Ward, “Proving Program Refinements and Transformations,” Oxford University, DPhil
Thesis, 1989.

[28] M. Ward, “Derivation of a Sorting Algorithm,” Durham University, Technical Report, 1990.

[29] M. Ward, “The Largest True Square Problem—An Exercise in the Derivation of an Algorithm,”
Durham University, Technical Report, Apr., 1990.

[30] M. Ward, “Specifications and Programs in a Wide Spectrum Language,” Submitted to J. Assoc.
Comput. Mach., Apr., 1991.

[31] M. Ward, “Iterative Procedures for Computing Ackermann’s Function,” Durham University,
Technical Report 89-3, Feb., 1989.

[32] M. Ward, “Using Formal Transformations to Construct a Component Repository,” in Software

Reuse: the FEuropean Approach, Springer-Verlag, New York—Heidelberg—Berlin, Feb., 1991.

[33] M. Ward, “Derivation of Data Intensive Algorithms by Formal Transformation,” Submitted to
IEEE Trans. Software Eng., May, 1992.

[34] M. Ward, “A Model for Partial Programs,” Submitted to J. Assoc. Comput. Mach., Nov., 1989.

[35] M. Ward, F. W. Calliss & M. Munro, “The Maintainer’s Assistant,” Conference on Software
Maintenance 16th-19th October 1989, Miami Florida (Oct., 1989).

[36] M. Ward & M. Munro, “Intelligent Program Analysis Tools for Maintaining Software,” UK IT
88 Conference, 4th—7th July, University College Swansea (July, 1988).

[37] N. Wirth, “Program Development by Stepwise Refinement,” Comm. ACM 14 (1971), 221-227.

19

