
Recursion Removal/Introduction by
Formal Transformation: An Aid to
Program Development and Program

Comprehension
M. P. Ward and K. H. Bennett

Department of Computer Science University of Durham, Durham, UK

Email: Martin.Ward@durham.ac.uk, Keith.Bennett@durham.ac.uk

The transformation of a recursive program to an iterative equivalent is a funda-
mental operation in Computer Science. In the reverse direction, the task of reverse
engineering (analysing a given program in order to determine its specification)
can be greatly ameliorated if the program can be re-expressed in a suitable
recursive form. But the existing recursion removal transformations, such as the
techniques discussed by Knuth [1] and Bird [2], can only be applied in the reverse
direction if the source program happens to match the structure produced by a
particular recursion removal operation. In this paper we describe a much more
powerful recursion removal and introduction operation which describes its source
and target in the form of an action system (a collection of labels and calls to
labels). A simple, mechanical, restructuring operation can be applied to a great
many iterative programs which will put them in a suitable form for recursion
introduction. Our transformation generates strictly more iterative versions than
the standard methods, including those of Knuth and Bird [1,2]. With the aid
of this theorem we prove a (somewhat counterintuitive) result for programs that
contain sequences of two or more recursive calls: under a reasonable commut-
ativity condition, “depth-first” execution is more general than “breadth-first”
execution. In “depth-first” execution, the execution of each recursive call is
completed, including all sub-calls, before execution of the next call is started.
In “breadth-first” execution, each recursive call in the sequence is partially
executed but any sub-calls are temporarily postponed. This result means that
any breadth-first program can be reimplemented as a corresponding depth-first
program, but the converse does not hold. We also treat the case of “random-first”
execution, where the execution order is implementation dependent. For the more
restricted domain of tree searching we show that breadth first search is the most
general form. We also give two examples of recursion introduction as an aid to

formal reverse engineering.

Keywords: Recursion, Formal Methods, Reverse Engineering, Re-engineering, WSL,

Refinement, Program Comprehension

Received 16th March 1999; accepted 8th September 1999

1. INTRODUCTION

The transformation of a recursive program to an iterat-
ive equivalent is a fundamental operation in Computer
Science. In the reverse direction, the task of reverse
engineering (analysing a given program in order to
determine its specification) can be greatly ameliorated if
the program can be re-expressed in a suitable recursive
form. But the existing recursion removal transforma-
tions, such as the techniques discussed by Knuth [1]
and Bird [2], can only be applied in the reverse direction

if the source program happens to match the structure
produced by a particular recursion removal operation.

The authors have developed a wide-spectrum lan-

guage which includes both abstract specifications and
low-level programming constructs in a single language.
This has the advantage that one does not need to
differentiate between programming and specification
languages: the entire transformational development of
a program from abstract specification to detailed im-
plementation can be carried out in the same language.
Conversely, the entire reverse-engineering process, from

The Computer Journal, Vol. ??, No. ??, ????

2 M. P. Ward and K. H. Bennett

a transliteration of the source program to high-level
specification can also be carried out in the same lan-
guage. During either of these processes, different parts
of the program may be expressed at different levels of
abstraction. So a wide-spectrum language forms an
ideal tool for developing methods for formal program
development and also for formal reverse engineering (for
which we have coined the term inverse engineering).
Over the last eight years we have been developing

this language (called WSL), in parallel with the devel-
opment of a transformation theory and proof methods.
Over this time the language has developed from a simple
and tractable kernel language [3,4] to a complete and
powerful programming language. At the “low-level”
end of the language there exists an automatic translator
from IBM Assembler into WSL. At the “high-level” end
it is possible to write high-level, abstract specifications,
similar to Z and VDM specifications.
The WSL language includes constructs for loops with

multiple exits, action systems, side-effects etc. and
the transformation theory includes a large catalogue
of proven transformations for manipulating these con-
structs. Many of the transformations have been imple-
mented in the FermaT transformation engine developed
by Software Migrations Ltd. [5–7].
In [8–10] program transformations are used to derive

a variety of efficient algorithms from abstract specifica-
tions. In [11] the same transformations are used in the
reverse direction: starting with a small but tangled and
obscure program we were able to use transformations to
restructure the program and derive a concise abstract
representation of its specification.

1.1. Transformation Methods

The Refinement Calculus approach to program deriv-
ation [12–14] is superficially similar to our program
transformation method. It is based on a wide spec-
trum language, using Morgan’s specification statement
[15] and Dijkstra’s guarded commands [16]. However,
this language has very limited programming constructs:
lacking loops with multiple exits, action systems, and
expressions with side-effects. These extensions are es-
sential if transformations are to be used for reverse
engineering. The most serious limitation is that the
transformations for introducing and manipulating loops
require that any loops introduced must be accompanied
by suitable invariant conditions and variant functions.
(“The refinement law for iteration relies on capturing
the potentially unbounded repetition in a single for-
mula, the invariant”, [12] p. 60, my emphasis). This
makes the method unsuitable for a practical reverse-
engineering method where such all-encompassing in-
variants are not readily available. By contrast, our
WSL language has all these constructs, together with
an extensive catalogue of proven transformations for
manipulating programs which use them.

A second approach to transformational development,
which is generally favoured in the Z community and
elsewhere, is to allow the user to select the next re-
finement step (for example, introducing a loop) at each
stage in the process, rather than selecting a transform-
ation to be applied to the current step. Each step will
therefore carry with it a set of proof obligations, which
are theorems which must be proved for the refinement
step to be valid. Systems such as µral [17], RAISE
[18] and the B-tool [19] take this approach. These
systems thus have a much greater emphasis on proofs,
rather than the selection and application of transform-
ation rules. Discharging these proof obligations can
often involve a lot of tedious work, and much effort is
being exerted to apply automatic theorem provers to
aid with the simpler proofs. However, Sennett in [20]
indicates that for “real” sized programs it is impractical
to discharge more than a tiny fraction of the proof oblig-
ations. He presents a case study of the development of a
simple algorithm, for which the implementation of one
function gave rise to over one hundred theorems which
required proofs. Larger programs will require many
more proofs. In practice, since few if any of these proofs
will be rigorously carried out, what claims to be a formal
method for program development turns out to be a
formal method for program specification, together with
an informal development method. For this approach to
be used as a reverse-engineering method, it would be
necessary to discover suitable loop invariants for each
of the loops in the given program, as the first step in the

process. This is very difficult to do in general, especially
for programs which have not been developed according
to some structured programming method. In contrast,
our approach does not depend on proof obligations: the
user simply chooses which transformation to apply and
only has to check that the applicability condition for
the transformation is satisfied. In most cases, these ap-
plicability conditions are quite straightforward and can
be mechanically checked: the FermaT transformation
engine automatically checks the applicability condition
before applying any transformation.
The Munich project CIP (Computer-aided Intuition-

guided Programming) [21–23] uses a wide-spectrum
language based on algebraic specifications and an ap-
plicative kernel language. However this approach does
have some problems with the numbers of axioms re-
quired, and the difficulty of determining the exact cor-
rectness conditions of transformations. These problems
are greatly exacerbated when imperative constructs are
added to the system.
Problems with purely algebraic specification methods

have been noted by Majester [24]. She presents an
abstract data type with a simple constructive definition,
but which requires several infinite sets of axioms to
define algebraically. Another point is that it is import-
ant for any algebraic specification to be consistent, and
the usual method of proving consistency is to exhibit a
model of the axioms. Since every algebraic specification

The Computer Journal, Vol. ??, No. ??, ????

Recursion Removal/Introduction by Formal Transformation 3

requires a model, while not every model can be specified
algebraically, there seems to be some advantages in
rejecting algebraic specifications and working directly
with models.

1.2. Our Approach

In developing a model based theory of semantic equi-
valence, we use the popular approach of defining a core
“kernel” language with denotational semantics, and
permitting definitional extensions in terms of the basic
constructs. See [4,25] for a description of the kernel lan-
guage. In contrast to other work (for example, [23,26,
27]) we do not use a purely applicative kernel; instead,
the concept of state is included, using a specification

statement which also allows specifications expressed in
first order logic as part of the language, thus providing
a genuine wide spectrum language.
Fundamental to our approach is the use of infinitary

first order logic (see [28]) both to express the weakest
preconditions of programs (see [16]) and to define asser-
tions and guards in the kernel language. Infinitary logic
is an extension of the usual first order logic which allows
conjunction and disjunction over infinite sequences of
formulae. The particular logic we use, Lω1ω, allows
conjunction and disjunction over any countably infinite
sequence of formulae, and quantification over finite sets
of variables.
Engeler [29] was the first to use infinitary logic to

describe properties of programs; Back [30] used such a
logic to express the weakest precondition of a program
as a logical formula. His kernel language was limited
to simple iterative programs. We use a different kernel
language which includes recursion and guards, so that
Back’s language can be constructed from a subset of
ours. In [4] we show that the introduction of infinitary
logic as part of the language (rather than just the
metalanguage of weakest preconditions), together with
a combination of proof methods using both denotational
semantics and weakest preconditions, is a powerful the-
oretical tool which allows us to prove some general
transformations and representation theorems.
The denotational semantics of the kernel language

is based on the semantics of infinitary first order logic.
Kernel language statements are interpreted as functions
which map an initial state to a set of final states (the
set of final states models the nondeterminacy in the lan-
guage: for a deterministic program this set will contain
a single state). A program S1 is a refinement of S2 if, for
each initial state, the set of final states for S1 is a subset
of the final states for S2. Back and von Wright [31]
note that the refinement relation can be characterised
using weakest preconditions in higher order logic (where
quantification over formulae is allowed). For any two
programs S1 and S2, the program S2 is a refinement of
S1 if the formula ∀R.WP(S1,R)⇒WP(S2,R) is true.
This approach to refinement has two problems:

1. It can be difficult to find a finite formula which
characterises the weakest precondition of a general
loop or recursive statement. Suitable invariants
can sometimes provide a sufficiently good approx-
imation to the weakest precondition but, as already
noted, these can be difficult to discover for large
and complex programs;

2. Second order logic is incomplete in the sense that
not all true statements are provable. So even if the
refinement is true, it may not be possible to prove
it.

In [4] we solve both of these problems. Using infinitary
logic allows us to give a simple definition of the weakest
precondition of any statement (including an arbitrary
loop) for any postcondition. In addition, we show
that for each pair of statements S1 and S2 there is a
single postcondition R such that S1 is a refinement of
S2 iff WP(S1,R) ⇒ WP(S2,R) and WP(S1, true) ⇒
WP(S2, true) are both true. Thus, there is no need for
the universal quantification over all postconditions. In
addition, the infinitary logic we use is complete, so if
there is a refinement then there is also guaranteed to be
a proof of the refinement. Thus infinitary logic is both
necessary and sufficient for proving refinements and
transformations. In this paper we give some examples
to illustrate the effectiveness of our transformational
approach to algorithm derivation and program analysis.
We consider the following criteria to be important for

any practical wide-spectrum language and transforma-
tion theory:

1. General specifications in any “sufficiently precise”
notation should be included in the language. For
“sufficiently precise” we will mean anything which
can be expressed in terms of mathematical logic
with suitable notation. This will allow a wide
range of forms of specification, for example Z

specifications [32] and VDM [33] both use the
language of mathematical logic and set theory (in
different notations) to define specifications. The
“Representation Theorem” (see [4]) proves that
our specification statement is sufficient to specify
any WSL program (and therefore any computable
function);

2. Nondeterministic programs. We do not want to
have to specify everything about the program we
are working with, and certainly not in the first
versions. So we need some way of specifying that
some executions will not necessarily result in a
particular outcome, but one of an allowed range
of outcomes. The implementor can then use this
latitude to provide a more efficient implementation
which still satisfies the specification;

3. A well-developed catalogue of proven transforma-
tions which do not require the user to discharge
complex proof obligations before they can be ap-
plied. In particular, it should be possible to in-
troduce, analyse and reason about imperative and

The Computer Journal, Vol. ??, No. ??, ????

4 M. P. Ward and K. H. Bennett

recursive constructs without requiring loop invari-
ants;

4. Techniques to bridge the “abstraction gap”
between specifications and programs. See Section 8
and [11,34] for examples;

5. Applicable to real programs—not just those in a
“toy” programming language with few constructs.
This is essential if the theory is to be useful for
reverse engineering as well as forward engineering.
Our transformation theory, and the FermaT engine
which supports it, have been used on some large
legacy assembler systems for both program com-
prehension and migration to high-level languages.
See [6,7];

6. Scalable to large programs: this demands a lan-
guage which is expressive enough to allow auto-
matic translation from existing programming lan-
guages, together with the ability to cope with
unstructured programs and a high degree of com-
plexity. The largest program we have worked on
was a single assembler module which contained
28,000 lines of highly complex source code. This
expanded into 37,500 lines of assembler listing and
the initial translation into WSL code required over
123,000 lines of WSL. Compare this with a typical
assembler module, which contains less than 500
lines of source. See [35] for more examples.

2. NOTATION

In this section we briefly define some of the notation for
WSL which we use later in the paper. See [3,4] for a
fuller description of WSL.

2.1. Expressions and Conditions in WSL

Expressions in WSL may use all of the usual math-
ematical operators. For conditions in WSL we may
use any formulae of infinitary logic: including “non-
computable” formulae such as quantification over infin-
ite sets (for example ∀n ∈ N). For simplicity we
assume that all expressions and conditions are every-
where defined (possibly returning a special error value).

2.2. The Specification Statement

Given a formula Q of infinitary logic, a sequence x =
〈x1, . . . , xn〉 of variables, and a corresponding sequence
x′ = 〈x′1, . . . , x

′
n〉 of “primed” variables, the specifica-

tion statement is written:

x := x′.Q

This assigns new values x′ to x such that the formula
Q is true. Q defines the relationship between the old
values of x and the new values (represented by x′ in Q).
If there are no values which satisfyQ then the statement
does not terminate. For example, the assignment 〈x〉 :=
〈x′〉.(x = 2 ∗ x′ ∧ x ∈ Z) halves x (by binding a new
value to x) if it is even and aborts if x is odd.

If e is a sequence of expressions of the same length
as x, then we write x := e as an abbreviation for
x := x′.(x′ = e). If there is one variable in x and
one expression in e, then the sequence brackets can be
omitted, i.e. 〈x〉 := 〈e〉 can be abbreviated to x := e.

2.3. Conditional Statements

WSL includes two kinds of if statement, the usual
(deterministic) if statement:

if B1 then S1

elsif B2 then S2

. . .
else Sn fi

which tests each of the conditions B1, B2, . . . in turn
and executes the statement corresponding to the first
true condition. The else clause is equivalent to
elsif true then Sn.
The other if statement is Dijkstra’s guarded com-

mand:

if B1 → S1

ut B2 → S2

ut . . .
ut Bn → Sn fi

Here, all the conditions B1, . . .Bn are evaluated. If
any condition is true, then one of the statements cor-
responding to a true condition is selected (in a non-
deterministic way) for execution. If none of the condi-
tions evaluates to true, then the statement aborts. Note
that with a guarded command, the order of the clauses
is irrelevant.

2.4. Loops

As well as the usual for and while loops, there is
a notation for unbounded loops. Statements of the
form do S od, where S is a statement, are “infinite”
or “unbounded” loops which can only be terminated
by the execution of a statement of the form exit(n)
which causes the program to exit the n enclosing loops.
We use exit as an abbreviation for exit(1). To simplify
the language we disallow exits which leave a block or
a loop other than an unbounded loop. We also insist
that n be an integer, not a variable or expression—this
ensures that we can always determine the target of the
exit. This type of structure is described in [1] and more
recently in [36].
Dijkstra’s guarded command loop:

do B1 → S1

ut B2 → S2

ut . . .
ut Bn → Sn od

is equivalent to the following while loop:

while B1 ∨ B2 ∨ · · · ∨ Bn do

The Computer Journal, Vol. ??, No. ??, ????

Recursion Removal/Introduction by Formal Transformation 5

if B1 → S1

ut B2 → S2

ut . . .
ut Bn → Sn fi od

2.5. Local Variables

The structure var 〈x := e, y := f〉 : S end introduces a
block with new local variables x and y with initial values
e and f respectively. If x and y are already present in
the state space, then their original values are saved (on
a stack) and restored at the end of the block.

2.6. Procedures and Functions with Paramet-

ers

We use the following notation for procedures with para-
meters:

begin S1

where

proc F (x, y) ≡ S2.

end

where S1 is a program containing calls to the procedure
F which has parameters x and y. The body S2 of the
procedure may contain recursive procedure calls to F .
We use a similar notation (with funct instead of proc)
for function calls:

begin S1

where

funct G(x, y) ≡
var 〈v1 := e1, v2 := e2〉 :
S2;
(e).

end

Where S1 is a program containing calls to the function
G which has parameters x and y. The body of G also
has local variables v1 and v2 which are initialised to e1
and e2 respectively. The final expression e (which may
contain references to local variables and parameters)
gives the returned value of the function. The local
variables and/or the statement S2 may be omitted.

2.7. Action Systems

An action system is a set of parameterless mutually
recursive procedures [37–39]. If the end of the body
of an action is reached, then control is returned to the
calling action, or to the statement following the action
system if there was no calling action, rather than “fall-
ing through” to the next action. The exception to this
is a special action called the terminating action, usually
denoted Z, which when called results in the immediate
termination of the whole action system, with execution
continuing after the action system. A program written
using labels and jumps translates directly into an action
system by translating each labelled block of code as an

action, and each goto as an action call. Where one
block of code “falls through” to the next, we add an
explicit action call. At the end of the program we add
a call Z to terminate the action system.
An action system is written as follows, with the

first action to be executed (A1 below) named at the
beginning:

actions A1 :
A1 ≡
S1.

A2 ≡
S2.

. . .
An ≡
Sn. endactions

For example, this action system is equivalent to the
while loop while B do S od:

actions A :
A ≡
if ¬B then call Z fi;
S; call A. endactions

With this particular action system, execution of an
action body must lead to an action call, so the system
can only terminate by calling the Z action (which causes
immediate termination). Such action systems are called
regular. Note that an action system is itself a statement
and may occur as a component of another statement—
including another action system. Also, note that since
each action body either returns to the caller or explicitly
calls another action body, it does not matter in what
order the action bodies are listed.
For the rest of this paper, all action systems will be

regular and can be thought of as labelled blocks of code
with each block of code explicitly calling the next block
to be executed.

2.8. Sequences

s = 〈a1, a2, . . . , an〉 is a sequence, the ith element ai

is denoted s[i], s[i . . j] is the subsequence 〈s[i], s[i +
1], . . . , s[j]〉, where s[i . . j] = 〈〉 (the empty sequence)
if i > j. The length of sequence s is denoted
`(s), so s[`(s)] is the last element of s. We use
s[i . .] as an abbreviation for s[i . . `(s)]. The con-
catenation of s1 and s2 is defined: s1 ++ s2 =
〈s1[1], . . . , s1[`(s1)], s2[1], . . . , s2[`(s2)]〉.
Sequences are used to implement stacks and queues.

For a sequence s and variable x, the notation: x
pop
←− s

means x := s[1]; s := s[2 . .] which pops an element
off the stack into variable x. To push the value of the

expression e onto stack s we use: s
push
←− e which repres-

ents: s := 〈e〉 ++ s. The statement x
last
←− s removes the

last element of s and stores its value in the variable x.
It is equivalent to x := s[`(s)]; s := s[1 . . `(s)− 1]. The

statement x
pick
←− s removes an arbitrary element from

The Computer Journal, Vol. ??, No. ??, ????

6 M. P. Ward and K. H. Bennett

the sequence s and stores it in x. It is equivalent to
var i := i′.(1 6 i′ 6 `(s)); x := s[i]; s := s[1 . . i− 1] ++

s[i+1 . .] end. Statements x
pop
←− s and x

last
←− s are both

valid refinements of x
pick
←− s.

3. REFINEMENT IN WSL

A program S is a piece of formal text, i.e. a sequence of
formal symbols which includes logical formulae in some
logical language L as components. There are two ways
in which we interpret (give meaning to) these texts:

1. Given a set of values and an interpretation of the
symbols of L as functions and relations on the set
of values, and given a final state space (from which
we can construct a suitable initial state space), we
can interpret a program as a function f (a state

transformation) which maps each initial state s
to the set of possible final states for s. By itself
therefore, we can interpret a program as a function
from structures to state transformations;

2. Given any formula R (which represents a condition
on the final state), we can construct the formula
WP(S,R), the weakest precondition of S on R.
This is the weakest condition on the initial state
such that the program S is guaranteed to terminate
in a state satisfying R if it is started in a state
satisfying WP(S,R).

These interpretations give rise to two different notions
of refinement: semantic refinement and proof-theoretic

refinement.

3.1. Semantic Refinement

A state is a collection of variables (the state space) with
values assigned to them; thus a state is a function which
maps from a (finite, non-empty) set V of variables to a
set H of values. There is a special extra state ⊥ which
is used to represent nontermination or error conditions.
(It does not give values to any variables). A state
transformation f maps each initial state s in one state
space, to the set of possible final states f(s), which may
be in a different state space. If ⊥ is in f(s) then so
is every other state, also f(⊥) is the set of all states
(including ⊥).
Semantic refinement is defined in terms of these state

transformations. A state transformation f is a refine-
ment of a state transformation g if they have the same
initial and final state spaces and f(s) ⊆ g(s) for every
initial state s. Note that if ⊥ ∈ g(s) for some s, then
f(s) can be anything at all. In other words we can
correctly refine an “undefined” program to do anything
we please. If f is a refinement of g (equivalently, g
is refined by f) we write g ≤ f . A structure for a
logical language L consists of a set of values, plus a
mapping between constant symbols, function symbols
and relation symbols of L and elements, functions and
relations on the set of values. If the interpretation of

statement S1 under the structureM is refined by the in-
terpretation of statement S2 under the same structure,
then we write S1 ≤M S2. A model for a set of sentences
(formulae with no free variables) is a structure for the
language such that each of the sentences is interpreted
as true. If S1 ≤M S2 for every model M of a countable
set ∆ of sentences of L then we write ∆ |= S1 ≤ S2.

3.2. Proof-Theoretic Refinement

If there exists a proof of a formula Q using a countable
set ∆ of sentences (formulae with no free variable)
as assumptions, then we write ∆ ` Q. Given two
statements S1 and S2, and a formula R, we can express
the weakest preconditions WP(S1,R) and WP(S2,R)
as formulae in infinitary logic. (See [4]). Let x be a
sequence of all variables assigned to in either S1 or
S2 and let x

′ be a sequence of new variables. If the
formulae WP(S1,x 6= x′) ⇒ WP(S2,x 6= x′) and
WP(S1, true) ⇒ WP(S2, true) are provable from the
set ∆ of sentences, then we say that S1 is refined by S2

and write: ∆ ` S1 ≤ S2.
A fundamental result, proved by Ward [4] which

generalises a theorem of Back’s [30] is that these two
notions of refinement are equivalent. More formally:

Theorem 3.1. For any statements S1 and S2, and
any countable set ∆ of sentences of L:

∆ |= S1 ≤ S2 if and only if ∆ ` S1 ≤ S2

These two equivalent definitions of refinement give
rise to two very different proof methods for proving the
correctness of refinements. Both methods are exploited
in [4]—weakest preconditions and infinitary logic are
used to develop the induction rule for recursion and the
recursive implementation theorem (Theorem 5.1), while
state transformations are used to prove the representa-
tion theorem [4].
Two programs are equivalent, written ∆ ` S1 ≈ S2

if and only if ∆ ` S1 ≤ S2 and ∆ ` S2 ≤ S1. We
write S1 ≤ S2 as a shorthand for ∅ ` S1 ≤ S2

(where the set ∆ is empty), and S1 ≈ S2 for ∅ `
S1 ≈ S2.

4. THE INDUCTION RULE FOR RECUR-

SION

A recursive statement such as proc X ≡ S. consists of
a name (in this case the symbol X) and a body (in this
case the statement S) which may contain references to
X. An occurrence of X as a component of S represents
a recursive call to the procedure. We define the meaning
of a recursive statement to be the “limit” of the infinite
sequence of truncations of the recursion.

Definition 4.1. The nth truncation of a recursive
statement proc X ≡ S. is defined for n < ω:

(proc X ≡ S.)0 =
DF

abort

(proc X ≡ S.)n+1 =
DF

S[(proc X ≡ S.)n/X]

The Computer Journal, Vol. ??, No. ??, ????

Recursion Removal/Introduction by Formal Transformation 7

The weakest precondition for recursion is defined as
an infinite disjunction of all the finite truncations (cf
[30] and [40]):

WP(proc X ≡ S.,R)

=
DF

∨

n<ω

WP((proc X ≡ S.)n,R)

Each truncation is an approximation to the full recur-
sion, the zeroth truncation is the poorest approximation
(it provides no information at all), with later approx-
imations refining the previous ones to approach the full
recursion. A fundamental result of our transformation
theory is that the sequence of truncations is sufficient
to prove a refinement. More formally:

Lemma 4.2. The Induction Rule for Recursion: If
proc X ≡ S. is any recursive statement, and S′ is any
other statement such that ∆ ` (proc X ≡ S.)n ≤ S′

for all n < ω, then ∆ ` proc X ≡ S. ≤ S′.

This lemma forms the basis of a much more general
(and useful) result. We can define the nth truncation Sn

of an arbitrary statement S by replacing each recursive
statement in S by its nth truncation. Then if S has
bounded nondeterminacy (see [4]) we have:

Lemma 4.3. The General Induction Rule for Recur-
sion: If S is any statement with bounded nondetermin-
acy, and S′ is another statement such that ∆ ` Sn ≤ S′

for all n < ω, then ∆ ` S ≤ S′.

This lemma has proved extremely valuable in prov-
ing the correctness of many transformations involving
recursion. Since iteration is defined using recursion, the
result also applies to iterative statements. See [3,4] for
the formal proof and many applications.

5. INTRODUCING RECURSION

Our next transformation shows how a general state-
ment, which may be a non-recursive specification state-
ment, or a recursive or iterative statement, can be
refined into a recursive procedure. Applications of this
important result include implementing specifications
as recursive procedures, introducing recursion into an
abstract program to get a “more concrete” program
(i.e. closer to a programming language implementation),
and transforming a recursive procedure into a different
form. The transformation is also used in the algorithm
derivations of [3,9] and [41].
Suppose we have a statement S′ which we wish to

transform into the recursive procedure proc F ≡ S.

This is possible whenever:

1. The statement S′ is refined by the statement
S[S′/F] (which denotes S with all occurrences of
F replaced by S′). In other words, if we replace
recursive calls in S by copies of S′ then we get a
refinement of S′;

2. We can find an expression t (called the variant

function) whose value is reduced (in some well-
founded order) before each occurrence of S′ in
S[S′/F].

Note that the order < is not well-founded on Z, but
it is well-founded on N. The expression t need not be
an integer expression: any set Γ on which there is a
well-founded order 4, is a suitable type for t. To prove
that the value of t is reduced it is sufficient to prove
that, if t 4 t0 initially (where t0 is an otherwise unused
variable), then the assertion {t ≺ t0} can be inserted
before each occurrence of S′ in S[S′/F]. The theorem
combines our two requirements into a single condition:

Theorem 5.1. If 4 is a well-founded partial order
on some set Γ and t is an expression giving values in Γ
and t0 is a variable which does not occur in S then if
for some premiss P we have:

{P ∧ t 4 t0}; S
′ ≤ S[{P ∧ t ≺ t0}; S

′/F]

then
{P}; S′ ≤ proc F ≡ S.

Proof: See [3].

6. GENERAL RECURSION REMOVAL

The following general purpose recursion removal trans-
formation was presented in [25]. The proof may be
found in [42].
Suppose we have a recursive procedure whose body

is a regular action system in the following form:

proc F (x) ≡
actions A1 :
A1 ≡
S1.

. . . Ai ≡
Si.

. . . Bj ≡
Sj0; F (gj1(x)); Sj1; F (gj2(x));
. . . ; F (gjnj

(x)); Sjnj
.

. . . endactions.

where Sj1, . . . ,Sjnj
preserve the value of x and no S

contains a call to F (i.e. all the calls to F are listed
explicitly in the Bj actions) and the statements Sj0,
Sj1, . . . ,Sjnj−1 contain no action calls. Note that, since
the action system is regular, each of the statements Sjnj

must contain one or more action calls: in fact, they can
only terminate by calling an action. There are M +N
actions in total: A1,. . . , AM , B1, . . . , BN . Note that
the since the action system is regular, it can only be
terminated by executing call Z which will terminate
the current invocation of the procedure.
Our aim is to remove the recursion by introducing

a local stack L which records “postponed” operations:
When a recursive call is required we “postpone” it by

The Computer Journal, Vol. ??, No. ??, ????

8 M. P. Ward and K. H. Bennett

pushing the pair 〈0, e〉 onto L (where e is the parameter
required for the recursive call). Execution of the state-
ments Sjk also has to be postponed (since they occur
between recursive calls), we record the postponement
of Sjk and the current value of x, by pushing 〈〈j, k〉, x〉
onto L. Where the procedure body would normally
terminate (by calling Z) we instead call a new action
F̂ which pops the top item off L and carries out the
postponed operation. If we call F̂ with the stack empty
then all postponed operations have been completed and
the procedure terminates by calling Z.

Theorem 6.1. A recursive procedure in the form
given above is equivalent to the following iterative pro-
cedure which uses a new local stack L and a new local
variable m:

proc F ′(x) ≡
var L := 〈〉,m := 0:
actions A1 :
A1 ≡

S1[call F̂ /call Z].
. . . Ai ≡

Si[call F̂ /call Z].
. . . Bj ≡
Sj0;
L := 〈〈0, gj1(x)〉, 〈〈j, 1〉, x〉, 〈0, gj2(x)〉,

. . . , 〈0, gjnj
(x)〉, 〈〈j, nj〉, x〉〉 ++ L;

call F̂ .

. . . F̂ ≡
if L = 〈〉
then call Z

else 〈m,x〉
pop
←− L;

if m = 0 → call A1

ut . . . ut m = 〈j, k〉

→ Sjk[call F̂ /call Z]; call F̂
. . . fi fi. endactions end.

where the substitutions Si[call F̂ /call Z] are, of course,
not applied to nested action systems which are compon-
ents of the Si.

Note that any procedure F (x) can be restructured
into the required form; in fact there may be several
different ways of structuring F (x) which meet the re-
quirements of the theorem.
The standard stack-based method of recursion re-

moval [1,43] is the special case of this transformation
where each Bj action contains a single function call. In
other words, nj = 1 for each j.

Corollary 6.1. By unfolding some calls to F̂ in Bj

and pruning, we get a slightly more efficient version:

Bj ≡
Sj0;
L := 〈〈〈j, 1〉, x〉, 〈0, gj2(x)〉,

. . . , 〈0, gjnj
(x)〉, 〈〈j, nj〉, x〉〉 ++ L;

x := gj1(x); call A1.

In the case where nj = 1 for all j, this version will
never push a 〈0, x〉 pair onto the stack. This fact can be
significant for a parameterless procedure with a small
number of j values, since it enables us to reduce the
amount of storage required by the stack. For example,
if there are two j values, the stack can be represented
as a binary number. In the extreme case where there
is only one j value, the stack reduces to a sequence of
ones, and can therefore be represented by an integer
which simply records the length of the stack.

The power and generality of this transformation
comes from the fact that the body of the procedure
is expressed as an action system, with the recursive
calls collected into a number of actions. Because of
this, a wide variety of recursive programs can be easily
restructured into one or more forms, where the theorem
can be applied. We can also apply the theorem in
reverse to produce a recursive program from an iterative
one, see Section 11 for an example.
The only real disadvantage is that the recursive and

iterative versions must carry out the same sequence of
actions: the theorem only modifies the way in which the
sequence of actions is defined. This is unavoidable when
no restrictions are placed on the form of the recursive
procedure: each statement can be modified to record
(in a new variable) the exact sequence of operations
carried out. The transformed version would have to
preserve this variable, and therefore also preserve the
sequence of operations. In the next section we show
that by introducing some further restructions on the
recursion, more radical transformations are possible.

7. CASCADE RECURSION REMOVAL

More restricted forms of recursive procedure can be
transformed in more radical ways. A typical restriction
is to a cascade recursion where the procedure carries
out some processing followed by a sequence of zero
or more recursive calls (with precomputed arguments)
with no processing between the recursive calls. Such a
procedure can be expressed in the following form:

proc F (x) ≡
S0;
if B0 → skip

ut . . . ut Bj → F (gj1(x)); F (gj2(x)); . . . ; F (gjnj
(x))

. . . fi.

where S0 is any statement which does not affect the
value of x and does not call F . We will be considering
various iterative versions of this procedure. We use
the “procedure map” notation F ∗ L (where F is
a procedure and L a list of values) to represent the
sequence of calls F (L[1]); F (L[2]); . . . ; F (L[`(L)]).
Using this notation we can write F more succinctly as:

proc F (x) ≡ S0; F ∗ G(x).

where G(x) returns the (possibly empty) list of argu-
ments for the inner recursive calls of F (x):

The Computer Journal, Vol. ??, No. ??, ????

Recursion Removal/Introduction by Formal Transformation 9

funct G(x) ≡
if B0 → 〈〉
ut . . . ut Bj → 〈gj1(x), gj2(x), . . . , gjnj

(x)〉
. . . fi.

In the next three sections we consider three different
iterative implementations of this recursion, and determ-
ine the conditions under which they are equivalent.

7.1. Depth-First Execution

A straightforward application of Theorem 6.1 to F will
preserve the sequence of operations. In this case it will
fully execute the first sub-call of F before starting on
the second. Hence we term this method “depth-first
execution”.
First, we express the body of F as an action system:

proc F (x) ≡
actions A1 :
A1 ≡
S0;
if B0 → skip

ut . . . ut Bj → call Bj

. . . fi.
. . . Bj ≡
F (gj1(x)); F (gj2(x));
. . . ; F (gjnj

(x)); call Z.
. . . endactions.

and then apply Theorem 6.1:

proc F (x) ≡
var L := 〈〉 :
actions A1 :
A1 ≡
S1;
if B0 → skip

ut . . . ut Bj → call Bj

. . . fi.
. . . Bj ≡
L := 〈gj1(x), gj2(x), . . . , gjnj

(x)〉 ++ L;

call F̂ .

. . . F̂ ≡
if L = 〈〉 then call Z

else x
pop
←− L; call A1 fi.

endactions end.

Now unfold everything into F̂ . Instead of calling A1 as
the first action, we initialise L to 〈x〉 and call F̂ as the
first action. F̂ is now a simple tail-recursion which can
be replaced by a while loop:

proc F (x) ≡
var L := 〈x〉 :
while L 6= 〈〉 do

x
pop
←− L; S0;

if B0 → skip

ut . . . ut Bj → L := 〈gj1(x), gj2(x),
. . . , gjnj

(x)〉 ++ L
. . . fi od end.

So F is equivalent to FD where:

proc FD(x) ≡
var L := 〈x〉 :
while L 6= 〈〉 do

x
pop
←− L; S0; L := G(x) ++ L od end.

A typical application is searching a tree, where each
branch is fully explored before we move to the next, and
the sequence L records the branches which have yet to
be explored.

7.2. Random First Execution

An alternative evaluation method is to pick a random
element from the list L and call F with it. If this
execution results in further recursive calls, these are
not executed immediately, but pushed back onto L.
The procedure terminates as soon as L becomes empty.
A reasonable requirement on F is that it should be
commutative, in other words, for any valid procedure
arguments x and y the two statements F (x); F (y) and
F (y); F (x) are equivalent. More formally:

Definition 7.1. A procedure F is commutative if
for any distinct variables x and y:

∆ ` F (x); F (y) ≈ F (y); F (x)

For example, the procedure

proc F (x) ≡ if x = 0 then r := 1 fi

is commutative since a sequence of calls F (x); F (y) is
equivalent to the statement

if x = 0 ∨ y = 0 then r := 1 fi

The next theorem shows that, with the addition of a
well-foundedness condition on the domain, random-first
execution is equivalent to depth-first execution:

Theorem 7.1. Let F be a commutative cascade
recursion. Suppose that there exists an irreflexive
well-founded order ≺ on the domain of F such that
Bj ⇒ gjk(x) ≺ x for all x in the domain, and all
1 6 j 6 N and 1 6 k 6 nj .
Then F is equivalent to FR where:

proc FR(x) ≡
var L := 〈x〉 :
while L 6= 〈〉 do

x
pick
←− L; S0; L := G(x) ++ L od end.

The statement x
pick
←− L chooses a random element from

the list L which is removed and assigned to x, i.e.

x
pick
←− L =

DF

var i := i′.(1 6 i′ 6 `(L)) :
x := L[i]; L := L[1 . . i− 1] ++ L[i+ 1 . .] end

Proof: See Appendix. ¥

The Computer Journal, Vol. ??, No. ??, ????

10 M. P. Ward and K. H. Bennett

The restriction that F be commutative means that
the order in which sequences of F calls are evaluated can
be changed. The list L records the list of arguments for
which F has yet to be evaluated. We pick one at random
and start to evaluate it (by executing S0). If this results
in further calls these are not evaluated at this stage,
but simply added to the list L. Since we always pick
elements from L at random, the order in which elements
are listed in L is irrelevant. So we could represent L as
a bag, or a partial function (which records the number
of occurrences of each element): the proof is slightly
easier if we use a list.
Note that we can refine x

pick
←− L to x

pop
←− L which

gives an iterative program equivalent to F (by The-
orem 6.1) so we have proved FR(x) ≤ F (x) without
any restrictions on F or ≺. For the other direction, the
requirement on ≺ cannot be dispensed with; consider
the following example:

proc F (x) ≡
if even(x) then done := 1 fi;
if even(x) ∨ done = 1 → skip

ut odd(x) → F (2 ∗ x); F (2 ∗ x+ 1) fi.

By unfolding the first few calls it is easy to see that
this procedure terminates for any x: eventually an
even argument will be evaluated and done will be set
to 1, this causes all subsequent F calls to terminate
immediately. So F (x) is equivalent to done := 1, and
for every x and y therefore F (x); F (y) ≈ F (y); F (x).
The transformed version is:

proc FR(x) ≡
var L := 〈x〉 :
while L 6= 〈〉 do

x
pick
←− L;

if even(x) then done := 1 fi;
if even(x) ∨ done = 1 → skip

ut odd(x) → L := 〈2 ∗ x, 2 ∗ x+ 1〉 ++ L
. . . fi od end.

We can refine x
pick
←− L to pick an odd integer whenever

one is available. If x is odd and done = 0 initially, then
each iteration of the loop will remove one odd integer
from L and add another one, without changing done.
So L will never become empty and the loop will never
terminate and is equivalent to abort. So FR(1) ≤
abort in which case it must be equivalent to abort; since
the only program which abort refines, is abort.
Theorem 7.1 has a simple corollary:

Corollary 7.2. If for all x and y, F (x); F (y) ≈
F (y); F (x) and there exists an irreflexive well-founded
order ≺ on the domain of F such that gjk(x) ≺ x for
all x in the domain, and all 1 6 j 6 N and 1 6 k 6 nj ,
then:

proc FD(x) ≡
var L := 〈x〉 :
while L 6= 〈〉 do

x
pop
←− L; S0;

L := G(x) ++ L od end.

≈
proc FR(x) ≡
var L := 〈x〉 :
while L 6= 〈〉 do

x
pick
←− L; S0;

L := G(x) ++ L od end.

Note that a “random-first” execution may well be
refined to a “best-first” execution, where the element
selected from L is chosen for efficiency, or some other
reason. See Section 10 for an example. With our tree
searching example, random-first execution maintains a
“fringe” of the tree (a list of subtrees which have yet to
be explored fully), an element on the fringe is selected
and executed. If the element was not a leaf node then
its daughters are added to the fringe.

7.3. Breadth First Execution

Another execution method is to append the new ele-
ments to the end of the sequence L (which therefore
becomes a queue rather than a stack). This will explore
all the nodes at a particular depth before moving to the
nodes at the next depth.

proc FB(x) ≡
var L := 〈x〉 :
while L 6= 〈〉 do

x
pop
←− L; S0; L := L ++ G(x) od end.

Our next theorem will show that the well-founded order
is not required to prove FB(x) ≤ FD(x). In other
words, we can refine any breadth-first execution of
a commutative procedure to a depth first execution,
without needing the well-foundedness constraint.

Theorem 7.2. If F and FB are defined as above,
and for all x and y: F (x); F (y) ≈ F (y); F (x), then
FB(x) ≤ F (x).

Proof: See Appendix.

This proves that FB(x) ≤ FD(x) under the com-
mutativity condition. The next example shows that the
two execution orders are not necessarily equivalent if the
well-foundedness constraint is dropped. Define:

proc F (x) ≡ if d(x) > m then m := d(x) fi;
if ∃y ∈ N. x = 3 ∗ y ∧ m > d(x) → skip

ut ∃y ∈ N. x = 3 ∗ y ∧ m 6 d(x) → F (x+ 1);
F (x+ 3)

ut ∃y ∈ N. x = 3 ∗ y + 1 → F (x+ 1)
ut ∃y ∈ N. x = 3 ∗ y + 2 → skip fi.

where
funct d(x) ≡ bx/3c+ (x mod 3).

The function d(x) measures the “depth” of node x.
The global variable m records the depth of the deepest
node seen so far. Suppose x is a multiple of three. For

The Computer Journal, Vol. ??, No. ??, ????

Recursion Removal/Introduction by Formal Transformation 11

such nodes, the first arm of the second if statement
truncates the search if a “deeper” node has been seen
previously. Depth-first execution always expands nodes
x+1 and x+2 before node x+3 so, since x+2 is “deeper”
than x + 3, the x + 3 node will not be expanded and
the call to F (x+ 3) will terminate. With breadth-first
execution however, the x+3 node is always seen before
the x + 2 node and is therefore always expanded. The
breadth-first execution therefore never terminates.

8. FIBONACCI NUMBERS

In this section we use cascade recursion removal to
derive an efficient iterative algorithm from an inefficient
recursive algorithm. Our example makes use of the
implementation dependent execution order provided by
a “random first” execution, in order to improve the
efficiency of a recursive function. We illustrate the
method by using the familiar Fibonacci numbers series.
The sequence of Fibonacci numbers 0, 1, 1, 2, 3, 5, 8,

13, 21, 34, 55,. . . is defined:

F0 = 0, F1 = 1, Fn+2 = Fn+1 + Fn

The specification of a function to calculate Fibonacci
numbers is:

funct f(n) ≡ Fn.

Transform to take out special cases:

funct f(n) ≡
if n = 0 ∨ n = 1 then n

else Fn−1 + Fn−2 fi.

Apply the theorem in [4] to get the recursive version:

funct f(n) ≡
if n = 0 ∨ n = 1 then n

else f(n− 1) + f(n− 2) fi.

A procedural equivalent of this is the following, which
returns the result in the global variable r:

proc f(n) ≡
if n = 0 ∨ n = 1 then r := n

else f(n− 1);
var r1 := r :
f(n− 2); r := r + r1 end fi.

To avoid the need for the local variable r1 we use a
different procedure which adds the result of the function
to the value in r:

proc F (n) ≡
if n = 0 ∨ n = 1 then r := r + n

else F (n− 1); F (n− 2) fi.

so F (n) ≈ var r1 := r : f(n); r := r + r1 end and
f(n) ≈ r := 0; F (n). The proof of these equival-
ences uses the General Induction Rule for Recursion,
Lemma 4.3.

The depth-first implementation of this recursion will
be hopelessly inefficient, taking O(2n) steps to execute
F (n). The random-first execution will be equally in-
efficient: we aim to apply some efficiency-improving
transformations to reach an O(n) algorithm, without
using any properties of Fn.
Clearly F (x); F (y) ≈ r := r + Fx + Fy ≈ r :=

r + Fy + Fx ≈ F (y); F (x). So the commutativity
condition is satisfied. For positive integer arguments,
“<” on N is a well-founded order with n − 1 < n and
n − 2 < n. So we can apply Theorem 7.1 to give a
random-first implementation of the recursion:

proc FR(n) ≡
var L := 〈n〉 :
while L 6= 〈〉 do

n
pick
←− L;

if n = 0 ∨ n = 1
then r := r + n
else L := 〈n− 1, n− 2〉 ++ L fi od end.

Note that, in general, when the element n − 1 in L is
processed it will result in a second n−2 value appearing
in L. So L is likely to end up with many copies of
identical elements. We want to combine the effect of
processingm copies of element x into processing a single
copy of x and multiplying the result by m. First, we
represent L as an array L′[0 . . n0] where for each i, L

′[i]
is the number of occurrences of i in L.
With a small amount of restructuring we get:

proc FR(n) ≡
var L′ := 〈〉 :
L′[0 . . n− 1] := 0; L′[n] := 1;
while ∃n.L′[n] > 0 do
n := n′.(L′[n′] > 0);
L′[n] := L′[n]− 1;
if n = 0 then skip

elsif n = 1
then r := r + n
else L′[n− 1] := L′[n− 1] + 1;

L′[n− 2] := L′[n− 2] + 1 fi od end.

refine n := n′.(L′[n′] > 0) to pick the largest value of
n such that L′[n] > 0 (this refinement must result in
an equivalent program, since the original specification
is deterministic). Then restructure:

proc FR(n) ≡
var L′ := 〈〉 :
L′[0 . . n− 1] := 0; L′[n] := 1;
while ∃n.L′[n] > 0 do
n := max { i | L′[i] 6= 0 } ;
for i := 1 to L′[n] do

L′[n] := L′[n]− 1;
if n = 0 ∨ n = 1
then r := r + n
else L′[n− 1] := L′[n− 1] + 1;

L′[n− 2] := L′[n− 2] + 1 fi od od end.

The Computer Journal, Vol. ??, No. ??, ????

12 M. P. Ward and K. H. Bennett

The for loop processes all the values in L equal to n. It
sets L′[n] to zero and carries out L′[n] simple additions.
So we can replace the for loop by the statement:

if n = 0 ∨ n = 1 then r := r + L′[n]
else L′[n− 1] := L′[n− 1] + L′[n];

L′[n− 2] := L′[n− 2] + L′[n] fi;
L′[n] := 0

Split the cases n = 0 and n = 1, convert the while loop
to a do loop, unroll on these cases using the fact that
n = max { i | L′[i] 6= 0 }:

proc FR(n) ≡
var L′ := 〈〉 :
L′[0 . . n− 1] := 0; L′[n] := 1;
do if ¬∃n.L′[n] > 0 then exit fi;

n := max { i | L′[i] 6= 0 } ;
if n = 0 then L′[n] := 0; exit
elsif n = 1

then r := r + L′[n]; L′[n] := 0;
if L′[n− 1] 6= 0
then n := n− 1; L′[n] := 0 fi;

exit

else L′[n− 1] := L′[n− 1] + L′[n];
L′[n− 2] := L′[n− 2] + L′[n];
L′[n] := 0 fi od end.

At the end of the loop we will have L′[n − 1] > 0 and
L′[m] = 0 for all m > n so the test ∃n.L′[n] > 0 is
always true (since it is true before the loop). If we
insert the statement n := n + 1 before the loop then
we have max { i | L′[i] 6= 0 } = n + 1 at the top of the
loop, so we can transform n := max { i | L′[i] 6= 0 } to
n := n− 1:

proc FR(n) ≡
var L′ := 〈〉 :
L′[0 . . n− 1] := 0; L′[n] := 1;
n := n+ 1
do n := n− 1;

if n = 0 then L′[n] := 0; exit
elsif n = 1

then r := r + L′[n]; L′[n] := 0;
if L′[n− 1] 6= 0
then n := n− 1; L′[n] := 0 fi; exit

else L′[n− 1] := L′[n− 1] + L′[n];
L′[n− 2] := L′[n− 2] + L′[n];
L′[n] := 0 fi od end.

Convert to a while loop:

proc FR(n) ≡
var L′ := 〈〉 :
L′[0 . . n− 1] := 0; L′[n] := 1;
while n > 1 do
L′[n− 1] := L′[n− 1] + L′[n];
L′[n− 2] := L′[n− 2] + L′[n];
L′[n] := 0;
n := n− 1 od;

if n = 0 then L′[n] := 0

elsif n = 1
then r := r + L′[n]; L′[n] := 0;

if L′[n− 1] 6= 0
then n := n− 1; L′[n] := 0 fi fi end.

It is clear that only the top two elements of L′ are non-
zero, because at each stage we clear the top element and
increment the two elements underneath it. Also, the
assignment to L′[n−2] is equivalent to L′[n−2] := L′[n].
So we add variables a and b with assignments such that
a = L′[n] and b = L′[n − 1]. Then we can replace
references to L′ by references to a and b and remove L′

from the program:

proc FR(n) ≡
var a := 1, b := 0:
while n > 1 do
〈a, b〉 := 〈a+ b, a〉; n := n− 1 od;

if n = 1 then r := r + a fi end.

Substitute in f and simplify to get:

funct f(n) ≡
var 〈a := 1, b := 0〉 :
while n > 1 do
〈a, b〉 := 〈a+ b, a〉; n := n− 1 od;

if n = 0 then 0 else a fi .

This linear factorial function has been derived by apply-
ing simple optimising transformations to the exponen-
tial, iterative factorial function obtained by removing
the recursion in the definition of factorial.

9. TREE SEARCHING ALGORITHMS

In this section we consider recursion removal under
different conditions, which relate to tree searching al-
gorithms. Consider the following recursive procedure:

proc F (x) ≡ if B then S0; F ∗ G(x) fi.

where the condition B does not depend on x and G(x)
is a pure function (i.e. a function with no side effects)
which depends only on x. As above, ∗ is a “procedure
map” operator: F ∗ G(x) means “call procedure F
once for each element of G(x), using the element as
its argument”. The condition B is called a “pruning
condition”, since as soon as it becomes false, no further
processing is carried out. F (x) is a typical depth-first
search algorithm, Theorem 6.1 gives the following iter-
ative equivalent:

proc FD(x) ≡
var L := 〈x〉 :
while L 6= 〈〉 do

x
pop
←− L;

if B then S0; L := G(x) ++ L fi od end.

Instead of a commutativity condition on F we have a
condition on B and S0: for all values x1 and x2:

The Computer Journal, Vol. ??, No. ??, ????

Recursion Removal/Introduction by Formal Transformation 13

var x := x1 : if B then S0 fi end;
var x := x2 : if B then S0 fi end

≈
var x := x2 : if B then S0 fi end;
var x := x1 : if B then S0 fi end

Under these conditions we can prove the following:

Theorem 9.1. F (x) ≤ FB(x) where:

proc FB(x) ≡
var L := 〈x〉 :
while L 6= 〈〉 do

x
pop
←− L;

if B then S0; L := L ++ G(x) fi od end.

Proof: See Appendix ¥

The converse does not hold in general, i.e. under the
condition of Theorem 9.1 it is not always the case that
FB(x) ≤ FD(x). Consider the following procedures:

proc FD(x) ≡ if done = 0
then if even(x) then done := 1 fi;

F ∗ G(x) fi.
where
funct G(x) ≡ 〈x, x+ 1〉.

and

proc FB(x) ≡
var L := 〈x〉 :
while L 6= 〈〉 do

x
pop
←− L;

if done = 1
then if even(x) then done := 1 fi;

L := L ++ 〈x, x+ 1〉 fi od end.

If done = 0 initially then FD(1) never terminates (it
leads to another call of FD(1)) while FB(1) first sets
L := 〈1, 2〉, then pops 1 off L and sets it to 〈2, 1, 2〉,
then pops 2 off L, sets done := 1 and sets L to 〈1, 2, 1, 2〉.
Now done = 1 so all the elements are popped off L and
the procedure terminates.
So in this situation we see that breadth-first execution

is the more general form, in the sense that any depth
first execution is refined by the corresponding breadth
first execution, but the converse does not hold.

10. A HYBRID SORTING ALGORITHM

The following specification statement is a very concise
specification for a program which sorts the array A:

SORT =
DF

A := A′.(sorted(A′) ∧ perm(A,A′))

where for any sequences s and t:

sorted(s) =
DF
∀i. 1 6 i < `(s).s[i] 6 s[i+ 1]

denotes that the sequence s is sorted, and

perm(s, t) =
DF

∃π ∈ perms(`(s)).∀i. 1 6 i 6 `(s).s[i] = t[π(i)]

denotes that the sequence t is a permutation of sequence
s. The function perms(n) returns the set of permuta-
tions (bijections) mapping {1, 2, . . . , n} → {1, 2, . . . , n}.
Many sorting algorithms use a “divide and conquer”

strategy which involves sorting part of an array. A
trivial generalisation of the SORT specification treats
sorting the array segment A[a . . b]:

SORT(a, b) =
DF

A[a . . b] := A′[a . . b].

(sorted(A′[a . . b]) ∧ perm(A[a . . b], A′[a . . b]))

In [9] we refine this specification into an insertion sort
and a quicksort (see [45]). Darlington [46] refines this
specification into several different sorting algorithms.
The recursive quicksort algorithm takes the following
form:

proc QSORT(a, b) ≡
var p := 0 :
if b > a
then partition;

QSORT(a, p− 1); QSORT(p+ 1, b) fi end.

where the partition procedure assigns a value to p such
that a 6 p 6 b and also permutes A[a . . b] such that
A[a . . p − 1] 6 A[p] 6 A[p + 1 . . b], in other words, the
elements of A before A[p] are less than or equal to A[p],
while the elements after A[p] are greater than or equal
to A[p]. Sedgewick [47] suggests a suitable method for
selecting p which he calls “median of three partition-
ing”, in [9] we give a transformational refinement of the
partition procedure, according to this method. Simple
recursion removal leads to the following algorithm which
is reasonably time-efficient:

proc QSORT1(a, b) ≡
var L := 〈〈a, b〉〉, p := 0 :
while L 6= 〈〉 do

〈a, b〉
pop
←− L;

if b > a
then partition;

L := 〈〈a, p− 1〉, 〈p+ 1, b〉〉 ++ L fi od end.

This algorithm has one major drawback in that the
stack L could require storage for up to b−a pairs of ele-
ments. This requirement can be reduced to d lg(b− a)e
pairs, provided the smaller of the two ranges a . . p − 1
and p+1 . . b is treated first. (The proof of this assertion,
which is quite simple, is given in [9]). This is clearly a
case for a “best-first” execution order. QSORT(a, b) is
clearly a commutative procedure, and the expression
b − a is reduced for each recursive call and never goes
below −1. So “best-first” execution immediately gives
the more efficient version:

proc QSORT2(a, b) ≡
var L := 〈〈a, b〉〉, p := 0 :
while L 6= 〈〉 do

〈a, b〉
pop
←− L;

if b > a

The Computer Journal, Vol. ??, No. ??, ????

14 M. P. Ward and K. H. Bennett

then partition;
if p− a < b− p
then L := 〈〈a, p− 1〉, 〈p+ 1, b〉〉 ++ L
else L := 〈〈p+ 1, b〉, 〈a, p− 1〉〉 ++ L fi

fi od end.

A second source of inefficiency is that on any execution
of the algorithm, the vast majority of segments being
partitioned will be “small” (for the recursive version,
most of the calls to QSORT will be for small segments).
It is well known that for small segments, insertion sort
is more efficient than quicksort (due to the reduced
overhead)2. This would suggest that we use QSORT

for “large” partitions and insertion sort for the smaller
partitions, for example:

proc QSORT2(a, b) ≡
var p := 0 :
if b > a
then partition;

if p− a > K then QSORT(a, p− 1)
else ISORT(a, p− 1) fi;

if b− p > K then QSORT(p+ 1, b)
else ISORT(p+ 1, b) fi fi end.

where K is a constant to be determined empirically,
and ISORT is an implementation of insertion sort (see
[9] for the derivation of ISORT). However, this leads
to a large number of calls to ISORT. The same effect
can be achieved more efficiently by leaving all the small
segments unsorted, and then sorting them with a single
call to ISORT(a, b).
To implement this idea, we again make use of the

implementation dependence provided by random-first
execution. We partition L into two variables L1 which
contains the large segments, and L2 which contains the
small segments. We also modify the algorithm to select
from L1 in preference to L2 (but still put a smaller
segment onto L1 in front of a larger segment):

proc QSORT3(a, b) ≡
var L1 := 〈〉, L2 := 〈〉, p := 0 :
if b− a > K + 1
then L1 := 〈〈a, b〉〉
else L2 := 〈〈a, b〉〉 fi;

while L1 ++ L2 6= 〈〉 do

if L1 6= 〈〉 then 〈a, b〉
pop
←− L1 else 〈a, b〉

pop
←− L2 fi;

if b > a
then partition;

if p− a < b− p
then if p− a > K

then L1 := 〈〈a, p− 1〉〉 ++ L1

else L2 := 〈〈a, p− 1〉〉 ++ L2 fi;
if b− p > K
then L1 := 〈〈p+ 1, b〉〉 ++ L1

else L2 := 〈〈p+ 1, b〉〉 ++ L2 fi

else if b− p > K

2Fancy algorithms are slow when n is small, and n is usually

small.—Rob Pike

then L1 := 〈〈p+ 1, b〉〉 ++ L1

else L2 := 〈〈p+ 1, b〉〉 ++ L2 fi;
if p− a > K
then L1 := 〈〈a, p− 1〉〉 ++ L1

else L2 := 〈〈a, p− 1〉〉 ++ L2 fi

fi fi od end.

The next step is to split the while loop into two loops.
This uses the following transformation (proved in [3]).
For any statement S and formulae B1 and B2 where
B1 ⇒ B2:

∆ ` while B2 do S od ≈

while B1 do S od; while B2 do S od

In this case B1 is L1 6= 〈〉 and B2 is L1 ++ L2 6= 〈〉.
After splitting the loop into two, we can simplify the
loops by using the fact that each segment is replaced
by smaller segments. The first loop terminates when
L1 = 〈〉, which means that the second loop will take
elements from L2, in which case any new elements will
always be smaller, and hence will be inserted into L2.
So L1 remains empty throughout the second loop and
can be removed. The second loop becomes:

while L2 6= 〈〉 do

〈a, b〉
pop
←− L2;

if b > a
then partition;

if p− a < b− p
then L2 := 〈〈a, p− 1〉, 〈p+ 1, b〉〉 ++ L2

else L2 := 〈〈p+ 1, b〉, 〈a, p− 1〉〉 ++ L2

fi fi od

This is equivalent to executing QSORT2 on each pair
in L2 (see the proof of Theorem 7.1), which in turn is
equivalent to executing ISORT on each pair in L2 (since
both QSORT2 and ISORT are equivalent to SORT):

while L2 6= 〈〉 do

〈a, b〉
pop
←− L2;

if b > a
then ISORT(a, b) fi od

The while loop reduces to a filter followed by a proced-
ure map operation:

L2 := filter(L2); ISORT ∗ L2; L2 := 〈〉

where filter removes all the pairs 〈a, b〉 with b > a.
Recall that throughout this development we have

been working with a program which is provably equi-
valent to SORT(a0, b0) (where a0 and b0 are the initial
values of a and b), so after the loop the array A[a0 . . b0]
is sorted. Under this condition, SORT(a0, b0) is equival-
ent to skip, and hence so is ISORT(a0, b0). So we can
insert a call to ISORT after the procedure map:

L2 := filter(L2); ISORT ∗ L2; L2 := 〈〉; ISORT(a0, b0)

The Computer Journal, Vol. ??, No. ??, ????

Recursion Removal/Introduction by Formal Transformation 15

For each pair 〈a, b〉 in the filtered list L2 we have

a0 6 a 6 b 6 b0

and under this condition

SORT(a, b); SORT(a0, b0) ≈ SORT(a0, b0)

The same is true for ISORT, so we can delete the
procedure map operation:

L2 := filter(L2); L2 := 〈〉; ISORT(a0, b0)

Now, the only references to L2 are in statements which
assign to L2. So L2 is a redundant variable and can be
removed from the program. The whole of the second
loop has been absorbed by the inserted call to ISORT.
So the algorithm is:

proc QSORT4(a, b) ≡
var L1 := 〈〉, a0 := a, b0 := b, p := 0 :
if b− a > K + 1 then L1 := 〈〈a, b〉〉 fi;
while L1 6= 〈〉 do

〈a, b〉
pop
←− L1;

if b > a
then partition;

if p− a < b− p
then if p− a > K

then L1 := 〈〈a, p− 1〉〉 ++ L1 fi;
if b− p > K
then L1 := 〈〈p+ 1, b〉〉 ++ L1 fi

else if b− p > K
then L1 := 〈〈p+ 1, b〉〉 ++ L1 fi;

if p− a > K
then L1 := 〈〈a, p− 1〉〉 ++ L1 fi

fi fi od;
ISORT(a0, b0) end.

The test b > a is redundant since for every element in
L1 we have b−a > K+1 > 0, so the program simplifies
to:

proc QSORT5(a, b) ≡
var L1 := 〈〉, a0 := a, b0 := b, p := 0 :
if b− a > K + 1
then do partition;

if p− a < b− p
then if p− a > K

then L1 := 〈〈a, p− 1〉〉 ++ L1 fi;
if b− p > K
then L1 := 〈〈p+ 1, b〉〉 ++ L1 fi

else if b− p > K
then L1 := 〈〈p+ 1, b〉〉 ++ L1 fi;

if p− a > K
then L1 := 〈〈a, p− 1〉〉 ++ L1 fi fi;

if L1 = 〈〉 then exit fi;

〈a, b〉
pop
←− L1 od;

ISORT(a0, b0) end.

11. PROGRAM ANALYSIS

The recursion removal theorem is a transformation
which can be applied equally well in either direction.
Because it places so few restrictions on the form of
the program, there are many iterative programs which
can be cast in the form required by the transformation.
Hence it can be used as a program analysis and reverse
engineering tool. It will make explicit the control struc-
ture of programs which use a stack in a particular way.
For example, consider the following function:

funct A(m,n) ≡
var 〈d := 0, stack := 〈〉〉 :
do do if m = 0 then n := n+ 1; exit

elsif n = 0 then stack := 〈1〉 ++ stack;
m := m− 1; n := 1

else stack := 〈0〉 ++ stack;
n := n− 1 fi od;

do if stack = 〈〉 then exit(2) fi;
d← stack;
if d = 0 then stack := 〈1〉 ++ stack;

m := m− 1; exit fi;
m := m+ 1 od od end;

(n).

This program was analysed by the REDO team at
the Programming Research Group in Oxford to test
their proposed methods for formal reverse engineering
of source code. Their paper [48] required eight pages
of careful reasoning plus some “inspiration” to uncover
the specification this short program. With the aid of
our theorem the analysis breaks down into three steps:

1. Restructure into the right form for application of
the theorem;

2. Apply the theorem;
3. Restructure the resulting recursive procedure in a

functional form.

If we examine the operations carried out on the stack
we see that the program terminates when the stack
becomes empty, and when the stack is not empty, a
value is popped off the stack and used to determine
the control flow. Any program which carries out these
sorts of operations on a stack is a suitable candidate for
the recursion removal theorem applied in the reverse
direction. The first step is to restructure the loops into
an action system and collect together the “stack push”
operations into separate actions. More correctly, we
“deconstruct” the loops and if statements into separate
actions. This is a simple, mechanical operation, similar
to the construction of a flow graph of “basic blocks”
carried out by many optimising compilers:

var d := 0, stack := 〈〉 :
actions A1 :
A1 ≡

if m = 0 then n := n+ 1; call Â
elsif n = 0 then call B1

The Computer Journal, Vol. ??, No. ??, ????

16 M. P. Ward and K. H. Bennett

else call B2 fi.

B1 ≡
m := m− 1; n := 1;
stack := 〈1〉 ++ stack; call A1.

B2 ≡
n := n− 1; stack := 〈0〉 ++ stack; call A1.

Â ≡
if stack = 〈〉
then call Z
else d← stack;

if d = 0 then call B3

else m := m+ 1; call Â fi fi.

B3 ≡
m := m− 1; stack := 〈1〉 ++ stack; call A1.

endactions end

Apply the transformation in Corollary (6.1) to get the
recursive version:

proc F ≡
actions A1 :
A1 ≡
if m = 0 then n := n+ 1; call Z
elsif n = 0 then call B1

else call B2 fi.

B1 ≡
m := m− 1; n := 1;
F ; m := m+ 1; call Z.

B2 ≡
n := n− 1; F ; call B3.

B3 ≡
m := m− 1; F ; m := m+ 1; call Z.

endactions

Unfold all the actions into A1 to get:

proc F ≡ if m = 0 then n := n+ 1
elsif n = 0 then m := m− 1; n := 1;

F ; m := m+ 1
else n := n− 1; F ; m := m− 1;

F ; m := m+ 1 fi.

We can turn the global variables m and n into paramet-
ers if we add a variable r to record the final value of n
(the value of m is unchanged):

var r := 0: F (n,m); n := r
where

proc F (m,n) ≡
if m = 0 then r := n+ 1
elsif n = 0 then F (m− 1, 1)

else F (m,n− 1); F (m− 1, r) fi. end

This procedure can be written in a functional form and
substituted into the original function to get:

funct A(m,n) ≡
if m = 0 then n+ 1
elsif n = 0 then A(m− 1, 1)

else A(m− 1, A(m,n− 1)) fi.

where we have replaced calls to F by equivalent calls to
A (an example of alpha-conversion).
This is the famous Ackermann function [49].

12. A LARGER REVERSE ENGINEERING

EXAMPLE

Consider the following program which takes four posit-
ive integer arrays l, r, c and m and a positive integer
x and modifies some of the elements of m, where m is
assumed to be initially an array of zeros:

var 〈L := 〈〉, d := 0〉 :
proc F (x) ≡
do do if x 6= 0

then if m[l[x]] = 0

then L
push
←− 〈1, x〉; x := l[x]

else exit fi

else do if L = 〈〉 then exit(3) fi;

〈d, x〉
pop
←− L;

if d = 0 → exit(2)
ut d = 1 → exit

ut d = 2 → skip fi od fi;
do m[x] := 1;

if m[c[x]] = 0 ∧ m[r[x]] = 1

then L
push
←− 〈2, x〉; x := c[x]; exit(2)

elsif m[c[x]] = 1 ∧ m[r[x]] = 0

then L
push
←− 〈2, x〉; x := r[x]; exit(2)

elsif m[c[x]] = 0 ∧ m[r[x]] = 0

then L
push
←− 〈2, x〉; L

push
←− 〈0, r[x]〉;

x := c[x]; exit(2)
else do if L = 〈〉 then exit(4) fi;

〈d, x〉
pop
←− L;

if d = 0 → exit(3)
ut d = 1 → exit

ut d = 2 → skip fi

od fi od od od. end

Despite its small size, this program has a fairly complex
control structure, with a quadruple-nested loop and
exits which terminate from the middle of one, two, three
and four nested loops. Finding suitable invariants for
all the loops seems to be a difficult task, while finding
a variant function is impossible! For suppose x 6= 0,
m[l[x]] = 0 and l[x] = x initially. With this initial
state, it is easy to see that the program will never
terminate. Therefore there is no variant function which
works over the whole initial state space. To determine
the conditions under which the program terminates, ba-
sically involves determining the behaviour of the entire
program: not a helpful requirement for the first stage
of a reverse engineering task!
There are certain features which suggest that the

recursion removal theorem might be usefully applied:
in particular the presence of a local array which is used
as a stack and which starts empty and finishes empty.
One problem is that there are two places in the program
where L is tested and an element popped off. However,

The Computer Journal, Vol. ??, No. ??, ????

Recursion Removal/Introduction by Formal Transformation 17

if we restructure the program as an action system, then
there are some powerful transformations which can be
used to merge the two actions which test L and convert
the program into the right structure for the recursion
introduction theorem.
The first step therefore is to restructure the program

as an action system. This basically involves implement-
ing the loops and exits as action calls (i.e. gotos)—an
unusual step in a reverse engineering process!

var 〈L := 〈〉, d := 0〉 :
proc F (x) ≡
actions A1 :
A1 ≡
if x 6= 0 then if m[l[x]] = 0 then call B1

else call A2 fi

else call F̂1 fi.

A2 ≡
m[x] := 1;
if m[c[x]] = 0 ∧ m[r[x]] = 1
then call B2

elsif m[c[x]] = 1 ∧ m[r[x]] = 0
then call B3

elsif m[c[x]] = 0 ∧ m[r[x]] = 0
then call B4

else call F̂2 fi.

B1 ≡

L
push
←− 〈1, x〉; x := l[x]; call A1.

B2 ≡

L
push
←− 〈2, x〉; x := c[x]; call A1.

B3 ≡

L
push
←− 〈2, x〉; x := r[x]; call A1.

B4 ≡

L
push
←− 〈2, x〉; L

push
←− 〈0, r[x]〉; x := c[x]; call A1.

F̂1 ≡
if L = 〈〉 then call Z fi;

〈d, x〉
pop
←− L;

if d = 0 → call A1

ut d = 1 → call A2

ut d = 2 → call F̂1 fi.

F̂2 ≡
if L = 〈〉 then call Z fi;

〈d, x〉
pop
←− L;

if d = 0 → call A1

ut d = 1 → call A2

ut d = 2 → call F̂2 fi. endactions. end

The actions F̂1 and F̂2 are identical (apart from calls to
F̂1 and F̂2) so they can be merged using a transform-
ation in [3]. The result will be in the right form for
Corollary 6.1. (Incidentally, the resulting action call
graph is irreducible, but this causes no difficulties for
our methods). Applying Corollary 6.1 gives:

proc F (x) ≡
actions A1 :
A1 ≡
if x 6= 0 then if m[l[x]] = 0 then call B1

else call A2 fi

else call Z fi.

A2 ≡
m[x] := 1;
if m[c[x]] = 0 ∧ m[r[x]] = 1
then call B2

elsif m[c[x]] = 1 ∧ m[r[x]] = 0
then call B3

elsif m[c[x]] = 0 ∧ m[r[x]] = 0
then call B4

else call Z fi.

B1 ≡
F (l[x]); call A2.

B2 ≡
F (c[x]); call Z.

B3 ≡
F (r[x]); call Z.

B4 ≡
F (c[x]); F (r[x]); call Z. endactions.

Restructuring to remove the action system to give a
recursive version of the program:

proc F (x) ≡
if x 6= 0
then if m[l[x]] = 0 then F (l[x]) fi;

m[x] := 1;
if m[c[x]] = 0 ∨ m[r[x]] = 1
then F (c[x])

elsif m[c[x]] = 1 ∨ m[r[x]] = 0
then F (r[x])

elsif m[c[x]] = 0 ∨ m[r[x]] = 0
then F (c[x]); F (r[x]) fi fi.

We have reduced the 22 line original program, with
its quadruple-nested loops, to a ten line recursive pro-
cedure with no loops and only simple if statements,
by a purely mechanical application of general purpose
transformations.

12.1. Change Data Representation

Observe that the arrays l[], c[] and r[] are never modi-
fied, while arraym[] starts out with all zeros and during
the course of the program’s execution, certain elements
of m[] are set to 1. Since x is a parameter of the
procedure, the only effect of the procedure is to set these
elements of m[]: we want to determine which elements
ofm[] are modified. Let the set N represent the domain
of F () and of the arrays l, c, r and m. The array m[] is
equivalent to a subset of N (those elements x for which
m[x] = 1). We define the set M of marked elements as
follows:

M =
DF
{ x ∈ N | m[x] = 1 }

For each x ∈ N, either x = 0 and the function returns
immediately, or there are three other elements of N

which may be used as parameters of F : the values
l[x], c[x] and r[x]. We therefore define a function

The Computer Journal, Vol. ??, No. ??, ????

18 M. P. Ward and K. H. Bennett

D : N→ N
∗ as follows:

D(x) =
DF

{

〈〉 if x = 0

〈l[x], c[x], r[c]〉 otherwise

With this data representation our program becomes:

proc F (x) ≡
if D(x) 6= 〈〉
then if D(x)[1] /∈M then F (D(x)[1]) fi;

M :=M ∪ {x};
if D(x)[2] /∈M ∧ D(x)[3] ∈M
then F (D(x)[2])

elsif D(x)[2] ∈M ∧ D(x)[3] /∈M
then F (D(x)[3])

elsif D(x)[2] /∈M ∧ D(x)[3] /∈M
then F (D(x)[2]); F (D(x)[3]) fi fi.

We can simplify the if statement by using an iteration
over a sequence (see [41] for the formal definition):

proc F (x) ≡
if D(x) 6= 〈〉
then if D(x)[1] /∈M then F (D(x)[1]) fi;

M :=M ∪ {x};

for y
pop
←− D(x)[2 . .] \M do F (y) od fi.

where for a sequenceX and setM , the expressionX\M
denotes the subsequence of elements of X which are not
in M .
This version of the program can be generalised for any

function D : N→ N
∗, so from now on we will ignore the

“trinary” nature of the original D function. This step is
an “abstraction” in the sense that our original program
will implement a special case of the specification we
derive.
With the recursive and abstract version of the pro-

gram it is clear that the effect of a call to F (x) is to add
certain elements to the set M . Since all the recursive
calls to F (x) ensure that x /∈ M , we will assume that
this is the case for external calls also. Hence we can
assume that the assertion x /∈M holds at the beginning
of the body of F . The arguments for the recursive calls
are all elements of D(x), so all the elements added to
M will be reached by zero or more applications of D.
In fact, the function D defines a directed graph on N

with edges 〈x, y〉 where y ∈ D(x). For any set X ⊆ N

we define R(X) to be the set of nodes in the graph
reachable from X via zero or more applications of D.
This is called the Transitive Closure of D:

R(X) =
DF

⋃

n<ω

Rn(X)

where

R0(X) =
DF

X

and

Rn+1(X) =
DF

⋃

{ set(D(y)) | y ∈ Rn(X) }

We are also interested in the nodes reachable via un-
marked nodes. We define DM (x) =DF

D(x)\M which
is the sequence D(x) with elements of M deleted. We
extend DM to its transitive closure RM in the same way
as for D and R.

12.2. Abstraction Assumptions

To simplify the abstraction process we make two as-
sumptions. The first is that all unmarked reachable
nodes are reachable via unmarked nodes, i.e. M ∪
R(X) =M∪RM (X) initially for all X ⊆ N. SinceM =
∅ initially for our original program, this assumption is
in fact a further generalisation of that program. Our
second assumption is that no unmarked node is reach-
able from its first daughter node, i.e. ∀x ∈ N \M. x /∈
R(D(x)[1]). This is an essential assumption since if
x ∈ R(D(x)[1]) and x /∈M , then x ∈ RM (D(x)[1]) and
it is easy to see that F (x) will not terminate.
In [8] we prove the following Reachability Theorem:

Theorem 12.1. Let M and X be sets of nodes such
thatM∪R(X) =M∪RM (X) and let x ∈ X\M . Let A
and B be any subsets of RM ({x}) such that RM ({x})\
A ⊆ RM∪A(B). Then:

M ∪RM (X) =M ∪A ∪RM∪A((X \ {x}) ∪B)

=M ∪A ∪R((X \ {x}) ∪B)

Two obvious choices for A are {x} and RM ({x}). In
the former case, a suitable choice for B is D(x) \ (M ∪
{x}) and in the latter case, the only choice for B is ∅.
So we have two corollaries:

Corollary 12.1. If M ∪R(X) =M ∪RM (X) and
x ∈ X \M then:

M ∪RM (X) =M ∪ {x} ∪RM∪{x}(X
′)

=M ∪ {x} ∪R(X ′)

where X ′ = (X \ {x}) ∪ (D(x) \ (M ∪ {x})).

Corollary 12.2. If M ∪R(X) =M ∪RM (X) and
x ∈ X \M then:

M ∪RM (X) =M ∪R({x}) ∪RM∪R({x})(X \ {x})

=M ∪R({x}) ∪R(X \ {x})

12.3. The Specification

We claim that F (x) is a refinement of SPEC({x}) where
for X ⊆ N:

SPEC(X) =
DF

I(X); M :=M ∪R(X)

where

I(X) = {M ∪R(X) =M ∪RM (X)}

To prove the claim, we will use the recursive imple-
mentation theorem Theorem 5.1. First, we replace the

The Computer Journal, Vol. ??, No. ??, ????

Recursion Removal/Introduction by Formal Transformation 19

recursive calls in F (x) by copies of the specification and
add an assertion (from the abstraction assumptions):

S = I({x});
if D(x) 6= 〈〉
then if D(x)[1] /∈M then SPEC(D(x)[1]) fi;

M :=M ∪ {x};

for y
pop
←− D(x)[2 . .] \M do

SPEC(y) od
else M :=M ∪ {x} fi

This expands to:

S ≈ I({x});
if D(x) 6= 〈〉
then if D(x)[1] /∈M

then I({D(x)[1]});
M :=M ∪R({D(x)[1]}) fi;

M :=M ∪ {x};

for y
pop
←− D(x)[2 . .] \M do

I({y}); M :=M ∪R({y}) od
else M :=M ∪ {x} fi

If D(x)[1] /∈ M then D(x)[1] /∈ (M ∪ {x}) since our
abstraction assumption x /∈ R(D(x)[1]) implies x 6=
D(x)[1], so adding x to M does not affect the test. So
the assignment M :=M ∪ {x} can be moved back past
the preceding if statement:

S ≈ I({x});
if D(x) 6= 〈〉
then M :=M ∪ {x};

if D(x)[1] /∈M \ {x}
then I({D(x)[1]});

M :=M ∪R({D(x)[1]}) fi;

for y
pop
←− D(x)[2 . .] \M do

I({y}); M :=M ∪R({y}) od
else M :=M ∪ {x} fi

Now we roll the if statement into the for loop and factor
M := M ∪ {x} out of the outer if statement. The
test D(x) 6= 〈〉 then becomes redundant since for y

pop
←−

D(x) do . . . od is equivalent to skip when D(x) = 〈〉.

S ≈ I({x});
M :=M ∪ {x};

for y
pop
←− D(x) \M do

I({y}); M :=M ∪R({y}) od

By Corollary 12.2 and the general induction rule for
iteration we can prove that for any X ⊆ N such that
M ∪R(X) =M ∪RM (X):

for y ∈ X \M do

I({y}); M :=M ∪R({y}) od
≈
M :=M ∪RM (X)

So we have:

S ≈ I({x}); M :=M ∪ {x}; M :=M ∪RM (D(x))

≈ I({x}); M :=M ∪ {x} ∪RM (D(x))

So by Corollary 12.1:

S ≈ SPEC({x})

Finally, note that before each copy of SPEC({x}) in
S, either M has been increased (and hence the finite
set N \ M reduced) from its initial value, or M re-
mains the same, but R({x}) has been reduced (the
abstraction assumption that x /∈ R(D(x)[1]) shows that
R(D(x)[1]) ⊂ R({x}). So we can apply the recursive
implementation theorem (Theorem 5.1) in reverse to
prove:

SPEC({x}) ≈
proc F (x) ≡
if D(x) 6= 〈〉
then if D(x)[1] /∈M then F (D(x)[1]) fi;

M :=M ∪ {x};

for y
pop
←− D(x)[2 . .] \M do F (y) od fi.

So, given the abstraction assumptions of Section 12.2,
our original program is a correct implementation of
SPEC({x}).

13. CONCLUSION

In this paper we have briefly described our approach
to algorithm derivation and reverse engineering, which
relies on formal transformations in a wide-spectrum lan-
guage, based in infinitary first order logic. We presented
a general-purpose recursion removal/introduction the-
orem and, for the case of commutative procedures, we
proved the following results:

• For a cascade recursion, any breadth first execution
is refined by the corresponding depth-first execu-
tion, but the converse is not generally true;

• For a cascade recursion with a pruning condition
(eg. a tree searching algorithm), any depth-first
execution is refined by a breadth-first execution,
but the converse is not generally true;

• If a well-founded order exists on the domain, such
that all recursive calls have smaller arguments,
then depth-first and breadth-first executions are
equivalent, and equivalent to random-first execu-
tion.

We illustrated the practical application of these results
with several algorithm derivations, and some sample
reverse-engineering problems. The transformation ap-
proach has provided some powerful tools for algorithm
derivation and reverse engineering.

14. APPENDIX:

PROOFS OF VARIOUS THEOREMS

14.1. Theorem 7.1

To prove Theorem 7.1, we actually need a well-founded
order on sequences of domain elements (i.e. on values
of L rather than values of x). Let D be the domain set

The Computer Journal, Vol. ??, No. ??, ????

20 M. P. Ward and K. H. Bennett

and D∗ be the set of finite sequences of elements of D.
The next lemma shows that a well-founded order on D
induces a suitable order on D∗.

Definition 14.1. The extension ≺∗ of ≺ to D∗ is
defined as follows: For all K,L ∈ D∗ we define L ≺∗ K
to be true iff L is not a permutation of K, and L is of
the form L1 ++ L2 ++ · · · ++ Ln where n = `(K) and for
each i ∈ {1, 2, . . . , n}, either Li = 〈K[π(i)]〉 or ∀j, 1 6
j 6 `(Li). Li[j] ≺ K[π(i)]. (Here π is some permutation
of {1, 2, . . . , n} which depends on K and L). In other
words, each element of K either appears somewhere in
L, or is represented by a sequence of strictly smaller
elements. Note that some or all of the Li may be empty.

Lemma 14.2. If ≺ is a well-founded partial order on
D then ≺∗ as defined above, is a well-founded partial
order on D∗.

Proof: It is easy to see that ≺∗ is a partial order. To
prove well-foundedness, suppose for contradiction that
we have an infinite descending chain L1 Â

∗ L2 Â
∗ L3 Â

∗

. . . of elements of D∗. From this chain we construct a
tree Tk of elements of D where the root of each Tk is
xk, the kth element of L1. (L1 cannot of course be
empty, since the empty sequence is smaller than any
other). The daughters of xk (if any) are those elements
of L2 which are equal to or smaller than xk. At each
level i in the tree Tk, the nodes are the elements of the
corresponding Li. From the fact that Li Â

∗ Li+1 we
have Li+1 = Li1 ++ Li2 ++ · · · ++ Lin where `(Lij) > 1
and either Lij = 〈Li[π(j)]〉 or each element of Lij is
strictly less than Li[π(j)]. As above, π is a permutation
of {1, 2, . . . , `(Li)} which depends on Li and Li+1. We
define the daughters of Li[π(j)] in Tk to be the elements
of Lij . So each element in Tk either has one daughter
(which is equal to it), or a list of daughters, each of
which is strictly smaller than it.
We want to get an infinite descending chain in D from

one of the trees, so we construct a new tree T′
k from Tk

by pruning all the branches which end in an infinite
sequence of identical elements. Some of the trees Tk

may be finite, but at least one of the trees must be
infinite, since for each i, each element of Li must appear
in one of the trees. Therefore, at least one of the pruned
trees T′

k must also be infinite, since otherwise if all the
trees were finite, say of maximum depth N , then the
list of daughters at level N of T is the same as at level
N + 1, which contradicts LN Â

∗ LN+1.
Let T′ be one of the infinite pruned trees and apply

Koenig’s Lemma to this finitely branching infinite tree
to get an infinite path of elements 〈x0, x1, . . . 〉, where
each element is less than or equal to the previous one.
There must be an infinite number of Â relationships
in this sequence since otherwise, at some point in the
sequence all the elements are equal, but we pruned
all such branches from the tree. Hence we have an
infinite descending chain x0 Â xn1

Â xn2
Â . . . in

D where for each i, ni < ni+1. This contradicts the

well-foundedness of ≺. So the assumption that ≺∗ has
an infinite descending chain is false. So ≺∗ is well
founded. ¥

The proof of the main theorem uses well-founded
induction on the value of L using the well-founded order
≺∗ induced from ≺.

Proof: To prove Theorem 7.1, let:

DO = while L 6= 〈〉 do

x
pop
←− L; F (x) od

and

DO′ = while L 6= 〈〉 do

x
pick
←− L; S0;

L := G(x) ++ L od

So it is sufficient to prove DO ≈ DO′ (ignoring the
final value of x), since F (x) ≈ var L := 〈x〉 : DO end.
The proof is by well-founded induction on the value of
L using the well-founded order ≺∗ induced from ≺.
The minimal element is clearly the empty sequence

(since a sequence can always be made smaller by remov-
ing elements), and if L = 〈〉 then both DO and DO′ are
skip. So suppose DO ≈ DO′ for all L ≺ λ for some
λ 6= 〈〉 and let L = λ initially. Unroll the first step of
DO′:

DO′ ≈ x
pick
←− L; S0;

L := G(x) ++ L;
DO′

This removes an element from L and adds a sequence
of elements 〈gj1(x), gj2(x), . . . , gjnj

(x)〉 where x was the
element removed. Since gij(x) ≺ x the value of L just
before DO′ is less than λ in the ≺∗ order. So we can
apply the induction hypothesis:

DO′ ≈ x
pick
←− L; S0;

L := G(x) ++ L;
DO

Unfold G(x) and absorb DO into the if statement:

DO′ ≈ x
pick
←− L; S0;

if B0 → skip; DO
ut . . . ut Bj → L := 〈gj1(x), gj2(x),

. . . , gjnj
(x)〉 ++ L; DO

. . . fi

Now:

L := 〈gj1(x), gj2(x), . . . , gjnj
(x)〉 ++ L; DO

≈ L
push
←− gjnj

(x); . . . ; L
push
←− gj2(x);

L
push
←− gj1(x); DO

≈ L
push
←− gjnj

(x); . . . ; L
push
←− gj2(x);

x := gj1(x); F (x); DO

by unrolling the first step of DO

The Computer Journal, Vol. ??, No. ??, ????

Recursion Removal/Introduction by Formal Transformation 21

≈ L
push
←− gjnj

(x); . . . ; L
push
←− gj2(x);

F (gj1(x)); DO

since DO overwrites x before reading it

≈ F (g1(x)); L
push
←− gjnj

(x); . . . ; L
push
←− gj2(x);

DO

since F (gj1(x) doesn’t use x or L. Repeating these steps
gives:

≈ F (gj1(x)); F (gj2(x)); . . . ; F (gjnj
(x)); DO

So we have:

DO′ ≈ x
pick
←− L; S0;

if B0 → skip; DO
ut . . . ut Bj → F (gj1(x)); F (gj2(x));

. . . ; F (gjnj
(x)); DO

. . . fi

Separate DO from the if statement again and use the
fact that S0; F ∗ G(x) ≈ F (x) to get:

DO′ ≈ x
pick
←− L; F (x); DO

We can express x
pick
←− L as a nondeterministic choice

(depending on which element is picked):

x
pick
←− L ≈

`(L)l

i=1

(

x := L[i]; L := L[1 . . i− 1] ++ L[i+ 1 . .]
)

this is a nondeterministic choice over `(L) statements:
i is replaced by the integers 1, 2, 3, etc. in each of the
statements. We claim that for each i:

DO ≈ x := L[i]; L := L[1 . . i− 1] ++ L[i+ 1 . .];

F (x); DO

First, re-write DO as a pair of for loops, and delay
updating L until the last moment:

x := L[i];
L := L[1 . . i− 1] ++ L[i+ 1 . .];
F (x);
DO

≈
x := L[i]; F (x);
for j := 1 to i− 1 do F (L[j]) od;
for j := i+ 1 to `(L) do F (L[j]) od;
L := 〈〉

Use the fact that F (x); F (y) ≈ F (y); F (x) and
induction on i to move the F (L[i]) past the first for
loop, and delete the assignment to x (since x is not
used):

for j := 1 to i− 1 do F (L[j]) od;
F (L[i]);
for j := i+ 1 to `(L) do F (L[j]) od;
L := 〈〉

Now F (L[i]) ≈ for j := i to i do F (L[j]) od so we can
merge the three for loops to get

for j := 1 to `(L) do F (L[j]) od; L := 〈〉

which is equivalent to DO as required. ¥

14.2. Theorem 7.2

proc FB(x) ≡
var L := 〈x〉 :
while L 6= 〈〉 do

x
pop
←− L; S0; L := L ++ G(x) od end.

We have that for all x and y: F (x); F (y) ≈
F (y); F (x), and claim that FB(x) ≤ F (x). Let:

DO =while L 6= 〈〉 do

x
pop
←− L; F (x) od

and
DO′ =while L 6= 〈〉 do

x
pop
←− L; S0; L := L ++ G(x) od

It is sufficient to show that DO′ ≤ DO. We will use
induction on n and to prove that DO′n ≤ DO and
appeal to the induction rule for iteration. Here

DO′0 =
DF

abort

and

DO′n+1 =
DF

if L 6= 〈〉

then x
pop
←− L; S0;

L := L ++ G(x); DO′n fi

So suppose DO′n ≤ DO. We assume L 6= 〈〉 since the
result is trivial when L = 〈〉:

DO′n+1 ≈ x
pop
←− L; S0; L := L ++ G(x); DO′n

≤ x
pop
←− L; S0; L := L ++ G(x); DO

by the induction hypothesis. Unfold G(x) and push DO
inside the if statement:

≈ x
pop
←− L; S0;

if B0 → L := L ++ 〈〉; DO
ut . . . ut Bj → L := L ++ 〈gj1(x), gj2(x),

. . . , gjnj
(x)〉;

DO

. . . fi

Note that DO ≈ F ∗ L; L := 〈〉 so we have:

≈ x
pop
←− L; S0;

if B0 → L := L ++ 〈〉; DO
ut . . . ut Bj → F ∗ (L ++ 〈gj1(x), gj2(x),

. . . , gjnj
(x)〉);

L := 〈〉
. . . fi

Since F (x); F (y) ≈ F (y); F (x) for any x, y we can
re-order the list we map F to:

The Computer Journal, Vol. ??, No. ??, ????

22 M. P. Ward and K. H. Bennett

≈ x
pop
←− L; S0;

if B0 → L := L ++ 〈〉; DO
ut . . . ut Bj → F ∗ (〈gj1(x), gj2(x),

. . . , gjnj
(x)〉 ++ L);

L := 〈〉
. . . fi

≈ x
pop
←− L; S0;

if B0 → L := L ++ 〈〉; DO
ut . . . ut Bj → F ∗ 〈gj1(x), gj2(x),

. . . , gjnj
(x)〉;

DO

. . . fi

Take DO out of the if statement and fold a call to G(x):

≈ x
pop
←− L; S0;

F ∗ G(x);
DO

We have F (x) ≈ S0; F ∗ G(x), so we can fold a call
to F :

≈ x
pop
←− L; F (x); DO

and roll up a loop to get:

≈ DO ¥

14.3. Theorem 9.1

To prove that the tree searching program F (x) is refined
by FB(x) we first note that FB(x) can be expressed as
follows:

proc FB(x) ≡
var L := 〈x〉, L′ := 〈〉 :
while L′ ++ L 6= 〈〉 do
if L′ = 〈〉 then L′ := L; L := 〈〉 fi;

x
pop
←− L′;

if B then S0; L := L ++ G(x) fi od end.

where we represent L by L′ ++ L. Now we selectively
unroll the loop under the condition L′ 6= 〈〉 to get:

proc FB(x) ≡
var L := 〈x〉, L′ := 〈〉 :
while L′ ++ L 6= 〈〉 do
if L′ = 〈〉 then L′ := L; L := 〈〉 fi;

x
pop
←− L′;

if B then S0; L := L ++ G(x) fi;
while L′ 6= 〈〉 do
if L′ = 〈〉 then L′ := L; L := 〈〉 fi;

x
pop
←− L′;

if B then S0; L := L ++ G(x) fi od od end.

Now we have L′ = 〈〉 at the beginning of the outer loop,
so this is simplified to:

proc FB(x) ≡
var L := 〈x〉, L′ := 〈〉 :
while L 6= 〈〉 do
L′ := L; L := 〈〉;
while L′ 6= 〈〉 do

x
pop
←− L′;

if B then S0; L := L ++ G(x) fi od od end.

where we have also rolled one step into the inner loop.
Let:

DFS = while L 6= 〈〉 do

x
pop
←− L;

if B then S0; L := G(x) ++ L fi od

and

BFS = while L 6= 〈〉 do

x
pop
←− L;

if B then S0; L := L ++ G(x) fi od

and

BFS′ = while L 6= 〈〉 do
L′ := L; L := 〈〉;
while L′ 6= 〈〉 do

x
pop
←− L′;

if B then S0; L := L ++ G(x) fi od od

Note that BFS ≈ BFS′ as above. We will show
by induction DFSn ≤ BFS for all n < ω whence
FD(x) ≤ FB(x) follows. We may assume that L 6= 〈〉:

DFSn+1 = x
pop
←− L;

if B then S0; L := G(x) ++ L fi;
DFSn

≤ x
pop
←− L;

if B then S0; L := G(x) ++ L fi;
BFS

by the induction hypothesis

≈ x
pop
←− L;

if B then S0; L := G(x) ++ L; BFS
else BFS fi

≤ x
pop
←− L;

if B then S0; L := L ++ G(x); BFS
else BFS fi

see below

≈ x
pop
←− L;

if B then S0; L := L ++ G(x) fi;
BFS

≈ BFS

So all that remains is to prove L := G(x) ++ L; BFS ≤
L := L ++ G(x); BFS, or equivalently L := L1 ++
L2; BFS′ ≤ L := L2 ++ L1; BFS′. We do this by
induction on the length of G(x), moving the elements
from the end of L2 to the front of L1:

L := L1 ++ 〈x1〉; BFS
′n+1

≈ L := L1 ++ 〈x1〉; L
′ := L; L := 〈〉;

while L′ 6= 〈〉 do

x
pop
←− L′;

if B then S0; L := L ++ G(x) fi od;
BFS′n

Unroll the last step of the while loop:

The Computer Journal, Vol. ??, No. ??, ????

Recursion Removal/Introduction by Formal Transformation 23

≈ L′ := L1; L := 〈〉;
while L′ 6= 〈〉 do

x
pop
←− L′;

if B then S0; L := L ++ G(x) fi od;
x := x1; if B then S0; L := L ++ G(x1) fi;
BFS′n

Push BFS′n inside and apply the induction hypothesis:

≤ L′ := L1; L := 〈〉;
while L′ 6= 〈〉 do

x
pop
←− L′;

if B then S0; L := L ++ G(x) fi od;
x := x1;
if B then S0; L := G(x1) ++ L; BFS′

else BFS′ fi

Re-arrange:

≤ L′ := L1; L := 〈〉;
while L′ 6= 〈〉 do

x
pop
←− L′;

if B then S0; L := L ++ G(x) fi od;
if B then S0[x1/x]; L := G(x1) ++ L fi;
BFS′

We want to move the statement S0[x1/x] to the begin-
ning. Note that if B ever becomes false then BFS′ ≈
L := 〈〉 so we can take the assignments to L out of the
tests of B:

≤ L′ := L1; L := 〈〉;
while L′ 6= 〈〉 do

x
pop
←− L′;

if B then S0 fi; L := L ++ G(x) od;
if B then S0[x1/x] fi;
L := G(x1) ++ L; BFS′

(technically, we unroll all the steps of the while loop,
push BFS′ into the if structure and replace BFS′ by the
equivalent L := L ++ G(x); BFS′ when B is false). Now
we can use the commutativity of S0 to get:

≈ L′ := L1; L := 〈〉; if B then S0[x1/x] fi;
while L′ 6= 〈〉 do

x
pop
←− L′;

if B then S0 fi; L := L ++ G(x) od;
L := G(x1) ++ L; BFS′

Since the while loop appends to L we can move the
assignment L := G(x1) ++ L to the beginning. Since
L = 〈〉 we can write it as L := L ++ G(x1). Also, as
above, if B is not true then the value of L is immaterial,
so we only need to assign to L when B is true:

≈ L′ := L1; L := 〈〉;
if B then S0[x1/x]; L := L ++ G(x1) fi;
while L′ 6= 〈〉 do

x
pop
←− L′;

if B then S0 fi; L := L ++ G(x) od;
BFS′

re-arrange:

≈ L′ := 〈x1〉 ++ L1; L := 〈〉; x
pop
←− L′;

if B then S0; L := L ++ G(x) fi;
while L′ 6= 〈〉 do

x
pop
←− L′;

if B then S0 fi; L := L ++ G(x) od;
BFS′

Finally, roll up the while loop and absorb it into BFS′:

≈ L := 〈x1〉 ++ L1; BFS
′

This completes the proof of the theorem. ¥

REFERENCES

[1] D. E. Knuth, “Structured Programming with the
GOTO Statement,” Comput. Surveys 6 (1974),
261–301.

[2] R. Bird, “Notes on Recursion Removal,” Comm. ACM

20 (June, 1977), 434–439.

[3] M. Ward, “Proving Program Refinements and
Transformations,” Oxford University, DPhil Thesis,
1989.

[4] M. Ward, “Foundations for a Practical Theory of
Program Refinement and Transformation,” Durham
University, Technical Report, 1994, 〈http://www.dur.
ac.uk/∼dcs0mpw/martin/papers/foundation2-t.ps.gz〉.

[5] M. Ward, “Language Oriented Programming,”
Software—Concepts and Tools 15 (1994), 147–161,
〈http://www.dur.ac.uk/∼dcs0mpw/martin/papers/
middle-out-t.ps.gz〉.

[6] M. Ward & K. H. Bennett, “Formal Methods for
Legacy Systems,” J. Software Maintenance: Research

and Practice 7 (May, 1995), 203–219, 〈http://www.dur.
ac.uk/∼dcs0mpw/martin/papers/legacy-t.ps.gz〉.

[7] M. Ward & K. H. Bennett, “Formal Methods to Aid
the Evolution of Software,” International Journal of

Software Engineering and Knowledge Engineering 5
(1995), 25–47, 〈http://www.dur.ac.uk/∼dcs0mpw/
martin/papers/evolution-t.ps.gz〉.

[8] M. Ward, “Derivation of Data Intensive Algorithms by
Formal Transformation,” IEEE Trans. Software Eng. 22
(Sept., 1996), 665–686, 〈http://www.dur.ac.uk/
∼dcs0mpw/martin/papers/sw-alg.ps.gz〉.

[9] M. Ward, “Derivation of a Sorting Algorithm,” Durham
University, Technical Report, 1990, 〈http://www.dur.
ac.uk/∼dcs0mpw/martin/papers/sorting-t.ps.gz〉.

[10] M. Ward, “Iterative Procedures for Computing
Ackermann’s Function,” Durham University, Technical
Report 89-3, Feb., 1989, 〈http://www.dur.ac.uk/
∼dcs0mpw/martin/papers/ack-t.ps.gz〉.

[11] M. Ward, “Abstracting a Specification from Code,” J.

Software Maintenance: Research and Practice 5 (June,
1993), 101–122, 〈http://www.dur.ac.uk/∼dcs0mpw/
martin/papers/prog-spec.ps.gz〉.

[12] C. C. Morgan, Programming from Specifications,
Prentice-Hall, Englewood Cliffs, NJ, 1994, Second
Edition.

The Computer Journal, Vol. ??, No. ??, ????

24 M. P. Ward and K. H. Bennett

[13] C. C. Morgan, K. Robinson & Paul Gardiner, “On the
Refinement Calculus,” Oxford University, Technical
Monograph PRG-70, Oct., 1988.

[14] C. A. R. Hoare, I. J. Hayes, H. E. Jifeng, C. C.
Morgan, A. W. Roscoe, J. W. Sanders, I. H. Sørensen,
J. M. Spivey & B. A. Sufrin, “Laws of Programming,”
Comm. ACM 30 (Aug., 1987), 672–686.

[15] C. C. Morgan, “The Specification Statement,” Trans.

Programming Lang. and Syst. 10 (1988), 403–419.

[16] E. W. Dijkstra, A Discipline of Programming ,
Prentice-Hall, Englewood Cliffs, NJ, 1976.

[17] C. B. Jones, K. D. Jones, P. A. Lindsay & R. Moore,
mural: A Formal Development Support System,
Springer-Verlag, New York–Heidelberg–Berlin, 1991.

[18] M. Neilson, K. Havelund, K. R. Wagner & E. Saaman,
“The RAISE Language, Method and Tools,” Formal

Aspects of Computing 1 (1989), 85–114 .

[19] J. R. Abrial, S. T. Davis, M. K. O. Lee, D. S. Neilson,
P. N. Scharbach & I. H. Sørensen, The B Method, BP
Research, Sunbury Research Centre, U.K., 1991.

[20] C. T. Sennett, “Using Refinement to Convince: Lessons
Learned from a Case Study,” Refinement Workshop,

8th–11th January, Hursley Park, Winchester (Jan.,
1990).

[21] F. L. Bauer & The CIP Language Group, The Munich

Project CIP, Volume I: The Wide Spectrum Language

CIP-L, Lect. Notes in Comp. Sci.#183,
Springer-Verlag, New York–Heidelberg–Berlin, 1985.

[22] F. L. Bauer & The CIP System Group, The Munich

Project CIP, Volume II: The Program Transformation

System CIP-S, Lect. Notes in Comp. Sci.#292,
Springer-Verlag, New York–Heidelberg–Berlin, 1987.

[23] F. L. Bauer, B. Moller, H. Partsch & P. Pepper,
“Formal Construction by Transformation—Computer
Aided Intuition Guided Programming,” IEEE Trans.

Software Eng. 15 (Feb., 1989).

[24] M. E. Majester, “Limits of the ‘Algebraic’ Specification
of Abstract Data Types,” SIGPLAN Notices 12 (Oct.,
1977), 37–42.

[25] M. Ward, “A Recursion Removal Theorem,”
Springer-Verlag, Proceedings of the 5th Refinement
Workshop, London, 8th–11th January, New
York–Heidelberg–Berlin, 1992, 〈http://www.dur.ac.
uk/∼dcs0mpw/martin/papers/ref-ws-5.ps.gz〉.

[26] R. Bird, “Lectures on Constructive Functional
Programming,” in Constructive Methods in Computing

Science, M. Broy, ed., NATO ASI Series#F55,
Springer-Verlag, New York–Heidelberg–Berlin, 1989,
155–218.

[27] H. Partsch, “The CIP Transformation System,” in
Program Transformation and Programming

Environments Report on a Workshop directed by F. L.
Bauer and H. Remus, P. Pepper, ed., Springer-Verlag,
New York–Heidelberg–Berlin, 1984, 305–323.

[28] C. R. Karp, Languages with Expressions of Infinite

Length, North-Holland, Amsterdam, 1964.

[29] E. Engeler, Formal Languages: Automata and

Structures, Markham, Chicago, 1968.

[30] R. J. R. Back, Correctness Preserving Program

Refinements, Mathematical Centre Tracts#131,
Mathematisch Centrum, Amsterdam, 1980.

[31] R. J. R. Back & J. von Wright, “Refinement Concepts
Formalised in Higher-Order Logic,” Formal Aspects of

Computing 2 (1990), 247–272.

[32] I. J. Hayes, Specification Case Studies, Prentice-Hall,
Englewood Cliffs, NJ, 1987.

[33] C. B. Jones, Systematic Software Development using

VDM , Prentice-Hall, Englewood Cliffs, NJ, 1986.

[34] E. J. Younger & M. Ward, “Inverse Engineering a
simple Real Time program,” J. Software Maintenance:

Research and Practice 6 (1993), 197–234, 〈http://www.
dur.ac.uk/∼dcs0mpw/martin/papers/eddy-t.ps.gz〉.

[35] M. Ward & K. H. Bennett, “A Practical Program
Transformation System For Reverse Engineering,”
Working Conference on Reverse Engineering, May

21–23, 1993, Baltimore MA (1993), 〈http://www.dur.
ac.uk/∼dcs0mpw/martin/papers/icse.ps.gz〉.

[36] D. Taylor, “An Alternative to Current Looping
Syntax,” SIGPLAN Notices 19 (Dec., 1984), 48–53.

[37] J. Arsac, An Interactive Program Manipulation System

for Non-Näıve Users, LITP Res. Rep. Institut de
Programmation, Paris, 1978.

[38] J. Arsac, “Syntactic Source to Source Program
Transformations and Program Manipulation,” Comm.

ACM 22 (Jan., 1982), 43–54.

[39] J. Arsac, “Transformation of Recursive Procedures,” in
Tools and Notations for Program Construction, D.
Neel, ed., Cambridge University Press, Cambridge,
1982, 211–265.

[40] B. A. Davey & H. A. Priestley, Introduction to Lattices

and Order, Cambridge University Press, Cambridge,
1990.

[41] H. A. Priestley & M. Ward, “A Multipurpose
Backtracking Algorithm,” J. Symb. Comput. 18 (1994),
1–40, 〈http://www.dur.ac.uk/∼dcs0mpw/martin/
papers/backtr-t.ps.gz〉.

[42] M. Ward, “A Recursion Removal Theorem—Proof and
Applications,” Durham University, Technical Report,
1991, 〈http://www.dur.ac.uk/∼dcs0mpw/martin/
papers/rec-proof-t.ps.gz〉.

[43] R. M. Burstall & J. A. Darlington, “A Transformation
System for Developing Recursive Programs,” J. Assoc.

Comput. Mach. 24 (Jan., 1977), 44–67.

[44] E. W. Dijkstra, “On the Interplay Between
Mathematics and Programming,” in Program

Construction, G. Goos & H. Hartmanis, eds., Lect.
Notes in Comp. Sci.#69, Springer-Verlag, New
York–Heidelberg–Berlin, 1979, 35–46.

[45] C. A. R. Hoare, “Quicksort,” Comput. J. 5 (1962),
10–15.

[46] J. Darlington, “A Synthesis of Several Sort Programs,”
Acta Informatica 11 (1978), 1–30.

[47] R. Sedgewick, Algorithms, Addison Wesley, Reading,
MA, 1988.

The Computer Journal, Vol. ??, No. ??, ????

Recursion Removal/Introduction by Formal Transformation 25

[48] P. T. Breuer, K. Lano & J. Bowen, “Understanding
Programs through Formal Methods,” Oxford
University, Programming Research Group, Apr., 1991.

[49] W. Ackermann, “Zum Hilbertschen Aufbau der reellen
Zahlen,” Math. Ann. 99 (1928), 118–133.

The Computer Journal, Vol. ??, No. ??, ????

