
Abstracting a Speci�cation from CodeMartin WardComputer Science DeptScience LabsSouth RdDurham DH1 3LEJuly 16, 1993AbstractMuch of the work on developing program transformation systems has concentrated on sys-tems to assist in program development. However, the four separate surveys carried out between1977 and 1990 [18,20,22,24], summarised in [17], show that between 40% and 60% of all com-mercial software e�ort is devoted to software maintenance rather than the development of newsystems. In this paper we describe a joint project between the University of Durham and CSMLtd to develop a method and tool for reverse engineering and software maintenance based onprogram transformation theory. We present an example which illustrates how such a tool canextract a high-level abstract speci�cation from the low-level source code of a program by aprocess of formal program transformation based on a theory of program equivalence [27]. Allthe code-level reverse engineering of the example program was carried out on the prototype toolwith the resulting code pasted directly into the paper.1 IntroductionFour separate surveys carried out between 1977 and 1990 [18,20,22,24] and summarised in [17],show that between 40% and 60% of all commercial software e�ort is devoted to software mainten-ance. Despite this, much of the research in software engineering has concentrated on methods fordeveloping new code rather than methods for analysing, correcting and enhancing existing code. Inthis paper we describe a formal method for reverse engineering existing code which uses programtransformations to restructure the code and extract high-level speci�cations. By a �speci�cation�we mean a su�ciently precise de�nition of the input-output behaviour of the program. We do notconsider timing constraints in this paper: although the method can be extended to model time asan extra output of a program. A �su�ciently precise� description is one which can be expressedin �rst order logic and set theory: this includes Z, VDM [19], and all other formal speci�cationlanguages.The method uses a Wide Spectrum Language (called WSL), developed in [27,30,34] whichincludes low-level programming constructs and high-level abstract speci�cations within a singlelanguage. Naturally, the translation of speci�cations or source code written in an informal lan-guage (including incompletely or inconsistently de�ned programming languages) into WSL cannotbe formally proved correct. The semantics of a source �le may depend on the particular com-piler/interpreter and target machine used to execute it. The best that can be done in such casesis to make the translator as simple as possible by translating each statement as fully as possible,including all the implied details, and explicitly record any assumptions made about the com-piler/interpreter and operating environment. Redundant details in the translated WSL program,introduced by this process, are easily removed by optimising transformations.Working within a single formal language means that the proof that a program correctly im-plements a speci�cation, or that a speci�cation correctly captures the behaviour of a program,1



can be achieved by means of formal transformations in the language. We don't have to developtransformations between the �programming� and �speci�cation� languages. An added advantageis that di�erent parts of the program can be expressed at di�erent levels of abstraction, if required.(Feather [12] refers to a narrow-spectrum language as one which picks up some relatively narrowstyle of program of speci�cation description and focuses on �nding notations and manipulations tosupport the expression and application of transformations within that style).A program transformation is an operation which modi�es a program into a di�erent form whichhas the same external behaviour (it is equivalent under a precisely-de�ned denotational semantics).Since both programs and speci�cations are part of the same language, transformations can beused to demonstrate that a given program is a correct implementation of a given speci�cation.In [28,29,31,33] program transformations are used to derive a variety of e�cient algorithms fromabstract speci�cations. In this paper we apply the transformations in the reverse direction: startingwith a small but tangled and obscure program we are able to use transformations to restructurethe program and derive a concise abstract representation of its speci�cation. The transformationprocess also reveals a bug in the program which is di�cult to spot in the original version but trivialto spot and correct in the transformed version.1.1 Transformational DevelopmentProducing a program (or a large part of it) from a speci�cation in a single step is a di�cult task tocarry out, to survey and to verify [6]. Moreover, programmers tend to underestimate the complexityof given problems and to overestimate their own mental capacity [25] and this exacerbates thesituation further.A solution in which a program is developed incrementally by stepwise re�nement was proposedby Wirth [37]. However, the problem still remains that each step is done intuitively and must thenbe validated to determine whether the changes that have been made preserve the correctness of theprogram with respect to some speci�cation, yet do not introduce unwanted side e�ects.The next logical stage, improving on stepwise re�nement, is to only allow provably semantic-preserving changes to the program. Such changes are called transformations. There are severaldistinct advantages to this approach [6]:� The �nal program is correct (according to the initial speci�cation) by construction.� Transformations can be described by semantic rules and can thus by used for a whole classof problems and situations.� Due to formality, the whole process of program development can be supported by the com-puter. A signi�cant part of transformational programming involves the use of a large numberof small changes to be made to the code. Performing such changes by hand would introduceclerical errors and the situation would be no better than the original ad hoc methods. How-ever, such clerical work is ideally suited to automation, allowing the computer itself to carryout the monotonous part of the work, allowing the programmer to concentrate on the actualdesign decisions.1.2 Transformation SystemsMany workers have recognised that developing a program by successive transformation can bemade much easier and less error-prone if an interactive system is provided which can carry out thetransformations, perhaps check that they are used in a valid way, and keep a record of the variousversions of the program. Thus, there has been much research into transformational programmingand this has resulted in a large number of experimental systems. For a detailed overview of thesesee the papers by Partsch and Steinbrügen [25] and Feather [12].The three main types of transformation system are:2



1. A manual system makes the user responsible for every single transformation step. It is thesimplest implementation and the system must provide some means for building up compactand powerful transformation rules.2. A fully automatic system enables the selection and appropriate rules to be completely de-termined by the system using built-in heuristics, machine evaluation of di�erent possibilities,or other strategic consideration.3. A semi-automatic system works both autonomously for prede�ned subtasks and manually forunsolvable problems.For such systems there are two main ways of organising the transformations: The �rst is as anextensible catalogue of speci�c transformations, the second is to have a small �generative set� of verysimple transformations which are combined in various ways to provide more powerful manipulations.The Cornell Program Synthesiser of [5,26] can be thought of as a totally manual system. It isan interactive system for program writing and editing which acts directly on the structure of theprogram by inserting and deleting structures in such a way as to ensure that the edited programis always syntactically correct: used as a transformation system, the user would be responsible forthe semantic correctness of the manipulations. Arsac [1] describes using a simple manual systemto carry out transformations of a program and store the various versions. His system knows sometransformations but makes no attempt to check that the correctness conditions of a transformationhold when it is applied.The �rst work on automatic program transformation was done by Burstall and Darlington in themid-1970's [9]. Their �rst system was based on a schema-driven method for transforming applic-ative recursive programs into imperative ones: with the ultimate goal of improved e�ciency. Thesystem worked largely automatically, according to a set of built-in rules, with only a small amountuser control. The rules were simple transformations, including recursion removal, elimination ofredundant computations, unfolding and structure sharing.Their second system, implemented in POP-2 and designed to manipulate applicative programs,is a typical representative of the generative set approach and consists of only six rules: de�nition,instantiation, unfolding, folding, abstraction, and laws (actually a set of data-structure-speci�crules). �De�nition� allows the introduction of the new functions (in the form of recursion equations).Balzer built a program transformation system in the early 1980's [3]. The system used a separatespeci�cation language GIST, rather than a single wide-spectrum language.CIP-S is the approach of the Project CIP (Computer-aided, Intuition-guided Programming).The objective is to develop an integrated environment for the transformational development ofprograms from algebraic speci�cations. This includes manipulation of concrete programs, derivationof new transformational rules within the system, transformation of algebraic types, and veri�cationof applicability conditions, and the documentation of developments and their manipulation.CIP-L [Bauer 85] is the language on which the CIP project was based. CIP-L is a wide-spectrumlanguage which includes constructs for writing high-level speci�cations, functional programs, im-perative programs and unstructured programs with gotos. The language provides constructs forthe speci�cation and implementation of data structures and control structures. Algebraic datatypes are implemented by computation structures combining data and algorithms. Modes are de-scribed by speci�c types for which computation structures can be provided automatically. Basedon algebraic types and/or computation structures, program can be speci�ed using predicate logic,description, comprehensive choice, and fully typed set operations.The DRACO System is a general mechanism for software construction based on the paradigm of�reusable software�. �Reusable� here means that the analysis and design of some library programcan be reused, but not its code. DRACO is an interactive system that enables a user to re�ne aproblem, stated in a high level problem domain speci�c language, into an e�cient LISP program.3



Accordingly, DRACO supplies mechanisms for de�ning problem domains as special purpose domainlanguages and for manipulating statements in these languages into an executable form.Another automatic system, the DEDALUS system (DEDuctive ALgorithm Ur-Synthesizer) byManna and Waldinger is implemented in QLISP. Its goal is to derive LISP programs automaticallyand deductively from high-level input-output speci�cations in a LISP-like representation of math-ematical logic notation. A goal-directed deductive approach is used whereby the reduction of a goal(to synthesize a program satisfying a given speci�cation) to one or more subgoals, by means of atransformation rules, results in the generation of a program fragment which computes the desiredresult, once it is completed with program fragments corresponding the subgoal(s). So, for example,reducing a goal to two subgoals by means of a case analysis corresponds to the introduction of aconditional expression.The long-running SETL project at the Courant Institute of New York University [11] has servedas the context for a wide variety of transformation research. Their very high level programminglanguage, SETL, has syntax and semantics based on standard mathematical set theory. SETLprograms can always be executed; however, naïve execution of programs that make liberal use ofthe high-level language features may be very ine�cient. The SETL compiler has been built tocompile SETL programs into e�cient interpretable code or machine code. Used in this manner,the SETL compiler would fall into the category of a traditional compiler, albeit a very sophisticatedone.Boyle's TAMPR (Transformation-Assisted Multiple Program Realization) system provides avariety of support for programming in FORTRAN at the Argonne National Laboratory [7]. Ap-plications include small language extensions (e.g., complex and quaternion abstract data types,automatic declaration of undeclared variables), optimisations (e.g., loop unrolling, unfolding ofsome subroutine calls), conversions (e.g., single to double precision, multi-dimensional arrays toone- dimensional ones), andmiscellaneous support (e.g., instrumenting programs, recognising inher-ent program structure). The modest nature of the tasks enables TAMPR's transformation processto be entirely automatic. In addition to transformation within the FORTRAN language, TAMPRhas also been applied to help in FORTRAN-to-PASCAL translation, and in converting the bulk ofthe TAMPR system itself from its (almost) pure applicative LISP version into FORTRAN (whichruns faster the compiled LISP form on the same machine). This latter application demonstratesthe feasibility of the approach on moderately large programs (1300 lines, 42 functions, convertedinto 3000 lines of FORTRAN). Boyle stresses that approaching these tasks by means of programtransformation encourages organising it in a modular fashion, with many consequent bene�ts.Feather's ZAP system and language [13] is based on the fold/unfold work of Burstall and Dar-lington on transforming applicative programs expressed in recursion equations. The ZAP system'slanguage is a language for expressing transformations and developments.1.3 Automating the ProcessThere are currently three main ways of automating more of the transformation process (see [16]):Jittering: The method used in the Transformational Implementation (TI) system developed byBalzer [3], and also in Fickas' GLITTER system [15] is that of jittering. In this system, ifa transformation is applied, but fails due to some minor technical detail, the system auto-matically modi�es the program (using transformations) so that the initial transformation cansucceed.Means-end analysis: A variant of jittering, called means-end analysis, is used by Mostow [23] toguide rule selection. The user provides the pattern to be matched in order to apply the rule,and the system computes the di�erence between this and the actual current pattern. Thecomputed di�erence then indexes further rules which could be used to reduce the di�erence.4



Optimal �Next� Transformations: In this approach, the system is tried manually on manydi�erent programs and the order of transformations used is recorded; this is a knowledgeelicitation process (and will also be used in the next approach to determine what metrics touse). From these results it will be possible to determine which transformations form sequencesand to make suggestions as to the next transformation to use based on the previous one. Forexample, removing a redundant variable may follow merging two assignments.The Metric Approach: The �nal approach is, perhaps, the most ambitious. This is to determinea metric which quanti�es the �ease of understanding�, or �niceness�, of a program and uses�hill-climbing� methods to �nd a sequence of transformations which manipulate the programinto an equivalent form which maximises this metric.Note that total automation is extremely di�cult and probably undesirable: the best approach isan interactive system which is highly automated in some areas (eg restructuring).1.4 The Maintainer's AssistantMuch of the current research in program transformation systems is directed purely at software de-velopment and has little applicability to software maintenance, including all the systems discussedabove, where the code to be analysed often has little structure, and was certainly not developed inaccordance with the rules of any particular transformational development system. One method ofperforming maintenance which was suggested by Balzer [4], that of modifying the code's speci�ca-tion and then reimplementing it formally, seems well suited to the transformational method. But,for old code, no speci�cation may be available, so we have nothing we can edit and re-transform toproduce a new version of the program. This has led to the work described in this paper which usingprogram transformations, aims among other things, to help the maintainer recover speci�cationsfrom code. A major aim of this work is the development of a tool, the Maintainer's Assistant,which will automate much of the process of transforming code into speci�cations and speci�cationsinto code. The process can never be completely automated�there are many ways of writing thespeci�cation of a program, several of which may be useful for di�erent purposes. So the tool mustwork interactively with the tedious checking and manipulation carried out automatically, while themaintainer provides high-level �guidance� to the transformation process. Ultimately we hope tocapture much of the knowledge and expertise that we have developed over the course of severalcase studies, and incorporate it within the tool itself.The Maintainer's Assistant can be used as a transformation development system, starting witha high-level speci�cation expressed in set-theory and logic notation (similar to Z or VDM [19]. Itcan also act on existing program code as a tool to aid comprehension by producing speci�cations(which can then be modi�ed). The system can work with any language by �rst translating into thesystem's internal language, which is the Wide Spectrum Language WSL. Prototype stand-alonetranslators have been developed for IBM 370 assembler and a subset of BASIC. Transformationsare themselves coded in an extension of WSL called Meta-WSL, this makes it possible to use thesystem to maintain its own code.The initial prototype Maintainer's assistant was developed as part of an Alvey project at theUniversity of Durham [35,36] whose aim was to develop a tool assist a maintenance programmerin understanding and modifying an initially unfamiliar program, given only the source code. Thiswork on applying program transformation theory to software maintenance formed the basis fora joint research project between the University of Durham, CSM Ltd and IBM UK Ltd. whoseaim is to develop a tool which will interactively transform assembly code into high-level languagecode and Z speci�cations. We have been able to transform the assembler code to a high-levellanguage representation, replace the �areas of store� by the data structures they implement (usingtransformations which change the data representation of a program), and then transform this high-level language version into a speci�cation. A prototype translator has been completed and testedon sample sections of assembler code from IBM's CICS product (ranging up to 5500 lines) with5



very encouraging results (see Section 5).The tool consists of a structure editor, a library of proven transformations and a knowledge-based system which analyses the programs and speci�cations under consideration and uses heuristicknowledge to determine which transformations will achieve a given end (for example, derivingthe speci�cation of a section of code, �nding the most suitable technique for recursion removal,optimising for e�ciency etc.)The system is interactive and incorporates a graphical front end, pretty-printer and browser.This allows the programmer to move through the program, apply transformations, undo changeshe has made, and in special circumstances, edit the program manually: but always in such a waythat it is syntactically correct. The system automatically checks the applicability conditions of atransformation before it is applied; or even presented in one of the menus. This means that thecorrectness of the resulting transformed program is guaranteed by the system rather than beingdependent on the user. A history/future structure is built-in to allow back-tracking and forward-tracking enabling the programmer to change his mind. The system stores the results of its analysisof a program fragment as part of the program, so that re-calculation of the analysis is avoidedwherever possible. An interactive knowledge base to suggest transformations in a given situationwill be built in to the system at a later stage.The system will use knowledge based heuristics to analyse large programs and suggest suitabletransformations as well as carrying out the transformations and checking the applicability condi-tions. Presenting the programmer with a variety of di�erent but equivalent representations of theprogram can greatly aid the comprehension process, making best use of human problem solvingabilities (visualisation, logical inference, kinetic reasoning etc).Note that the theoretical foundation work which proves that each transformation in the systempreserves the semantics of any applicable program is essential if this method is to be applied topractical software maintenance. It must be possible to work with programs which are poorly (ornot at all) understood, and it must be possible to apply many transformations which drasticallychange the structure of the program (as in the example below) with a very high degree of con�dencein the correctness of the result. An additional bene�t of this formal link between speci�cation andcode is in the application to safety-critical systems. Such systems can be developed by transforminghigh-level speci�cations down to e�cient low level code with a very high degree of con�dence thatthe code correctly implements every part of the speci�cation. There are also applications to thereuse of software�both speci�cation, code, and development history can be stored in a repositoryand whenever a similar speci�cation needs to be implemented the code and/or development historycan be re-used. See [32] for more details.2 A Method for Reverse EngineeringThe method we have developed for reverse engineering a system is based on inverse engineering,which is the process of extracting high-level abstract speci�cations from source code using formalprogram transformations. The bene�ts of this formal approach apply to maintenance generally, aswell as the speci�c reverse engineering task. These are:� Increased reliability: bugs and inconsistencies are easier to spot;� Formal links between speci�cation and code can be maintained;� Maintenance can be carried out at the speci�cation level;� Large restructuring changes can be made to the program with the con�dence that the func-tionality is unchanged;� Programs can be incrementally improved�instead of being incrementally degraded!� Data structures and the implementations of abstract data types can be changed easily.6



The method is based on the following stages:1. Establish the reverse engineering environment. This will involve a CASE tool to recordresults, maintain di�erent versions of code, speci�cations, and documentation and the linksbetween them; together with a WSL code browser and transformation system.2. Collect the software to be reverse engineered. This involved �nding the current versions ofeach subsystem and making these available to the CASE tool.3. Produce a high-level description of the system. This may already be available in the docu-mentation, since the documentation at this level rarely needs to be changed, and is thereforemore likely to be up to date. The documentation is supplemented by the results of a crossreference analysis which records the control �ow and data dependencies among the subsys-tems.4. Translate the source code into WSL. This will usually be an automatic process involvingparsing the source �les and translating the language structures into equivalent WSL struc-tures.5. �Inverse Engineering�, i.e. reverse engineering through formal transformations. This is thestage we illustrate in this paper. It involves the automatic and manual application of vari-ous transformations to restructure the system and express it at increasingly higher levels ofabstraction. We do this by iterating over the following four steps:(a) Restructuring transformations. These include removing goto statements, eliminating�ags, removing redundant tests, and other optimisations. The e�ect of this restruc-turing is to reveal the �true� structure of the program which may be obscured by poordesign or subsequent patching and enhancements. This stage is more radical than can beachieved by existing automatic restructuring systems [10,21] since it takes note of bothdata �ow and control �ow, and includes both syntactic and semantic transformations[2]. We have however had considerable success with automating the simpler restruc-turing transformations, by implementing heuristics elicited from experienced programtransformation users. See section 4.1.(b) Analyse the resulting structures to determine suitable higher-level data representationsand control structures. In the example below we determine that the double-nested loopis treating the input sequence as a sequence of subsequences.(c) Redocument: record the discoveries made so far and any other useful information aboutthe code and its data structures.(d) Implement the higher-level data representations and control structures using suitabletransformations. A powerful technique we have developed for carrying out these datare�nements is to introduce the abstract variables into the program as �ghost� variables(variables whose values are changed, but which do not a�ect the operation of the pro-gram in any way), together with invariants which make explicit the relationship betweenabstract and concrete variables. Then, one by one, the references to concrete variablesare replaced by references to the new abstract variables. Finally, the concrete variablesbecome �ghost� variables and can be removed. See section 4.2 below for a small ex-ample of this process; it is used extensively in [33]. In the example below we representthe input sequence as a sequence of sequences and this allows us to express the innerloop as a single statement. This in turn enables us to collapse the outer loop to a singlestatement. In general, if our analysis in step 5b is correct then the result of this stage islikely to be in a form suitable for further restructuring.6. Acceptance test: We now have a high-level speci�cation of the whole system which should gothrough the usual Q.A. and acceptance tests.7



3 Example Transformations3.1 Theoretical FoundationA transformation is an operation which maps any program satisfying the applicability conditionsof the transformation to an �equivalent� program. Equivalence is de�ned in terms of the external�black box� behaviour (or semantics) of the program. We de�ne the semantics of a program to bea function which maps from an initial state to a �nal set of states: this abstracts away from all theinternal operations of the program. The set of �nal states represents all the possible output statesof the program for the given input state. Using a set of states enables us to model nondeterministicprograms and partially de�ned (or incomplete) speci�cations. See [27] and [30] for a description ofthe semantics of WSL and the methods used for proving the correctness of transformations.3.2 NotationSequences: s = ha1; a2; : : : ; ani is a sequence, the ith element ai is denoted s[i], s[i : : j] is thesubsequence hs[i]; s[i+ 1]; : : : ; s[j]i, where s[i : : j] = hi (the empty sequence) if i > j. Thelength of sequence s is denoted `(s), so s[`(s)] is the last element of s. We use s[i : :] as anabbreviation for s[i : : `(s)].Sequence concatenation: s ++ t = hs[1]; : : : ; s[`(s)]; t[1]; : : : ; t[`(t)]i.Subsequences: The assignment s[i : : j] := t[k : : l] where j � i = l � k assigns s the valuehs[1]; : : : ; s[i� 1]; t[k]; : : : ; t[l]; s[j+ 1]; : : : ; s[`(s)]i.Sets: We have the usual set operations [ (union), \ (intersection) and � (set di�erence), �(subset), 2 (element), } (powerset). f x 2 A j P (x) g is the set of all elements in A whichsatisfy predicate P . For the sequence s, set(s) is the set of elements of the sequence, i.e.set(s) = f s[i] j 1 6 i 6 `(s) g.Relations and Functions: A relation is a (�nite or in�nite) set of pairs, a subset of A � B =f (a; b) j a 2 A ^ b 2 B g where A is the domain and B the range. A relation f is a functionif 8x; y1; y2: ��(x; y1) 2 f ^ (x; y2) 2 f� ) y1 = y2�. In this case we write f(x) = y when(x; y) 2 f . We write f � g for the composition of functions or relations. (f � g)(x) = f(g(x)).Currying: If � is a binary operator and a and b are values, then (�), (a�) and (�b) are functionswith (�)(a) = (a�), (a�)(y) = a� y and (�b)(x) = x� b.Constant Functions: Ka is the constant function with value a, Ka(x) = a for any x. An identityelement of � is denoted id�. The function h�i maps any value to the corresponding singletonsequence: h�i(x) = hxi.Map: The map operator � returns the sequence obtained by applying a given function to eachelement of a given sequence: (f � ha1; a2; : : : ; ani) = hf(a1); f(a2); : : : ; f(an)i.Reduce: The reduce operator = applies an associative binary operator to a list and returns theresulting value: (�=ha1; a2; : : : ; ani) = a1�a2�� � ��an. So, for example, if s is a list of integersthen +=s is the sum of all the integers in the list, if q is a list of lists then +=(` � q) = `(++=q)is the total length of all the lists in q.Projection: The projection functions �1, �2, : : : are de�ned as �1(hx; yi) = x, �2(hx; yi) = y,and more generally, for any sequence s: �i(s) = s[i].The operation of splitting a sequence into a sequence of non-empty sections at some point wherea predicate fails is generally useful so we will de�ne the following notation:Suppose we have a sequence p which we want to split into sections at those points i where thepredicate B(p[i]; p[i+ 1]) is false, i.e. we want to de�ne a new sequence of non-empty sequences qsuch that the concatenation of the sequences in q is equal to p (++=q = p) and B is true withineach section and false from one section to the next.8



De�ne the function index q : N�N ! N by indexq(j; k) = +=(` � q[1 : : j�1])+k. This functionmaps a position in the q structure into the corresponding position in the p structure, i.e. for allj 2 1 : : `(q) and k 2 1 : : `(q[j]) we have p = ++=q ) p[indexq(j; k)] = q[j][k]. On this domain,indexq is 1�1, so it has a well-de�ned inverse. This inverse index�1q maps an index i of p to a pairhj; ki such that p[i] = q[j][k]. So the function sectionq = �1 � index�1q will give the section in q inwhich an element of p occurs.With this notation, we can de�ne a split function split(p; B) = q which splits p into non-emptysections with the section breaks occurring between those pairs of elements of p where B is false.The formal de�nition uses sectionq to �nd the �section breaks�:De�nition 3.1 split(p; B) = q where:(++=q) = p ^ hi =2 set(q)^ 8i 2 1 : : `(p)� 1: �(B(p[i]; p[i+ 1])) sectionq(i+ 1) = sectionq(i))^ (:B(p[i]; p[i+ 1])) sectionq(i+ 1) = sectionq(i) + 1)�3.3 Examples of TransformationsIn this section we describe a few of the transformations we will use later:3.3.1 Expand IF statementThe if statement: if B then S1 else S2 �; Scan be expanded over the following statement to give:if B then S1; S else S2; S �3.3.2 Loop InversionIf the statement S1 contains no exits which can cause termination of an enclosing loop (i.e. in thenotation of [27] it is a proper sequence) then the loop:do S1; S2 odcan be inverted to: S1; do S2; S1 odThis transformation may be used in the forwards direction to move the termination test of a loop tothe beginning, prior to transforming it into a while loop, or it may be used in the reverse directionto merge two copies of the statement S1.3.3.3 Action SystemsWe use �Actions� (parameterless procedures [1,2]) to represent labels and gotos, an action systemis a collection of mutually recursive actions. Within an action system, a call to the special procedureZ causes immediate termination of the whole system: any statements pending a procedure returnwill not be executed if Z is called. A regular action system is one in which the execution of anyaction always leads to an action call. In this case the whole system can only be terminated by acall to Z; so no action call can return in a regular action system.Within an action system, any call to an action can be replaced by a copy of the body of thataction. This is called �unfolding� and applies equally well to a recursive call within the body ofthe action. The inverse transformation, i.e. folding, can be applied in any case where it results inthe opposite e�ect to an unfolding operation. This prevents pathological cases where, for example,the body of the action: P � S: is �folded� to get: P � call P : This case is invalid, but folding canbe applied to (for example) P � S[S=call P ]: to get P � S:9



4 The ProgramThe program is taken from a programming textbook [14], it originally took its input from a database�le, in translating it to WSL we have represented the �le by a pair of arrays, item and number.The procedure INHERE was originally a label in the middle of an if statement in the middle of aloop! This loop is represented by procedure L below:var hm := 0; p := 0; last := � �i :actions PROG :PROG �hline := � �; m := 0; i := 1i; call INHERE:L �i := i+ 1;if i = n+ 1 then call ALLDONE �;m := 1;if item[i] 6= lastthen write(line); line := � �; m := 0; call INHERE �;call MORE:INHERE �p := number [i]; line := item[i]; line := line ++ � � ++ p; call MORE:MORE �if m = 1 then p := number[i]; line := line ++ �, � ++ p �;last := item[i]; call L:ALLDONE �write(line); call Z: endactions endThis and subsequent versions of the program code were generated by the prototype tool in the formof LaTEX source �les which were inserted in the paper.4.1 Restructuring TransformationsIn the �rst stages of simplifying and restructuring the program, little or no information is neededabout the purpose of the program or its domain of operation. The simpli�cations work from thesource code alone. This is important in maintenance applications where often the source code is theonly reliable documentation in existence! In the later stages (deriving the speci�cation) high-leveldomain information is used to guide the transformation process into giving a speci�cation expressedin a usable form. This is because there are many ways of writing a correct speci�cation of a givenpiece of code, some of which will be more useful than others. This �high-level� information includesinformation about the purpose and domain of the program (such as can be obtained from a usermanual or discussions with the users of the program).Although such information can be di�cult, or impossible, to deduce from the source codealone, it is often readily available to the maintainer. We have found that this combination ofsemi-automatic and interactive operations is very powerful. The tedious low-level transformationsand veri�cations can be carried out automatically while allowing the human to carry out thehigh-level analysis and structuring of the program. The results of this analysis can be recordedas documentation linked to the code which will be instantly available for later maintainers ofthe program. The maintainer uses high-level information (including hints gained from comments,variable names and other documentation) to guide the system in its selection of transformations.The automatic checking ensures that the correctness of the derivation is not compromised if the hintsprove to be invalid: in these circumstances, failure to derive the expected structure provides valuableinformation as to the nature of the di�erences between the documentation and the source code.Such di�erences may be due to bugs in the software (which will be uncovered by the transformationprocess) or out-of-date documentation (which can now be updated to bring it in line with the code).10



In the �rst stages we aim to restructure the program by removing procedures, moving �ag testscloser to where the �ag is set, introducing loops and merging identical code. All the transformationsrequired at this stage have been implemented on the prototype system; the di�erent versions of theprogram shown here were generated by the system and copied directly into the paper.First we copy INHERE and MORE into PROG to move a test of m next to the place where itis set:var hm := 0; p := 0; last := � �i :actions : PROG :PROG �hline := � �; m := 0; i := 1i;p := number [i];line := item[i];line := line ++ � � ++ p;if m = 1 then p := number[i]; line := line ++ �, � ++ p �;last := item[i];call L:L �i := i+ 1;if i = n+ 1 then call ALLDONE �;m := 1;if item[i] 6= last then write(line); line := � �; m := 0; call INHERE �;call MORE:INHERE �p := number [i]; line := item[i];line := line ++ � � ++ p; call MORE:MORE �if m = 1 then p := number[i]; line := line ++ �, � ++ p �;last := item[i]; call L:ALLDONE �write(line); call Z: endactions endUse the value of m in PROG to eliminate the subsequent test:PROG �hline := � �; m := 0; i := 1i;p := number [i];line := item[i];line := line ++ � � ++ p;last := item[i];call L:We could continue unfolding action calls and introducing loops in this way. However, this wholeprocess has been automated in a single transformation Collapse Action System which followsheuristics we have developed, selecting the sequence of transformations required to restructure aprogram. The result of this single transformation is as follows:var hm := 0; p := 0; last := � �i :hline := � �; m := 0; i := 1i;p := number[i];line := item[i];line := line ++ � � ++ p;last := item[i];do i := i+ 1; 11



if i = n+ 1 then write(line); exit(1) �;m := 1;if item[i] 6= lastthen write(line); line := � �; m := 0;p := number [i]; line := item[i];line := line ++ � � ++ p �;if m = 1 then p := number[i]; line := line ++ �, � ++ p �;last := item[i] od endBy absorbing the statement if m = 1 then : : : � into the preceding if statement we caneliminate the remaining test of m. m becomes a redundant variable and can be removed entirelyfrom the program in a single transformation. This transformation also notices that p is redundantand removes it.The resulting program has two copies of the statement last := item[i], one outside the loop andthe other at the end of the loop body. So �loop inversion� can be applied to give:var last := � �:hline := � �; i := 1i;line := item[i] ++ � � ++ number [i];do last := item[i];i := i+ 1;if i = n+ 1 then write(line); exit(1) �;if item[i] 6= last then write(line); line := item[i] ++ � � ++ number[i]else line := line ++ �, � ++ number [i] � od endNow we have two copies of line := item[i] ++ � � ++ number [i]. We would like to apply loopinversion again, so we convert the single loop to a double loop and take the statement outside theinner loop:var last := � �:hline := � �; i := 1i;line := item[i] ++ � � ++ number [i];do do last := item[i];i := i+ 1;if i = n + 1 then write(line); exit(2) �;if item[i] 6= last then write(line); exit(1)else line := line ++ �, � ++ number[i] � od;line := item[i] ++ � � ++ number [i] od endLoop inversion can now be used on the outer loop.The inner loop is terminated in two places: we would like to combine these so that there is onlyone exit from the loop. We would also like to merge the two copies of write(line). We can use thefact that i = n + 1 is true before the �rst write(line) and false before the second to move thesestatements outside the inner loop:var last := � �:hline := � �; i := 1i;do line := item[i] ++ � � ++ number [i];do last := item[i];i := i+ 1;if i = n + 1 then exit(1) �;if item[i] 6= last then exit(1) else line := line ++ �, � ++ number[i] � od;if i 6= n+ 1 then write(line) else write(line); exit(1) � od end12



(To achieve this transformation the prototype system required a �hint� which we gave byintroducing the assertions fi = n+1g before the �rst copy of write(line) and fi 6= n+1g before thesecond. The system used these assertions to move the subsequent statements into an if statementoutside the loop). Now, within the inner loop we can merge the two if statements so there is onlyone exit, we also re-arrange the if statement at the end of the outer loop:var last := � �:hline := � �; i := 1i;do line := item[i] ++ � � ++ number [i];do last := item[i];i := i+ 1;if i = n + 1 _ item[i] 6= last then exit(1) �;line := line ++ �, � ++ number[i] od;write(line);if i = n+ 1 then exit(1) � od endThe variable last is assigned the value item[i], then i is incremented and last is tested. Wecan replace last by item[i � 1] in the expression and remove last from the program. (The systemautomatically recognised that i was incremented between the assignment to last and its use):hline := � �; i := 1i;do line := item[i] ++ � � ++ number[i];do i := i+ 1;if i = n + 1 _ item[i] 6= item[i� 1] then exit(1) �;line := line ++ �, � ++ number[i] od;write(line);if i = n + 1 then exit(1) � odFinally we convert the inner loop to a while loop:hline := � �; i := 1i;do line := item[i] ++ � � ++ number[i];i := i+ 1;while i 6= n + 1 ^ item[i] = item[i� 1] doline := line ++ �, � ++ number [i]; i := i+ 1 od;write(line);if i = n + 1 then exit(1) � odThe transformations have revealed the �true� structure of the program, which involves a doubleloop: the �true� structure of a program is a structure which closely matches the function andpurpose of the program. This structure was uncovered by simply following certain heuristics (inthis case a technique for merging similar statements) without needing to understand the purposeof the program. When we look at the function of the program, as described in the publisheddocumentation [14], we see that this double loop precisely captures what the program is intendedto do. The program scans through a sorted �le (here represented by the arrays item and number)consisting of words and page references. The outer loop scans through distinct items and for eachdistinct item the inner loop steps through the page references for that item. Writing the programas a single loop whose body must distinguish the two cases of a new item and a repeated itemobscured the simple basic structure which has been revealed through transformations. This kind oftransformation has important applications in program maintenance: the second version is far easierto understand and modify�there is only one copy of the statement which writes to the �le, the �agm which was used to direct the control �ow is not needed, and the variables p and last have alsobeen eliminated. The transformation from �rst version to second used only general transformationswhich have been proved to work in all cases, and so could be applied without having to understandthe program �rst. 13



With this knowledge of the program's purpose we can see that the transformations have alsorevealed a bug in the program: note that the outer loop has the test at the end (as in the usualrepeat : : : until loop), so the body of this loop is executed at least once. Recalling that the programreads an input �le and produces some output which summerises the input, there is something ratherodd about this structure! In fact, the program will not work correctly if presented with an empty�le: from the documentation the program should produce no output for an empty input �le, butthis program's output consists of a single line composed from the contents of uninitialised datastructures! This bug is not immediately obvious in the �rst version of the program. For the �rstversion a typical ��x� would be to add a test for an empty �le and a goto which jumps to a newlabel at the end of the program. In that case this ��x� is also typical in that it further obscuresthe program structure, increases the program length and increases the number of identi�ers used.In contrast with this, to carry out the same modi�cation to the second version we merely changethe outer loop to a while loop. An alternative (and even less drastic) method of correcting thebug is to introduce the assertion fn 6= 0g at the beginning of the program. This assertion statesthat the �empty input� case can be ignored. Using it we are able to transform the outer loop intoa while loop. On removing the assertion we get a program which will work correctly for the n = 0case and which is proven to be equivalent to the original program in all other cases. Thus we have�xed the bug and proved that we have broken nothing else in doing so.var hline := � �; i := 1i :while i 6= n+ 1 doline := item[i] ++ � � ++ number [i];i := i+ 1;while i 6= n+ 1 ^ item[i] = item[i� 1] doline := line ++ �, � ++ number[i]; i := i+ 1 od;write(line) od endIt should be re-emphasised at this point that all the transformations used so far were carriedout on the prototype Maintainer's Assistant tool and inserted directly into the paper (see [35] and[8] for a description of the prototype).4.2 Data Re�nementThis is about as far as we can get with transformations at the code level. The next stage involvesmoving to a higher level of abstraction. To do this we read through the program looking fora suitable control or data abstraction. The previous restructuring stages have made this taskconsiderably easier. In this case we have a double loop scanning through a pair of arrays: thissuggests a data re�nement in which the arrays are represented as a sequence of sequences in such away that one subsequence is processed for each iteration of the outer loop. In other words we needto restructure the data so that it re�ects more closely the control structure of the program.The two arrays item and number are treated in parallel, with only the �rst n elements ofeach being accessed. So it makes sense to express them as a single data structure; an n elementsequence of pairs p = hhitem[1]; number[1]i; hitem[2]; number[2]i; : : : ; hitem[n]; number[n]ii. Thefunction pairs takes two sequences of equal length and returns the corresponding sequence of pairs.We now have a double loop which scans through the sequence p. Each step of the inner loopprocesses a single element of the sequence, so each execution of the inner loop processes a segmentof the sequence. So the key to the data restructuring is to split the input sequence into sectionssuch that the outer loop processes one segment per iteration. This is easily achieved with thesplit function de�ned above�the terminating condition on the inner loop provides the predicateon which to split. De�ne the predicate same head by:funct same head(x; y) �x[1] = y[1]: 14



Then the new variable q is introduced with the assignment: q := split(p; same head).We introduce q and its two index variables j and k to the program as ghost variables. j and kstep through q as i steps through p: more formally we have the invariant:i = +=(` � q[1 : : j � 1]) + kwhich is the same as i = indexq(j; k). From this invariant and the relation ++=q = p we get theinvariant: p[i] = q[j][k]. Adding these ghost variables to the program we get:var hline := � �; i := 1i :var hq; j; ki :q := split(p; same head); j := 1; k := 1;while i 6 `(p) doline := p[i][1] ++ � � ++ p[i][2];i := i+ 1;k := k + 1; if k > `(q[j]) then j := j + 1; k := 1 �;while i 6 `(p) ^ p[i][1] = p[i� 1][1] doline := line ++ �, � ++ p[i][2]; i := i+ 1;k := k + 1; if k > `(q[j]) then j := j + 1; k := 1 � od;write(line) od end endThe next stage is to replace references to the concrete variables p and i by references to thenew variables q, j and k using the invariants above. Then the concrete variables become ghostvariables and can be removed from the program. Note that due to the structure of q the testp[i][1] = p[i � 1][1] is true as long as we are in the same section of p, i.e. as long as we have notjust incremented j and reset k to 1. But this is the case exactly when k 6= 1. Also, if i > `(p) inthe inner loop we must have just incremented j (and k will be 1), so the whole test is equivalentto k 6= 1. We have:var hline := � �i :var hq; j; ki :q := split(p; same head); j := 1; k := 1;while j 6 `(q) doline := q[j][k][1] ++ � � ++ q[j][k][2];k := k + 1; if k > `(q[j]) then j := j + 1; k := 1 �;while k 6= 1 doline := line ++ �, � ++ q[j][k][2];k := k + 1; if k > `(q[j]) then j := j + 1; k := 1 � od;write(line) od end endWe want to show that the inner loop processes exactly one segment of q, to do this we need tochange its termination condition to k 6 `(q[j]). The easiest way to do this is to convert the innerloop to a do : : : od loop and absorb the if statement and increment of k to get:do k := k + 1;if k > `(q[j]) then j := j + 1; k := 1 �;if k 6= 1 then exit �;line := line ++ �, � ++ q[j][k][2] odIf k > `(q[j]) at the beginning of this loop body then the if statement will be executed and theloop terminated. Conversely if k < `(q[j]) then it is certainly > 1 so after k is incremented, the ifstatement has no e�ect and the loop is not terminated (since now k > 1). So we can transform theinner loop into the following while loop:while k < `(q[j]) do 15



k := k + 1;line := line ++ �, � ++ q[j][k][2] od;j := j + 1; k := 1The local variable k is only used in this loop (its value is always 1 outside the loop) so we cantransform it into a for loop. Our program now looks like this:var line := � �:var hq; ji :q := split(p; same head); j := 1;while j 6 `(q) doline := q[j][1][1] ++ � � ++ q[j][1][2];for k := 2 step 1 to `(q[j]) doline := line ++ �, � ++ q[j][k][2] od;j := j + 1;write(line) od end endwhere we have replaced the occurrences of k outside the for loop by 1.q[j] is a sequence of pairs, but in the inner for loop we only use the second element of each pair.So we can represent q[j] by the sequence of second elements, i.e. the sequence r = �2 � q[j] where�2(ha; bi) = b is a projection function, (this is another data re�nement). With this abstraction theinner loop takes on the following form:var r := �2 � q[j] :line := line ++ r[1];for k := 2 step 1 to `(r) doline := line ++ �, � ++ r[k] od endThis implements a �splice� function, it is equivalent to: line := line ++ �sep(�, �)=r� where sep isde�ned: sep(s)(a; b) = a ++ s ++ b. So we can re-write this as:var r := �2 � q[j] :line := line ++ �sep(�, �)=r�The program simpli�es to:var line := � �:var hq; ji :q := split(p; same head); j := 1;while j 6 `(q) doline := q[j][1][1] ++ � � ++ �sep(�, �)=(�2 � q[j])�;j := j + 1;write(line) od end endFinally, this program simply applies the procedure write to a function of each element of thelist q so we can implement it as a (procedure) map operation:begin var q := split(pairs(item[1 : :n]; number[1 : :n]); same head) :write � (process � q) endwherefunct pairs(xs; ys) �if xs = hi then hielse hhxs[1]; ys[1]ii ++ pairs(xs[2 : :]; ys[2 : :]) �:;funct process(xs) �xs[1][1] ++ � � ++ �sep(�, �)=(�2 � xs)�:16



endTo summarise this speci�cation: We �rst translate the pair hitem[1 : :n]; number[1 : :n]i of listsinto a list p of pairs. Then we split p into a list of sections q starting a new section at each pointwhere the head of one pair di�ers from the head of the next pair. Finally, for each section we printthe result of applying process to that section where process concatenates the head of the �rst pair(the item), a space and the list of second elements of the pairs (the numbers), separated by thestring �, �.This is now in the form of an abstract speci�cation which de�nes the precise relationship betweenthe input and output states.5 Project Status and Future DirectionsThe techniques illustrated here are based on a formal theory of program re�nement and equival-ence which has been used to develop and prove a large catalogue of useful transformations [27].Experiments on small but complex programs have given very encouraging results: we have beenable to discover bugs in high-level language code which were revealed by the analysis process. Wehave also discovered a performance hit in CICS Assembler code. This was introduced as a resultof maintenance, and the maintenance programmers became aware of it when they examined thetransformed version of the assembler code. The same transformations have been used to deriveseveral types of algorithm from high-level, abstract speci�cations [28,29,31,33].We have recently completed a case study involving �ve modules of IBM Assembler, each con-sisting of about 500 lines of code, taken from a large commercial banking system. Each modulewas automatically translated into WSL and interactively restructured into a high-level languageform. One particular module had been repeatedly modi�ed over a period of many years untilthe control �ow structure had become highly convoluted. Using the prototype tool we were ableto transform this into a hierarchy of (single-entry, single-exit) subroutines resulting in a modulewhich was slightly shorter and considerably easier to read and maintain. The transformed versionwas hand-translated back into Assembler which (after �xing a single mis-translated instruction)�worked �rst time�.Work is currently underway in the following areas:� Extension of the tool to high-level transformations (to generate abstract speci�cations) andmore sophisticated data-�ow analysis;� Extension of the theory to communicating parallel programs;� The use of metrics, including size and complexity metrics, to automate more of the trans-formation process and guide the selection of transformations.We are also, in conjunction with IBM UK Ltd, about to embark on some more extensive casestudies involving professional assembler programmers working on real assembler code. These willattempt to quantify the improvements in maintainability achievable through inverse engineering.6 ConclusionIn this paper we have taken a small, but highly complex, program and transformed it into aconcise logical speci�cation, by applying general program transformations which have been provento preserve the semantics. The formal method of inverse engineering, which forms the basis ofthe Maintainer's Assistant, would appear to have reached the stage where application to realmaintenance tasks is now feasible.7 References 17
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