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advantage to a mathematical approach is that it is not tied to a particular representation. In fact
the mathematics provides a sound basis for any particular representation. We use the WSL (Wide

Spectrum Language) program transformation theory as our framework. Within this framework
we define a new semantic relation, semi-refinement which lies between semantic equivalence and
semantic refinement. Combining this semantic relation, a syntactic relation (called reduction)

and WSL’s remove statement, we can give mathematical definitions for backwards slicing, con-
ditioned slicing, static and dynamic slicing and semantic slicing as program transformations in
the WSL transformation theory. A novel technique of “encoding” operational semantics within
a denotational semantics allows the framework to handle “operational slicing”. The theory also

enables the concept of slicing to be applied to nondeterministic programs. These transformations
are implemented in the industry-strength FermaT transformation system.
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1. INTRODUCTION

Program slicing is a decomposition technique that extracts from a program those
statements relevant to a particular computation. Informally, a slice provides the
answer to the question “What program statements potentially affect the value of
variable v at statement s?” An observer cannot distinguish between the execution
of a program and execution of the slice, when attention is focused on the value of
v in statement s.

Slicing was first described by Mark Weiser [43] as a debugging technique [44],
and has since proved to have applications in testing, parallelisation, integration,
software safety, program understanding and software maintenance. Survey articles
by Binkley and Gallagher [9] and Tip [28] include extensive bibliographies.

Since the publication of Weiser’s paper, there have been many papers published
which describe different algorithms for slicing and different slicing variants. Most
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of these papers give an informal definition of the meaning of a program slice and
concentrate attention on defining and computing program dependencies (data de-
pendencies, control dependencies and so on). This focus on dependency calculations
confuses the definition of a slice with various algorithms for computing slices. In
fact, it may come as a surprise to some readers that the definitions in this paper
make no reference to data or control dependencies!

The aim of this paper is to provide a unified mathematical framework for program
slicing which places all slicing work, for sequential programs, in a sound theoretical
framework. This mathematical approach has many advantages: not least of which
is that it is not tied to a particular representation. In fact the mathematics provides
a sound basis for any sequential program representation and any program slicing
technique. We use the WSL (Wide Spectrum Language) program transformation
theory as our framework. WSL is a programming language based on first order
infinitary logic. A first order logic language L is extended to a simple programming
language by adding the kernel constructs of WSL (see Section 3.1). The kernel
language is expanded into a powerful programming language in a series of language
“layers” with the kernel as the base layer and each new layer defined in terms of
the previous layer.

Within this framework we define a new semantic relation, semi-refinement which
lies between semantic equivalence and semantic refinement. Combining this seman-
tic relation, a syntactic relation (called reduction) and WSL’s remove statement, we
can give mathematical definitions for backwards slicing, conditioned slicing, static
and dynamic slicing and semantic slicing as program transformations in the WSL
transformation theory.

A program transformation is any operation on a program which generates a se-
mantically equivalent program. Weiser defined a program slice S as a reduced,
executable program obtained from a program P by removing statements, such that
S replicates part of the behaviour of P. A slice is not generally a transformation of
the original program because a transformation has to preserve the whole behaviour
of the program, while in the slice some statements which affect the values of some
output variables (those not in the slice) may have been deleted.

Suppose we are slicing on the end of the program. The subset of the behaviour
we want to preserve is simply the final values of one or more variables (the variables
in the slicing criterion). If we modify both the original program and the slice to
delete the unwanted variables from the state space, then the two modified programs
will be semantically equivalent.

If we are interested in slicing on variables in the middle of a program, then we can
“capture” the values of the variables at this point by assigning to a new variable,
slice. Preserving the final value of slice ensures that we preserve the values of the
variables of interest at the point of interest.

This discussion suggests that the operation of slicing can be formalised as a
program transformation on a modification of the original program. A syntactic
slice of a program S is any program S′ formed by deleting statements from S such
that if S and S′ are modified by adding assignments to slice at the appropriate
places and removing all other variables from the final state space, then the two
modified programs are semantically equivalent.

A key insight of this formulation is that it defines the concept of slicing as a com-
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bination of two relations: a syntactic relation (statement deletion) and a semantic
relation (which shows what subset of the semantics has been preserved).

This point may be illustrated by the following example:

(1) x := y + 1;
(2) y := y + 4;
(3) x := x + z

where we are interested in the final value of x. The assignment to y on line 2 can
be sliced away:

(1) x := y + 1;
(2) x := x + z

These two programs are not equivalent, because they have different effects on the
variable y. However, the remove statement in WSL can be used to remove y from
the final state space, so its value does not form part of the semantics of the program.
Informally, remove(y) at the end of a program has the effect of converting y to a
local variable initialised to the same value as the corresponding global variable.
So, if we modify both programs by appending a remove(y) statement, then the
resulting programs are equivalent.

A slicing criterion usually consists of a set of variables plus a program point at
which the values of the variables must be preserved by the slice. Suppose we want
to slice on the value of i in at the top of the while loop body (just before line 3) in
this program:

(1) i := 0; s := 0;
(2) while i < n do

(3) s := s + i;
(4) i := i + 1 od;
(5) i := 0

Slicing on i at the end of the program (i.e. after line 5) would allow i := 0 as a
valid slice, but we are interested in the sequence of values taken on by i at the top
of the loop body. So we need some way to get this sequence of values to appear at
end of the program. A simple way to do this is to add a new variable, slice, which
records this sequence of values:

(1) i := 0; s := 0;
(2) while i < n do

(3) slice := slice ++ 〈i〉;
(4) s := s + i;
(5) i := i + 1 od;
(6) i := 0;

where slice := slice ++ 〈i〉 appends the value of i to the list of values in slice.
Slicing on slice at the end of the program is equivalent to slicing on i at the top

of the loop. If we add the statement remove(i, s, n) to remove all the other output
variables, then the result can be transformed into the equivalent program:

(1) i := 0;
(2) while i < n do
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(3) slice := slice ++ 〈i〉;
(4) i := i + 1 od;
(5) remove(i, s, n)

which yields the sliced program:

(1) i := 0;
(2) while i < n do

(3) i := i + 1 od

Binkley et al [8] define a slice as a combination of a syntactic ordering (any
computable, transitive, reflexive relation on programs) and a semantic requirement
which is any equivalence relation on a projection of program semantics. It turns out
in practice that semantic equivalence is too strong a requirement to place on the
definition of a slice. In fact we will show in Section 6.2 that there is no equivalence
relation which is suitable for defining program slicing!

The WSL refinement relation is also shown to be unsuitable as the semantic
requirement for program slicing. Instead, we define a new semantic relation, semi-
refinement, which captures precisely what we need for the formal mathematical
definition of slicing.

1.1 Outline of the Paper

In Section 2 we give a brief introduction to refinement and equivalence which forms
the basis for the FermaT transformation theory. In Section 3 we introduce the
WSL kernel language and specification statement and describe the foundations
of transformation theory, concluding with some example transformations. Sec-
tion 4 describes the extensions to the kernel language which make up the full WSL
language. In Section 5 we discuss how to “encode” an operational semantics in
FermaT’s denotational semantics. This allows the framework to handle “opera-
tional slicing”. Section 6 defines program slicing as a WSL transformation, and
discusses the various generalisations and extensions which arise from this defini-
tion. Section 7 describes the FermaT transformation system and the various slicing
algorithms that are implemented in FermaT. Section 8 gives some slicing examples,
including a conditioned semantic slicing example, and Section 9 concludes. The
Appendix describes the implementation of the simple slicer in METAWSL.

2. REFINEMENT AND EQUIVALENCE

In this section we give a brief introduction to program transformation theory, suf-
ficient to give a rigorous definition of a program slice in terms of the theory.

The way to get a rigourous proof of the correctness of a transformation is to
first define precisely when two programs are “equivalent”, and then show that
the transformation in question will turn any suitable program into an equivalent
program. To do this, we need to make some simplifying assumptions: for example,
we usually ignore the execution time of the program. This is not because we don’t
care about efficiency—far from it—but because we want to be able to use the
theory to prove the correctness of optimising transformations: where a program is
transformed into a more efficient version.
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More generally, we ignore the internal sequence of state changes that a program
carries out: we are only interested in the initial and final states (but see Section 5
for a discussion of operational semantics).

Our mathematical model defines the semantics of a program as a function from
states to sets of states. For each initial state s, the function f returns the set of
states f(s) which contains all the possible final states of the program when it is
started in state s. A special state ⊥ indicates nontermination or an error condition.
If ⊥ is in the set of final states, then the program might not terminate for that initial
state. If two programs are both potentially nonterminating on a particular initial
state, then we consider them to be equivalent on that state. (A program which
might not terminate is no more useful than a program which never terminates: we
are just not interested in whatever else it might do). So we define our semantic
functions to be such that whenever ⊥ is in the set of final states, then f(s) must
include every other state. This restriction also simplifies the definition of semantic
equivalence and refinement (see below). These “semantic functions” are used in the
denotational semantics of Tennet [27] and Stoy [26].

If two programs have the same semantic function then they are said to be equiv-
alent. A transformation is an operation which takes any program satisfying its
applicability conditions and returns an equivalent program.

A generalisation of equivalence is the notion of refinement : one program is a
refinement of another if it terminates on all the initial states for which the original
program terminates, and for each such state it is guaranteed to terminate in a
possible final state for the original program. In other words, a refinement of a
program is more defined and more deterministic than the original program. If
program S1 has semantic function f1 and S2 has semantic function f2, then we say
that S1 is refined by S2 (or S2 is a refinement of S1), and write S1 ≤ S2 if for all
initial states s we have f2(s) ⊆ f1(s). If S1 may not terminate for initial state s,
then by definition f1(s) contains ⊥ and every other state, so f2(s) can be anything
at all and the relation is trivially satisfied. The program abort (which terminates
on no initial state) can be refined to any other program. Insisting that f(s) include
every other state whenever f(s) contains ⊥ ensures that refinement can be defined
as a simple subset relation.

3. TRANSFORMATION THEORY

In this section we describe the kernel language and transformation theory.

3.1 The Kernel Language

The Kernel language is based on infinitary first order logic, originally developed by
Carol Karp [20]. Infinitary logic is an extension of ordinary first order logic which
allows conjunction and disjunction over (countably) infinite lists of formulae, but
quantification over finite lists of variables.

We need just four primitive statements and three compound statements to define
the whole kernel language. Let P and Q be any infinitary logical formulae and x

and y be any finite lists of variables. The primitive statements are:

(1) Assertion: {P} is an assertion statement which acts as a partial skip state-
ment. If the formula P is true then the statement terminates immediately with-
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out changing any variables, otherwise it aborts (we treat abnormal termination
and non-termination as equivalent, so a program which aborts is equivalent to
one which never terminates);

(2) Guard: [Q] is a guard statement. It always terminates, and enforces Q to be
true at this point in the program without changing the values of any variables.
It has the effect of restricting previous nondeterminism to those cases which
will cause Q to be true at this point. If this cannot be ensured then the set of
possible final states is empty, and therefore all the final states will satisfy any
desired condition (including Q);

(3) Add variables: add(x) ensures that the variables in x are in the state space
(by adding them if necessary) and assigns arbitrary values to the variables in
x. The arbitrary values may be restricted to particular values by a subsequent
guard;

(4) Remove variables: remove(y) ensures that the variables in y are not present
in the state space (by removing them if necessary).

while the compound statements are:

(1) Sequence: (S1; S2) executes S1 followed by S2;

(2) Nondeterministic choice: (S1 ⊓ S2) chooses one of S1 or S2 for execution,
the choice being made nondeterministically;

(3) Recursion: (µX.S1) where X is a statement variable (a symbol taken from a
suitable set of symbols). The statement S1 may contain occurrences of X as
one or more of its component statements. These represent recursive calls to
the procedure whose body is S1.

Some of these constructs, particularly the guard statement, may be unfamiliar
to many programmers, while other more familiar constructs such as assignments
and conditional statements appear to be missing. It turns out that assignments
and conditionals, which used to be thought of as “atomic” operations, can be
constructed out of these more fundamental constructs. On the other hand, the
guard statement by itself is unimplementable in any programming language: for
example, the guard statement [false] is guaranteed to terminate in a state in which
false is true. In the semantic model this is easy to achieve: the semantic function
for [false] has an empty set of final states for each proper initial state. As a result,
[false] is a valid refinement for any program. Morgan [23] calls this construct
“miracle”. Such considerations have led to the Kernel language constructs being
described as “the Quarks of Programming”: mysterious entities which cannot be
observed in isolation, but which combine to form what were previously thought of
as the fundamental particles.

Assignments can be constructed from a sequence of add statements and guards.
For example, the assignment x := 1 is constructed by adding x (thereby nondeter-
ministically scrambling any existing value in x) and then restricting the nondeter-
minism to give a particular value: (add(〈x〉); [x = 1]). For an assignment such as
x := x + 1 we need to record the new value of x in a new variable, x′ say, before
copying it into x. So we can construct x := x + 1 as follows:

add(〈x′〉); [x′ = x + 1]; add(〈x〉); [x = x′]; remove(x′)
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Conditional statements are constructed by combining guards with nondetermin-
istic choice. For example, if B then S1 else S2 fi can be constructed as

([B]; S1) ⊓ ([¬B]; S2)

3.2 Semantics of the Kernel Language

Let V and W be finite sets of variables, called state spaces, and H be a set of
values. A state is either the special state ⊥ which indicates nontermination or
error, or is a function from V to H. The set of all states on V is denoted DH(V )
where DH(V ) =

DF
{⊥}∪HV . A state predicate is a set of proper states (i.e. states

other than ⊥), with the set of all state predicates denoted EH(V ), so EH(V ) =
DF

℘(HV ). A state transformation is a function which maps a state in DH(V ) to a set
of states in DH(W ), where ⊥ maps to DH(W ) and if ⊥ is in the output, then so is
every other state. The set of all state transformations from V to W may therefore
be defined as:

FH(V,W ) =
DF

{ f : DH(V ) → (EH(W ) ∪ {DH(W )}) | f(⊥) = DH(W ) }

The non-recursive kernel language statements are defined as state transformations
as follows:

{e}(s) =
DF

{

{s} if s ∈ e

DH(W ) otherwise

[e](s) =
DF

{

{s} if s ∈ e

∅ otherwise

add(x)(s) =
DF

{ s′ ∈ DH(W ) | ∀y ∈ W.(y /∈ x ⇒ s′(y) = s(y)) }

remove(y)(s) =
DF

{ s′ ∈ DH(W ) | ∀y ∈ W.(s′(y) = s(y)) }

(f1; f2)(s) =
DF

⋃

{ f2(s
′) | s′ ∈ f1(s) }

(f1 ⊓ f2)(s) =
DF

f1(s) ∪ f2(s)

Note that for add(x) we must have W = V ∪ x and for remove(y) we must have
W = V \ y. Also note that if ⊥ ∈ f1(s) then ⊥ ∈ (f1; f2)(s).

Three fundamental state transformations in FH(V, V ) are: Ω,Θ and Λ. These
give the semantics of the statements abort, null and skip, where abort is defined
as {false}, null is defined as [false] and skip is defined as {true}. For each proper
s ∈ DH(V ):

Ω(s) =
DF

DH(V ) Θ(s) =
DF

∅ Λ(s) =
DF

{s}

We define recursion in terms of a function on state transformations:

Definition 3.1. Recursion: Suppose we have a function F which maps the set
of state transformations FH(V, V ) to itself. We want to define a recursive state
transformation from F as the limit of the sequence of state transformations F(Ω),
F(F(Ω)), F(F(F(Ω))), . . . With the definition of state transformation given above,
this limit (µ.F) has a particularly simple and elegant definition:

(µ.F) =
DF

⊔

n<ω

Fn(Ω)
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where
⊔

on a set of state transformations is defined by pointwise intersection:

(
⊔

X)(s) =
DF

⋂

{ f(s) | f ∈ X }

We say Fn(Ω) is the “nth truncation” of (µ.F): as n increases the truncations get
closer to (µ.F). The later truncations provide more information about (µ.F)—
more initial states for which it terminates and a restricted set of final states. The
⊔

operation collects together all this information to form (µ.F).

With this definition, (µ.F) is well defined for every function F : FH(V, V ) →
FH(V, V ). But if we want our recursive state transformations to satisfy the property
F((µ.F)) = (µ.F) (in other words, to be a fixed point of the F function) then we
need to put some further restrictions on F .

To prove this claim we need The “flat” order on states [26] s ⊑ t is defined as
true when s = ⊥ or s = t. It induces an order on state transformations as follows:

Definition 3.2. If f, g ∈ FH(V,W ) are state transformations then f1 ⊑ f2 iff:

∀s ∈ DH(V ). (∀t1 ∈ f1(s).∃t2 ∈ f2(s). t1 ⊑ t2 ∧ ∀t2 ∈ f2(s).∃t1 ∈ f1(s). t1 ⊑ t2)

An equivalent formulation is: f1 ⊑ f2 iff ∀s ∈ DH(V ). (⊥ ∈ f1(s) ∨ f1(s) = f2(s)).
A function F on state transformations is monotonic if ∀f ∈ FH(V, V ). f ⊑ F(f).

If in addition, F(
⊔

F ) =
⊔

{ F(f) | f ∈ F } for every directed set F ⊆ FH(V, V )
then F is continuous. (A directed set F is such that for every f1, f2 ∈ F there
exists g ∈ F such that f1 ⊑ g and f2 ⊑ g.)

For continuous functions F , we have F((µ.F)) = (µ.F). So the state transfor-
mation (µ.F) is a fixed point for the continuous function F ; it is easily shown to
be the least fixed point. All functions generated by the kernel language constructs
are continuous.

A state transformation can be thought of as either a specification of a program,
or as a (partial) description of the behaviour of a program. If f is a specification,
then for each initial state s, f(s) is the allowed set of final states. If ⊥ ∈ f(s) then
the specification does not restrict the program in any way for initial state s, since
every other state is also in f(s).

Similarly, if f is a program description, then ⊥ /∈ f(s) means that the program
is guaranteed to terminate in some state in f(s) when started in state s.

Program f satisfies specification g precisely when ∀s. (f(s) ⊆ g(s)).
A program f2 is a refinement of program f1 if f2 satisfies every specification

satisfied by f1, i.e. ∀g. (∀s. (f1(s) ⊆ g(s)) ⇒ ∀s. (f2(s) ⊆ g(s))). It is easy to see
that refinement and satisfaction, as defined above, are identical relations. So from
now on we only talk about refinement, with the understanding that anything we
say about refinement applies equally well to satisfaction of specifications.

Definition 3.3. Refinement: Given two state transformations f1 and f2 in
FH(V,W ) we say that f2 refines f1, or f1 is refined by f2, and write f1 ≤ f2

when f2 is at least as defined and at least as deterministic as f2. More formally:

f1 ≤ f2 ⇐⇒ ∀s ∈ DH(V ). f2(s) ⊆ f1(s)

Note that if ⊥ ∈ f1(s) then f1(s) = DH(W ) and f2 can be any state transformation.
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If we fix on a particular set of values and an interpretation of the symbols of the
base logic L in terms of the set of values, then we can interpret formulae in L as
state predicates and statements of WSL as state transformations. To be precise:

Definition 3.4. A structure M for L is a set H of values together with func-
tions that map the constant symbols, function symbols and relation symbols of L
to elements, functions and relations on H. A structure M for L defines an inter-
pretation of each formula B as a state predicate intM (B, V ) ∈ EH(V ), consisting
of the states which satisfy the formula, and also interprets each statement S as a
state transformation intM (S, V,W ) ∈ FH(V,W ).

For example, if H = {0, 1} and V = {x, y}, then the state predicate intM (x =
y, V ) is the set of states in which the value given to x equals the value given to y,
ie:

{{x 7→ 0, y 7→ 0}, {x 7→ 1, y 7→ 1}}

Given a countable set ∆ of sentences (formulae with no free variables), a model
for ∆ is any structure M such that every formula in ∆ is interpreted as true under
M . If S1 and S2 are statements such that intM (S1, V,W ) ≤ intM (S2, V,W ) for
every model M of ∆ then we say that S2 is a semantic refinement of S1 and write
∆ |= S1 ≤ S2.

3.3 The Specification Statement

For our transformation theory to be useful for both forward and reverse engineering
it is important to be able to represent abstract specifications as part of the language
and this motivates the definition of the Specification statement. Then the refinement
of a specification into an executable program, or the reverse process of abstracting a
specification from executable code, can both be carried out within a single language.
Specification statements are also used in semantic slicing (see Section 6.9).

Informally, a specification describes what a program does without defining exactly
how the program is to work. This can be formalised by defining a specification as
a list of variables (the variables whose values are allowed to change) and a formula
defining the relationship between the old values of the variables, the new values,
and any other required variables.

With this in mind, we define the notation x := x
′.Q where x is a sequence of

variables and x
′ the corresponding sequence of “primed variables”, and Q is any

formula. This assigns new values to the variables in x so that the formula Q is
true where (within Q) x represents the old values and x

′ represents the new values.
If there are no new values for x which satisfy Q then the statement aborts. The
formal definition is:

x := x
′.Q =

DF
{∃x

′.Q}; add(x′); [Q]; add(x); [x = x
′]; remove(x′)

Note that the specification statement is never null (the final set of states is non-
empty for every initial state), and so obey’s Dijkstra’s “Law of Excluded Miracles”
[14] (see Section 4).

3.4 Weakest Preconditions

Dijkstra introduced the concept of weakest preconditions [14] as a tool for reasoning
about programs. For a given program P and condition R on the final state space,
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the weakest precondition WP(P,R) is the weakest condition on the initial state
such that if P is started in a state satisfying WP(P,R) then it is guaranteed to
terminate in a state satisfying R.

Given any statement S and any formula R whose free variables are all in the
final state space for S and which defines a condition on the final states for S, we
define the weakest precondition WP(S,R) to be the weakest condition on the initial
states for S such that if S is started in any state which satisfies WP(S,R) then it is
guaranteed to terminate in a state which satisfies R. By using an infinitary logic,
it turns out that WP(S,R) has a simple definition for all kernel language programs
S and all (infinitary logic) formulae R:

WP({P},R) =
DF

P ∧ R

WP([Q],R) =
DF

Q ⇒ R

WP(add(x),R) =
DF

∀x.R

WP(remove(x),R) =
DF

R

WP((S1; S2),R) =
DF

WP(S1,WP(S2,R))

WP((S1 ⊓ S2),R) =
DF

WP(S1,R) ∧ WP(S2,R)

WP((µX.S),R) =
DF

∨

n<ω

WP((µX.S)n,R)

The statement (µX.S)n is called the nth truncation of S and is defined as follows:

(µX.S)0 = abort = {false} and (µX.S)n+1 = S[(µX.S)n/X]

where the notation S[T′/T] represents the result of replacing every occurrence of
T in S by T′. (Read S[T′/T] as S with T′ instead of T).

Note that the weakest precondition for remove is identical to the postcondition:
the effect of a remove(x) is to ensure that the variables in x do not appear in W
(the final state space). All free variables in R must appear in W .

Technically, we define the trinary predicate S : V → W on S, V and W to be
true precisely when V is a valid initial state space for S and W is the corresponding
valid final state space. A program such as (add(〈x〉) ⊓ remove(〈x〉)) has no valid
final state space for any initial state space: such a program is considered to be
syntactically incorrect. The semantics of a program is defined in terms of the
program plus a valid initial and final state space.

With the recursive statement we see the advantage of using infinitary logic: the
weakest precondition for this statement is defined as a countably infinite disjunction
of weakest preconditions of statements, each of which has a smaller depth of nesting
of recursive constructs. So ultimately, the weakest precondition of a statement
involving recursion is defined in terms of weakest preconditions of statements with
no recursion.

For the specification statement x := x
′.Q we have, by applying the definition
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from Section 3.3:

WP(x := x
′.Q,R)

⇐⇒ WP(({∃x
′.Q}; (add(x′); ([Q]; (add(x); ([x = x

′]; remove(x′)))))),R)

⇐⇒ ∃x
′Q ∧ WP((add(x′); ([Q]; (add(x); ([x = x

′]; remove(x′))))),R)

⇐⇒ ∃x
′Q ∧ ∀x

′. WP([Q]; (add(x); ([x = x
′]; remove(x′)))),R)

⇐⇒ ∃x
′Q ∧ ∀x

′. (Q ⇒ WP(add(x); ([x = x
′]; remove(x′))),R)

⇐⇒ ∃x
′Q ∧ ∀x

′. (Q ⇒ ∀x. ([x = x
′]; remove(x′)),R)

⇐⇒ ∃x
′Q ∧ ∀x

′. (Q ⇒ ∀x. (x = x
′ ⇒ R))

⇐⇒ ∃x
′Q ∧ ∀x

′. (Q ⇒ R[x′/x])

(recall that since the variables x’ have been removed, they cannot occur free in R).
Morgan’s specification statement [23] is written x : [Pre,Post], where x is a list

of variables, and Pre and Post are formulae. If the initial state does not satisfy Pre

then the statement aborts, otherwise it is guaranteed to terminate in a state which
satisfies Post and which differs from the initial state only on variables in x. In other
words, for all initial states satisfying Pre it must terminate in a state which satisfies
Post and may only change the values of variables in x. It may be defined in WSL
as:

x : [Pre,Post] =
DF

{Pre}; add(x); [Post]

The weakest precondition is therefore:

WP(x : [Pre,Post],R) ⇐⇒ Pre ∧ ∀x. (Post ⇒ R)

The Hoare predicate (defining partial correctness): {Pre}S{Post} is true if when-
ever S terminates after starting in an initial state which satisfies Pre then the
final state will satisfy Post. We can express this in terms of WP as the formula:
(Pre ∧ (WP(S, true)) ⇒ WP(S,Post).

For the if statement:

WP(if B then S1 else S2 fi,R)

⇐⇒ WP((([B]; S1) ⊓ ([¬B]; S2)),R)

⇐⇒ WP(([B]; S1),R) ∧ WP(([¬B]; S2),R)

⇐⇒ WP([B],WP(S1,R)) ∧ WP([¬B],WP(S2,R))

⇐⇒ (B ⇒ WP(S1,R)) ∧ (¬B ⇒ WP(S2,R))

Similarly, for the Dijkstra guarded command:

WP(if B1 → S1 ⊓⊔ B2 → S2 fi,R)

⇐⇒ (B1 ∨ B2) ∧ (B1 ⇒ WP(S1,R)) ∧ (B2 ⇒ WP(S2,R))

The motivation for considering weakest preconditions is that refinement and
transformations can be characterised using weakest preconditions and consequently,
the proof of correctness of a refinement or transformation can be carried out as a
first order logic proof on weakest preconditions.
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3.5 Proof-Theoretic Refinement

We can define a notion of refinement using weakest preconditions as follows: S1 is
refined by S2 if and only if the formula

WP(S1,R) ⇒ WP(S2,R)

can be proved for every formula R. Back and von Wright [4] and Morgan [23,24]
use a second order logic to carry out this proof. In a second order logic we can
quantify over boolean predicates, so the formula to be proved is:

∀R.WP(S1,R) ⇒ WP(S2,R)

This approach has a serious drawback: second order logic is incomplete which
means that there is not necessarily a proof for every valid transformation. Back [2,
3] gets round this difficulty by extending the logic with a new predicate symbol to
represent the postcondition and carrying out the proof in the extended first order
logic.

However, it turns out that these exotic logics and extensions are not necessary
because there are two simple postconditions which completely characterise the re-
finement relation. We can define a refinement relation using weakest preconditions
on these two postconditions:

Definition 3.5. Let x be a sequence of the variables in the final state space of
S1 and S2 and let x

′ be a sequence of new variables the same length as x. If the
formulae WP(S1,x 6= x

′) ⇒ WP(S2,x 6= x
′) and WP(S1, true) ⇒ WP(S2, true)

are provable from a given set ∆ of sentences (formulae with no free variables), then
we say that S1 is refined by S2 and write: ∆ ⊢ S1 ≤ S2. (Two sequences are equal
when they have the same number of elements, and all corresponding elements are
equal).

This definition of refinement (using weakest preconditions) is equivalent to the
definition of refinement in terms of semantic functions (see [32] for the proof). As
a result, we have two very different methods available for proving the correctness
of a program transformation: and both methods are used in practice.

If both ∆ ⊢ S1 ≤ S2 and ∆ ⊢ S2 ≤ S1 then we say that S1 and S2 are
equivalent, and write ∆ ⊢ S1 ≈ S2. A transformation is any operation which
takes a statement S1 and transforms it into an equivalent statement S2 (where ∆
is the set of applicability conditions for the transformation).

An example of an “applicability condition” is a property of the function or re-
lation symbols which a particular transformation depends on. For example, the
statements x := a ⊕ b and x := b ⊕ a are equivalent when ⊕ is a commutative
operation. We can write this transformation as:

{∀a, b. a ⊕ b = b ⊕ a} ⊢ x := a ⊕ b ≈ x := b ⊕ a

3.6 Example Transformations

To see how we use weakest preconditions to prove the validity of transformations
we will take a very simple example: reversing an if statement. To prove the trans-
formation:

∆ ⊢ if B then S1 else S2 fi ≈ if ¬B then S2 else S1 fi

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.



Slicing as a Program Transformation · 13

we simply need to show that the corresponding weakest preconditions are equiva-
lent:

WP(if B then S1 else S2 fi,R)

⇐⇒ B ⇒ WP(S1,R) ∧ ¬B ⇒ WP(S2,R)

⇐⇒ (¬B) ⇒ WP(S2,R) ∧ ¬(¬B) ⇒ WP(S1,R)

= WP(if ¬B then S2 else S1 fi,R)

Another simple transformation is merging two assignments to the same variable:

∆ ⊢ x := e1; x := e2 ≈ x := e2[e1/x]

The assignment x := e is defined as:

add(〈x′〉); [x′ = e]; add(〈x〉); [x = x′]; remove(〈x′〉)

so the weakest precondition is:

WP(x := e,R) = WP(add(〈x′〉); [x′ = e],∀x. (x = x′ ⇒ R))

= WP(add(〈x′〉); [x′ = e],R[x′/x])

= ∀x′. (x′ = e ⇒ R[x′/x])

= R[x′/x][e/x′]

= R[e/x]

So to prove the transformation we simply calculate the weakest preconditions:

WP(x := e1; x := e2,R) = WP(x := e1,WP(x := e2,R))

= WP(x := e1,R[e2/x])

= R[e2/x][e1/x]

= R[(e2[e1/x])/x]

= WP(x := e2[e1/x],R)

Another simple transformation is Expand Forwards:

∆ ⊢ if B1 then S1 . . . elsif Bn then Sn fi; S

≈ if B1 then S1; S . . . elsif Bn then Sn; S fi

For more complex transformations involving recursive constructs, we have a use-
ful induction rule which is not limited to a single recursive procedure, but can be
used on statements containing one or more recursive components (including nested
recursion). For any statement S, define Sn to be S with each recursive statement
replaced by its nth truncation.

Lemma 3.6. The General Induction Rule for Recursion: If S is any statement
with bounded nondeterminacy, and S′ is another statement such that ∆ ⊢ Sn ≤ S′

for all n < ω, then ∆ ⊢ S ≤ S′.

Here, “bounded nondeterminacy” means that in each specification statement there
is a finite number of possible values for the assigned variables. See [30] for the
proof.
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An example transformation which is proved using the generic induction rule is
loop merging. If S is any statement and B1 and B2 are any formulae such that
B1 ⇒ B2 then:

∆ ⊢ while B1 do S od; while B2 do S od ≈ while B2 do S od

where the while loop while B do S od is defined in terms of a tail recursion
(µX. if B then S; X fi)

To prove loop merging it is sufficient to prove by induction that for each n there
exists an m such that:

∆ ⊢ while B1 do S odn; while B2 do S odn ≤ while B2 do S odm

and for each m there exists an n1 and n2 such that:

∆ ⊢ while B2 do S odm ≤ while B1 do S odn1 ; while B2 do S odn2

(See [30] for the induction proofs). The result then follows from the general induc-
tion rule.

4. EXTENSIONS TO THE KERNEL LANGUAGE

The WSL language is built up in a set of layers, starting with the kernel lan-
guage. The first level language includes specification statements, assignments, if

statements, while and for loops, Dijkstra’s guarded commands [14] and simple local
variables.

The local variable clause var 〈v := e〉 : S end, where v is a variable, e is an
expression and S is a statement, is defined as follows:

v stack := 〈v〉 ++ v stack; v := e; S; v := v stack[1]; v stack := v stack[2..]

Here, the ++ operator concatenates two sequences. If v stack contains the se-
quence 〈v1, . . . , vn〉 then v stack[i] returns the ith element of the sequence, vi, and
v stack[i..] returns the subsequence 〈vi, . . . , vn〉.

In other words, we save the current value of v on a stack v stack (which is a new
variable), assign the new value to the variable v, execute the body, then restore v
by popping the value off the stack.

We use the notation var 〈v := ⊥〉 : S end to indicate that the local variable is
assigned an arbitrary value. It is defined as follows:

v stack := 〈v〉 ++ v stack; add(〈v〉); S; v := v stack[1]; v stack := v stack[2..]

The second level language adds do . . . od loops, action systems and local vari-
ables.

A do . . . od loop is an unbounded or “infinite” loop which can only be terminated
by executing an exit(n) statement (where the n must be a simple integer, not a
variable or expression). This statement terminates the n enclosing do . . . od loop.

An action system is a set of parameterless procedures of the form:

(1) actions A1 :
(2) A1 ≡ S1.

(3) . . .
(4) An ≡ Sn.

(5) endactions
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where A1 is the starting action and within each Si a statement of the form call Aj is
a call to another procedure. The special statement call Z (where Z is not one of the
Ai) causes the whole action system to terminate immediately, without executing
any further statements. In particular, none of the “pending” action call returns
will take place.

See [42] or [45] for the formal definition of do . . . od, exit(n) and action systems
in terms of the WSL kernel language.

These loops are very valuable for restructuring unstructured code without intro-
ducing extra “flag” variables, or duplicating blocks of code. In the worst case, code
duplication causes an exponential growth in program size. This will not improve
the understandability or maintainability of the code. Having these loops as part
of the WSL language, together with an extensive set of transformations for ma-
nipulating these loops, is essential for the practical applications of the theory in
assembler analysis and migration.

A proper sequence is any program such that every exit(n) is contained within at
least n enclosing loops. If S contains an exit(n) within less than n loops, then this
exit could cause termination of a loop enclosing S. The set of terminal values of S,
denoted TVs(S) is the set of integers n− d > 0 such that there is an exit(n) within
d nested loops in S which could cause termination of S. TVs(S) also contains 0 if
S could terminate normally (i.e. not via an exit statement).

For example, if S is the program:

(1) do if x = 0 then exit(3)
(2) elsif x = 1 then exit(2) fi;
(3) x := x − 2 od

Then TVs(S) = {1, 2}. Any proper sequence has TVs(S) ⊆ {0}.
We earlier remarked on the remarkable properties of the guard statement, in par-

ticular [false] is a valid refinement for any program or specification. This is because
the set of final states is empty for every (proper) initial state. A program which may
have an empty set of final states is called a null program and is inherently unimple-
mentable in any programming language. So it is important to avoid inadvertantly
introducing a null program as the result of a refinement process. Morgan [23] calls
the program [false] a “miracle”, after Dijkstra’s “Law of Excluded Miracles” [14]:

WP(S, false) = false

Part of the motivation for our specification statement is to exclude null programs
(Morgan leaves it to the programmer to ensure that null programs are not intro-
duced by accident). WSL has been designed so that any WSL program which does
not include guard statements will obey the Law of Excluded Miracles.

5. OPERATIONAL SEMANTICS

The correctness proofs of WSL transformations only look at the external behaviour
of the programs. If we want to know which transformations preserve the actual
sequence of internal operations, then it would appear that a new definition of the
semantics of programs is required: one which defines the meaning of a program
to be a function from the initial state to the possible sequences of internal states
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culminating in the final state of the program: in other words, an operational se-
mantics. We would then need to attempt to re-prove the correctness of all the
transformations under the new semantics, in order to find out which ones are still
valid. But we would not have the benefit of the weakest precondition approach,
and we would not be able to re-use any existing proofs. Xingyuan Zhang [47] has
defined an operational semantics for WSL and started to prove the correctness of
some transformations in terms of the operational semantics.

It turns out that this extra work is not essential: instead the operational seman-
tics can be “encoded” in the denotational semantics. We add a new variable, seq,
to the program which will be used to record the sequence of state changes: at each
point where an assignment takes place we append the list of variable names and
assigned values to seq. The operation of annotating a program, adding assignments
to seq at the appropriate places can be defined recursively as an annotate function
which maps a program to the corresponding annotated program:

annotate(S1; S2) =
DF

annotate(S1); annotate(S2)

annotate(if B then S1 else S2 fi) =
DF

(1) if B then annotate(S1)
(2) else annotate(S2) fi

annotate(v := e) =
DF

seq := seq ++ 〈〈“v”, e〉〉; v := e

and so on for the other constructs.
Given a transformation which turns S1 into the equivalent program S2, if we want

to prove that the transformation preserves operational semantics it is sufficient to
prove that the annotated program annotate(S1) is equivalent to annotate(S2).

The “reverse if” transformation of Section 3.6 is an example of a transformation
which preserves operational semantics, while “merge assignments” does not.

6. SLICING

Weiser [43] defined a program slice S as a reduced, executable program obtained from
a program P by removing statements, such that S replicates part of the behaviour
of P.

6.1 Reduction

Recall that we will be defining a slice as a combination of a syntactic relation
and a semantic relation. The syntactic relation we use is called reduction. This
relation defines the result of replacing certain statements in a program by skip or
exit statements. We define the relation S1 ⊑ S2, read “S1 is a reduction of S2”, on
WSL programs as follows:

S ⊑ S for any program S

skip ⊑ S for any proper sequence S

If S is not a proper sequence and n > 0 is the largest integer in TVs(S) then:

exit(n) ⊑ S

If S′

1 ⊑ S1 and S′

2 ⊑ S2 then:

if B then S′

1 else S′

2 fi ⊑ if B then S1 else S2 fi
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If S′ ⊑ S then:

while B do S′ od ⊑ while B do S od

var 〈v := e〉 : S′ end ⊑ var 〈v := e〉 : S end

var 〈v := ⊥〉 : S′ end ⊑ var 〈v := e〉 : S end

This last case will be used when the variable v is used in S, but the initial value e
is not used.

If S′

i ⊑ Si for 1 6 i 6 n then:

S′

1; S′

2; . . . ; S′

n ⊑ S1; S2; . . . ; Sn

Note that the reduction relation does not allow actual deletion of statements:
only replacing a statement by a skip. This makes it easier to match up the original
program with the reduced version: the position of each statement in the reduced
program is the same as the corresponding statement in the original program. Delet-
ing the extra skips is a trivial step.

In effect, we have expanded Weiser’s “reduction” process into a two stage process:
reduction (of statements to either skip or exit as appropriate), followed by deletion
(of redundant skips and loops).

Three important properties of the reduction relation are:

Lemma 6.1. Transitivity: If S1 ⊑ S2 and S2 ⊑ S3 then S1 ⊑ S3.

Lemma 6.2. Antisymmetry: If S1 ⊑ S2 and S2 ⊑ S1 then S1 = S2.

Lemma 6.3. The Replacement Property : If any component of a program is re-
placed by a reduction, then the result is a reduction of the whole program.

6.2 Semi-Refinement

In this subsection we will discuss the selection of a suitable semantic relation for
the definition of slicing.

Initially we will consider the special case where the slicing point s is the end point
of the program, but we will generalise the variable v to a set X of variables. (As
we will see in Section 6.11, slicing at a point or points within the program does not
introduce any further complications.) If X does not contain all the variables in the
final state space of the program, then the sliced program will not be equivalent to
the original program. However, consider the set W \X, where W is the final state
space. These are the variables whose values we are not interested in. By removing
these variables from the final state space we can get a program which is equivalent
to the sliced program. If a program S maps state spaces V to W , then the effect of
slicing S at its end point on the variables in X is to generate a program equivalent
to S; remove(W \ X).

Binkley et al. [8] define a “slice” as a combination of a syntactic ordering and a
semantic equivalence relation, which can be any equivalence relation on a projection
of the program semantics. In WSL terms, this suggests defining a slice of S on X
to be any program S′ ⊑ S, such that:

∆ ⊢ S′; remove(W \ X) ≈ S; remove(W \ X)
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However, the requirement that the slice be strictly equivalent to the original
program is too strict in some cases. Consider the program:

S; x := 0

where S does not contain any assignments to x. If we are slicing on x then we
would like to reduce the whole of S to a skip: but the two programs

skip; x := 0; remove(W \ {x}) and S; x := 0; remove(W \ {x})

are only equivalent provided that S always terminates. But most slicing researchers
see no difficulty in slicing away potentially non-terminating code.

So, WSL equivalence is not suitable for defining program slicing. In fact, there
is no semantic equivalence relation which is suitable for defining a useful program
slice! Consider the two programs abort and skip. Any possible semantic relation
must either treat abort as equivalent to skip, or must treat abort as not equivalent
to skip.

(1) Suppose abort is not equivalent to skip. Then the slicing relation will not allow
deletion of non-terminating, or potentially non-terminating, code. So this is
not suitable;

(2) On the other hand, suppose abort is equivalent to skip. Then the slicing relation
will allow deletion of statements which turn a terminating program into a non-
terminating program. For example, in the program:

x := 0; x := 1; while x = 0 do skip od

we could delete the statement x := 1 to give a syntactically smaller, seman-
tically “equivalent” but non-terminating program. Few slicing researchers are
happy to allow a non-terminating program as a valid slice of a terminating
program!

Another semantic relation which has been proposed [36] is to allow any refinement
of a program, which is also a reduction, as a valid slice. This would allow slicing
away nonterminating code, since skip is a refinement of any nonterminating pro-
gram. But such a definition of slicing is counter-intuitive, in the sense that slicing is
intuitively an abstraction operation (an operation which throws away information),
while refinement is the opposite of abstraction. A more important consideration is
that we would like to be able to analyse the sliced program and derive facts about
the original program (with the proviso that the original program might not termi-
nate in cases where the slice does). If the sliced program assigns a particular value
to a variable in the slice, then we would like to deduce that the original program
assigns the same value to the variable. But with the refinement definition of a slice,
the fact that the slice sets x to 1, say, tells us only that 1 is one of the possible
values given to x by the original program.

These considerations led to the development of the concept of a semi-refinement :

Definition 6.4. A semi-refinement of S is any program S′ such that

∆ ⊢ S ≈ {WP(S, true)}; S′

It is denoted ∆ ⊢ S 4 S′.
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A semi-refinement can equivalently be defined in terms of the weakest preconditions:

∆ ⊢ S 4 S′ iff ∆ ⊢ WP(S,x 6= x
′) ⇔ (WP(S, true) ∧ WP(S′,x 6= x

′))

and ∆ ⊢ WP(S, true) ⇔ (WP(S, true) ∧ WP(S′, true))

The assertion in the semi-refinement relation shows that program equivalence is
only required where the original program terminates. So we define a slice of S on
X to be any reduction of S which is also a semi-refinement:

Definition 6.5. A Syntactic Slice of S on a set X of variables is any program
S′ with the same initial and final state spaces such that S′ ⊑ S and

∆ ⊢ S; remove(W \ X) 4 S′; remove(W \ X)

where W is the final state space for S and S′.

The assertion {WP(S, true)} is a skip whenever S is guaranteed to terminate and
an abort whenever S aborts. So in the case when S aborts, S′ can be anything: in
particular, setting S′ to skip will trivially satisfy S′ ⊑ S. So this definition allows
us to slice away nonterminating code.

If ∆ ⊢ S 4 S′ then ∆ ⊢ S ≤ S′ (since deleting an assertion is a valid
refinement), but the converse does not hold. So the relationship lies somewhere
between a refinement and an equivalence.

Like refinement and reduction, semi-refinement also satisfies the replacement
property : if any component of a program is replaced by a semi-refinement then
the result is a semi-refinement of the whole program.

Semi-refinement also allows deletion of any assertions:

Lemma 6.6. {Q} 4 skip

Proof: WP({Q}, true) = Q so {Q} ≈ {WP({Q}, true)}; skip �

Semi-refinement has a counterpart to the general induction rule for recursion:

Lemma 6.7. The General Induction Rule for Semi-Refinement: If S is any
statement with bounded nondeterminacy, and S′ is another statement such that
∆ ⊢ Sn

4 S′ for all n < ω, then ∆ ⊢ S 4 S′.

With this definition of slicing, a slice can be computed purely by applying pro-
gram transformation operations which duplicate and move the remove statements
through the program and then use the remove statements to transform components
of the program to skip statements.

As an example of this process, consider the following program:

x := y + 1;
if x > 0 then x := 2; z := y fi;
remove({x, y})

Expand the if statement forwards:

x := y + 1;
if x > 0 then x := 2; z := y; remove({x, y}) else remove({x, y}) fi

The then clause can be transformed to:
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x := 2; remove({x}); z := y; remove({x, y})

which is equivalent to:

skip; remove({x}); z := y; remove({x, y})

We now push the remove statements forwards again and merge them to give:

x := y + 1;
if x > 0 then skip; z := y fi;
remove({x, y})

This is clearly a reduction of the original program, so it is a valid slice.
What we have done is apply the following steps:-

(1) Duplicate the remove statements;

(2) Pull each remove backwards through the program as far as possible (moving
it inside compound statements);

(3) Use each remove to simplify preceding statements;

(4) Finally, push the removes forwards and combine them into a single statement
at the end of the program.

This technique is developed into a simple slicing algorithm in the next section.

6.3 A Simple Slicing Algorithm

In this section we will develop a simple slicing algorithm for a small subset of WSL
which includes the following:-

(1) Simple assignments;

(2) Assertions;

(3) Statement sequences;

(4) if statements;

(5) while loops;

(6) Local variables;

Note that skip and abort are defined as the assertions {true} and {false} respec-
tively.

The basic approach is to use program transformations and semi-refinements to
duplicate and “pull” the remove statement backwards through the program S to
generate the sliced program S′, and then “push” the remove statement forwards
through S′ to the end of the program again.

For conciseness, we write (X) for remove(X) in what follows.
The following set of lemmas show how to slice each type of statement by pushing

the remove statement backwards through the structure, reducing the statement
wherever possible, and then pulling it forwards through the reduced statement.
These lemmas will be used as the basis for a simple slicing algorithm.

Consider the simple assignment x := e. If x ∈ X then we need to keep the
assignment since the final value of x is required. Before the assignment, we don’t
need the value of x (unless x appears in the expression e), but we do need all the
variables which appear in e. Conversely, if x /∈ X then x is not in the final state
space, and the assignment is equivalent to a skip.
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So we have:

Lemma 6.8. Assignment. If x ∈ X then:

∆ ⊢ x := e; (W \ X) 4 (W \ ((X \ {x}) ∪ vars(e))); x := e; (W \ X)

If x /∈ X then:

∆ ⊢ x := e; (W \ X) 4 (W \ X); skip; (W \ X)

Lemma 6.9. Assertion. The semi-refinement relation allows any assertion to be
replaced by a skip:

∆ ⊢ {Q}; (W \ X) 4 (W \ X); skip; (W \ X)

Lemma 6.10. Statement Sequence. Suppose:

∆ ⊢ S2; (W \ X) 4 (W \ X ′); S′

2; (W \ X) ≈ S′

2; (W \ X)

and

∆ ⊢ S1; (W \ X ′) 4 (W \ X ′′); S′

1; (W \ X ′) ≈ S′

1; (W \ X ′)

Then:

∆ ⊢ S1; S2; (W \ X) 4 (W \ X ′′); S′

1; (W \ X ′); S′

2; (W \ X)

≈ S′

1; S′

2; (W \ X)

Lemma 6.11. Conditional statement. Suppose S1; (W \ X) 4 (W \ Xi); S′

1

and S2; (W \ X) 4 (W \ Xi); S′

2 Then:

∆ ⊢ if B1 then S1 else S2 fi; (W \ X)

4 if B1 then S1; (W \ X) else S2; (W \ X) fi; (W \ X)

by Expand Forward

4 if B1 then (W \ X1); S′

1 else (W \ X2); S′

2 fi; (W \ X)

by the premise

4 (W \ X ′); if B1 then (W \ X1); S′

1 else (W \ X2); S′

2 fi; (W \ X)

where X ′ = X1 ∪ vars(B1) ∪ X2 ∪ vars(B2)

This lemma can be trivially extended to multi-way if statements.

Lemma 6.12. While loop. Let S′ and X ′ be such that X ⊆ X ′ and vars(B) ⊆ X ′

and:

∆ ⊢ S; (W \ X ′) 4 (W \ X ′); S′; (W \ X ′)

Then:

∆ ⊢ while B do S od; (W \ X)

4 (W \ X ′); while B do (W \ X ′); S′; (W \ X ′) od; (W \ X)

Proof: The proof uses the induction rule for iteration (Lemma 3.6). We will prove
by induction on n that:

∆ ⊢ while B do S odn; (W \ X)

4 (W \ X ′); while B do (W \ X ′); S′; (W \ X ′) od; (W \ X)
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The result then follows from the induction rule for semi-refinement (Lemma 6.7).
The base case is trivial, since while B do S od0 is abort (by definition). For the

induction step, we have:

while B do S odn+1; (W \ X)

= if B then S; while B do S odn fi; (W \ X)

4 if B then S; while B do S odn; (W \ X) fi; (W \ X)

by duplicating and absorbing the remove statement.

4 if B then S; (W \ X ′);
while B do (W \ X ′); S′; (W \ X ′) odn; (W \ X) fi;

(W \ X)

by the induction hypothesis.

4 if B then (W \ X ′); S′; (W \ X ′);
while B do (W \ X ′); S′; (W \ X ′) odn; (W \ X) fi;

(W \ X)

by the premise.

4 (W \ X ′);
if B then (W \ X ′); S′; (W \ X ′);

while B do (W \ X ′); S′; (W \ X ′) odn; (W \ X) fi;
(W \ X)

by taking out the remove statement.

= (W \ X ′); while B do (W \ X ′); S′; (W \ X ′) odn+1; (W \ X)

This proves the induction step. So by induction, the result holds for every trunca-
tion of the loop, and by Lemma 6.7 it therefore holds for the whole loop.

For the local variable statement var 〈v := e〉 : S end, suppose that X ′ and S′ ⊑ S

are such that:

∆ ⊢ S; (W \ X) 4 (W \ X ′); S′; (W \ X)

There are two cases to consider:

(1) If v ∈ X ′ then we need the value that v is initialised to at the top of the block.
We therefore also need all the variables in e. Finally, if v ∈ X then we need
the (global) v, while if v /∈ X then we don’t need to add v to X ′. Both of these
cases are catered for by adding X ∩ {v} to X ′;

(2) If v /∈ X ′ then we do not need the initial value of v. So the reduced var block
can initialise v to ⊥ to avoid unnecessary references to any variables in e.

So we have:

Lemma 6.13. Local variable. Let S′ ⊑ S and:

∆ ⊢ S; (W \ X) 4 (W \ X ′); S′; (W \ X)
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Then:

∆ ⊢ var 〈v := e〉 : S end; (W \ X)

4 (W \ ((X ′ \ {v}) ∪ vars(e) ∪ (X ∩ {v}));

var 〈v := e〉 : S′ end;

(W \ X)

if v ∈ X ′ and

∆ ⊢ var 〈v := e〉 : S end; (W \ X)

4 (W \ ((X ′ \ {v}) ∪ (X ∩ {v}));

var 〈v := ⊥〉 : S′ end;

(W \ X)

if v /∈ X ′.

Lemma 6.14. Reduction of a whole statement. Finally, there is an optimisation
for the case where all the variables assigned in S are removed by the remove

statement, i.e. when assigned(S) ∩ X = ∅. In this case:

∆ ⊢ S; (W \ X) 4 (W \ X); skip; (W \ X)

The proof is by induction on the structure of S. For the while loop case we use
the induction rule for iteration (the base case for this induction uses the fact that
∆ ⊢ abort 4 skip).

These lemmas can be put together to derive a simple slicing algorithm for this
subset of WSL. We define a function @Slice which takes a WSL program plus the
set X of variables and returns the sliced program plus the modified variable set. So
if:

@Slice(S,X) = 〈S′,X ′〉

then:

∆ ⊢ S; (W \ X) 4 (W \ X ′); S′; (W \ X)

The only difficult case is the while loop while B do S od: Lemma 6.12 gives no
indication of how to compute X ′. Consider the following program:

(1) y := x0;
(2) while i 6= 0 do

(3) y := x1;
(4) x1 := x2;
(5) x2 := x3;
(6) i := i − 1 od;
(7) (W \ {y})

Here, we are interested in the final value of y. If the loop is skipped (i = 0 initially)
then y depends on x0. If the loop body is executed once (i = 1), then y depends on
x1. If the loop is executed twice, the y depends on x2. Finally, if the loop is executed
three or more times, then y depends on x3. If we have no information on the number
of iterations, then we must assume that y depends on all of {x0, x1, x2, x3} the slice
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must contain the whole program and the remove statement inserted in front of the
program is:

(1) (W \ {i, x0, x1, x2, x3});
(2) y := x0;
(3) while i 6= 0 do

(4) y := x1;
(5) x1 := x2;
(6) x2 := x3;
(7) i := i − 1 od;
(8) (W \ {y})

A simple solution is to repeatedly call @Slice on the body of the loop, taking the
output set of variables and adding the previous X ′ set plus vars(B) to create the
new X ′ until the result converges to a stable value. More formally, we define the
sequence of sets Xi where X0 = X and for each i, let:

〈S′

i,X
′
i〉 = @Slice(S,Xi)

so that:

∆ ⊢ S; (W \ Xi) 4 (W \ X ′
i); S′

i; (W \ Xi)

Now let:

Xi+1 = vars(B) ∪ Xi ∪ X ′
i

The sequence Xi is increasing (Xi ⊆ Xi+1 for all i) and bounded above by the
finite set W , so the sequence must converge in a finite number of steps: i.e. there
is an Xn such that Xm = Xn for all m > n. (Once we have Xn+1 = Xn then all
subsequent Xm values will be identical). The result of @Slice(while B do S od,X)
is defined as 〈while B do S′ od,X ′〉 unless Lemma 6.14 applies.

Putting all these results together we can implement a simple slicing operation as
a FermaT transformation. The @Slice function at the heart of the transformation
is described in the following pseudocode. For a statement S and set of variables X,
@Slice(S,X) returns a list 〈S′,X ′〉 such that ∆ ⊢ S; (W \X) 4 (W \X ′); S′; (W \
X)

In the following program, the variable R contains the value returned by the
function on the last line:

(1) funct @Slice(I,X) ≡
(2) var 〈R := 〈〉,S′ := 〈〉,X ′ := 〈〉〉 :
(3) if I is a statement sequence S1; . . . ; Sn

(4) then for S ∈ 〈Sn, . . . ,S1〉 do

(5) R := @Slice(S,X);
(6) S′ := 〈R[1]〉 ++ S′;
(7) X := R[2] od;
(8) R := 〈S′,X〉
(9) elsif I is abort

(10) then R := 〈I, 〈〉〉
(11) elsif No variable assigned in I is in X
(12) then R := 〈skip,X〉
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(13) elsif I is an assignment statement
(14) then R := 〈I, (X \ assigned(I)) ∪ used(I)〉
(15) elsif I is if B then S1 else S2 fi

(16) then var 〈R1 := @Slice(S1,X),
(17) R2 := @Slice(S2,X)〉
(18) R := 〈if B then R1[1] else R1[2] fi,
(19) R1[2] ∪ R2[2] ∪ vars(B)〉 end

(20) elsif I is while B do S od

(21) then var 〈X ′ := X〉 :
(22) do R := @Slice(S,X ′);
(23) R[2] := R[2] ∪ X ′ ∪ vars(B);
(24) if R[2] = X ′ then exit(1) fi;
(25) X ′ := R[2] od end;
(26) R := 〈while B do R[1] od, R[2]〉
(27) elsif I is var 〈v := e〉 : S end

(28) then var 〈X ′ := 〈〉〉 :
(29) R := @Slice(S,X \ {v});
(30) X ′ := (R[2] \ {v}) ∪ ({v} ∩ X);
(31) if v ∈ R[2]
(32) then R := 〈var 〈v := e〉 : R[1] end,X ′ ∪ vars(e)〉
(33) else R := 〈var 〈v := ⊥〉 : R[1] end,X ′〉 fi end fi;
(34) (R).

This is essentially how the Simple Slice transformation is implemented in FermaT,
see the Appendix for the actual METAWSL source code (which is not much bigger
that the pseudocode above). The following examples show the results produced by
FermaT.

A simple example is the following program:

(1) y := z;
(2) if y = 1 then x := 1
(3) elsif y = 2 then x1 := 2
(4) else z := 99 fi

Slicing on the final value of z we get:

(1) y := z;
(2) if y = 1 then skip

(3) elsif y = 2 then skip

(4) else z := 99 fi

Another example:

(1) y := x0;
(2) while i 6= 0 do

(3) y := x1;
(4) x1 := x2;
(5) x2 := x3;
(6) i := i − 1 od

Slicing on x1 gives:
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(1) skip;
(2) while i 6= 0 do

(3) skip;
(4) x1 := x2;
(5) x2 := x3;
(6) i := i − 1 od

The next few subsections explore some of the advantages and applications of the
formal definition of slicing in terms of WSL transformation theory.

6.4 Slicing Unstructured Programs

Note that we can apply arbitrary transformation in the process of slicing, provided
that the final program satisfies all the conditions of Definition 6.5 (in particular, the
slice is a reduction of the original program: in other words, it can be constructed
from the original program by deleting replacing statements by skips or exits). So
we can implement a slicing algorithm as the sequence:

transform → reduce → transform

provided that the reduction step is also a semi-refinement and the final transforma-
tion step “undoes” the effect of the initial transformation. This step is facilitated
by the fact that the reduction relation preserves the positions of sub-components
in the program. In practice, the final transform step is implemented by tracking the
movement of components in the initial transform step, noting which components
are reduced in the reduce step and replacing these by skips directly in the original
program.

This suggests that our algorithm for slicing structured WSL can easily be ex-
tended to unstructured code: first restructure the program to use only if state-
ments and while loops (for example, using Bohm and Jacopini’s algorithm [10]),
then slice the structured program, then determine which simple statements have
been reduced, and apply the corresponding reduction to the original program (or
equivalently, undo the restructuring transformation).

The simplest restructuring algorithm converts the whole program to a single
while loop whose body is a multi-way conditional controlled by a single variable
next which stores the number of the next block to be executed:

(1) while next 6= 0 do

(2) if next = 1 then S1; if B1 then next := n11 else next := n12 fi

(3) . . .
(4) elsif next = i then Si; if Bi then next := ni1 else next := ni2 fi

(5) . . . fi od

At the end of each branch of the conditional, next is conditionally or unconditionally
assigned an integer value representing transfer of control to that block. Block i will
be followed by block ni1 or ni2 depending in the result of the condition Bi.

If such a program is sliced on any variable assigned anywhere in the program, then
next will have to be included in the slice (since every statement is control dependent
on next). All the variables in all of the Bi conditions are control variables for next

(because next is control dependent on all these variables), so these variables will be
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included in the slice. Then all statements which assign to any variables that affect
any Bi will also be included in the slice. This is likely to be most of the program.

FermaT’s solution is to destructure the program to an action system in “basic
blocks” format. To slice the action system, FermaT computes the Static Single
Assignment (SSA) form of the program, and the control dependencies of each basic
block using Bilardi and Pingali’s algorithms [7,25]. FermaT tracks control and
data dependencies to determine which statements can be deleted from the blocks.
Tracking data dependencies is trivial when the program is in SSA form. FermaT
links each basic block to the corresponding statement in the original program, so it
can determine which statements from the original program have been deleted (in
effect, this will “undo” the destructuring step). This algorithm is implemented as
the Syntactic Slice transformation in FermaT.

6.5 Generalisations of Statement Deletion

Some generalisations of the reduction relation will allow more precise slices, possibly
at the expense of making it more difficult to track the connection between the
original program and its slice.

For example, the statement if B then S else S fi is equivalent to S, so deleting the
structure around S will remove dependencies on the variables in B. Programmers
do not usually write if statements with identical branches, but such a statement
might result from deleting other statements in the branches of the if statement. For
example:

(1) y := y + 1;
(2) if y > 0
(3) then z := 3;
(4) x := 2;
(5) y := 0
(6) else z := 4;
(7) x := 2;
(8) y := 1 fi

Slicing on the final value of x using Simple Slice gives:

(1) y := y + 1;
(2) if y > 0
(3) then x := 2
(4) else x := 2 fi

The assignment to y is not needed in the slice, but the Simple Slice transformation
sees the reference to y in the condition of the if, and assumes that the statement is
needed. See Section 6.9 for a different approach to slicing this example.

Extending the reduction relation to allow:

S ⊑ if B then S else S fi

would allow the if statement to be sliced to x := 2, which in turn would allow
Simple Slice to delete the assignment to y giving x := 2 as the sliced program.

Another example is deleting an action that consists of a single call to another
action.
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On the other hand, there are some statements that we probably do not want to
delete even though they have no effect on the variables we are slicing on: comments
are statements in WSL and we will usually want to keep all the comments ex-
cept for those inside deleted structures. The FermaT transformation system treats
comments as a special case.

6.6 Interprocedural Slicing

For interprocedural slicing (see Section 7) we allow deletion of unused parameters
in procedures: again, this is to prevent the creation of extra dependencies. For
example, in the following program:

(1) begin

(2) sum := sum 0;
(3) i := 1;
(4) while i 6 10 do

(5) A( var sum, i) od;
(6) PRINT(“sum = ”, sum)
(7) where

(8) proc A( var x, y) ≡
(9) Add(y var x);

(10) Inc( var y) end

(11) proc Add(b var a) ≡
(12) a := a + b end

(13) proc Inc( var z) ≡
(14) Add(1 var z) end

(15) end

If we slice on the value of z on line 14 in the body of Inc, the Syntactic Slice

transformation correctly recognises that the first parameter to A is redundant, and
therefore the variable sum can be eliminated:

(1) begin

(2) i := 1;
(3) while i 6 10 do A( var i) od

(4) where

(5) proc A( var y) ≡
(6) Inc( var y) end

(7) proc Add(b var a) ≡
(8) a := a + b end

(9) proc Inc( var z) ≡
(10) Add(1 var z) end

(11) end

A detailed discussion of interprocedural slicing is beyond the scope of this paper,
but see Section 7.1 for a brief description of the implementation in FermaT.

6.7 Slicing Nondeterministic Programs

Binkley and Gallagher’s definition of a slice [9] is as follows:
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Definition 6.15. For statement s and variable v, the slice S of program P with
respect to the slicing criterion 〈s; v〉 is any executable program with the following
properties:

(1) S can be obtained by deleting zero or more statements from P.

(2) If P halts on input I, then the value of v at statement s each time s is executed
in P is the same in P and S. If P fails to terminate normally s may execute
more times in S that in P, but P and S compute the same values each time s
is executed by P.

This definition does not work with nondeterministic programs. Consider the pro-
gram P:

if true → x := 1
⊓⊔ true → x := 2 fi;
y := x

where we are slicing on the value of x at the assignment to y. According to Binkley
and Gallagher’s definition, there are no valid slices of P! Even P itself is not a valid
slice: since the value of x at y := x may be different each time y := x is executed.
Our definition of slicing avoids this flaw and is capable of handling nondeterministic
statements. This might appear to be unimportant in practice (since most executable
programs are also deterministic), but in the context of program analysis and reverse
engineering it is quite common to “abstract away” some implementation details and
end up with a nondeterministic abstraction of the original program. If one wishes
to carry out further abstraction on this program via slicing, then it is essential that
the definition of slicing, and the algorithms implementing the definition, are able
to cope with nondeterminism.

6.8 Minimal Slices

Both Weiser’s definition and ours allow the whole program as a valid slice for any
slicing criterion, however restrictive that criterion is in comparison to the final state
space. For program understanding and debugging, small slices are more useful than
large slices, so it would appear to be a reasonable requirement to place on any slicing
algorithm that the slices generated by the algorithm should be minimal: either in
the sense of minimising the total number of statements, or at least in the weaker
sense that no further statements can be deleted. So we define:

Definition 6.16. A minimal slice of S on X is any syntactic slice S′ such that
if S′′ ⊑ S′ is also a syntactic slice, then S′′ = S′.

Note that a minimal slice, according to this definition, is not necessarily unique
and is not necessarily a slice with the smallest number of statements. Consider the
program S:

(1) x := 2;
(2) x := x + 1;
(3) x := 3

A syntactic slice can be obtained from S by deleting line 3 to give S′:
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(1) x := 2;
(2) x := x + 1

This program is a minimal slice (according to Definition 6.16), because neither of
the remaining statements can be deleted. But there is another minimal slice of S,
namely x := 3, which has fewer statements than S′.

The case of a minimal slice with the minimal number of statements may also not
be unique. Consider the program:

(1) x := 1;
(2) x := x + 2;
(3) x := 2;
(4) x := x + 1

This has two different minimal slices, both of which have two statements, namely:

(1) x := 1;
(2) x := x + 2

and

(1) x := 2;
(2) x := x + 1

Although of theoretical interest, demanding that the slices be minimal is too
restrictive a requirement to place on a slicing algorithm. This is because, as Weiser
pointed out [43], an algorithm for finding minimal slices can be converted into an
algorithm for solving the halting problem. The halting problem is non-computable,
hence the minimal slicing problem is also non-computable.

Theorem 6.17. Any minimal slicing algorithm can solve the halting problem.

Proof: Let S be any program and consider the program S; x := 0, where x is any
variable which does not appear in S. There are two cases to consider:

(1) If S may be nonterminating, then for any valid syntactic slice of S; x := 0 on
{x}, if the slice still contains the assignment x := 0 then that statement can
be deleted and the result will still be a valid slice of S; x := 0. Therefore, any
minimal slice of S; x := 0 will not contain the assignment.

(2) If S always terminates, then the sliced program has to set x to zero, so the final
assignment must appear in any valid slice of S; x := 0 on {x}.

So if we had a program which computes minimal syntactic slices, then we could
solve the halting problem for any program S by computing the minimal slice of the
program S; x := 0 on {x} and simply observing if the result ends in the statement
x := 0. If it does, then S terminates, while if it doesn’t then S does not terminate.

�

6.9 Semantic and Amorphous Slicing

The definition of a syntactic slice immediately suggests a generalisation: why not
keep the semantic relation and drop the syntactic relation? In other words, why
not drop the requirement that S′ ⊑ S?
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Harman and Danicic [16,18] coined the term “amorphous program slicing” for
a combination of slicing and transformation of executable programs. So far the
transformations have been restricted to restructuring snd simplifications, but the
definition of an amorphous slice allows any transformation (in any transformation
theory) of executable programs.

We define a “semantic slice” to be any semi-refinement in WSL, so the concepts
of semantic slicing and amorphous slicing are distinct but overlapping. A semantic
slice is defined in the context of WSL transformation theory, while an amorphous
slice is defined in terms of executable programs (WSL allows nonexecutable state-
ments including abstract specification statements and guard statements). Also,
amorphous slices are restricted to finite programs, while WSL programs (and hence,
semantic slices) can include infinitary formulae. To summarise:

(1) Amorphous slicing is restricted to finite, executable programs. Semantic slic-
ing applies to any WSL programs including non-executable specification state-
ments, non-executable guard statements, and programs containing infinitary
formulae;

(2) Semantic slicing is defined in the particular context of the WSL language and
transformation theory: amorphous slicing applies to any transformation theory
or definition of program equivalence on executable programs.

The relation between a WSL program and its semantic slice is a purely semantic
one: compare this with a “syntactic slice” where the relation is primarily a syntactic
one with a semantic restriction.

Definition 6.18. A semantic slice of S on X is any program S′ such that:

∆ ⊢ S; remove(W \ X) 4 S′; remove(W \ X)

Note that while there are only a finite number of different syntactic slices (if
S contains n statements then there are at most 2n different programs S′ such
that S′ ⊑ S) there are infinitely many possible semantic slices for a program:
including slices which are actually larger than the original program. Although one
would normally expect a semantic slice to be no larger than the original program,
[37,38] discuss cases where a high-level abstract specification can be larger than
the program while still being arguably easier to understand and more useful for
comprehension and debugging. A program might use some very clever coding to
re-use the same data structure for more than one purpose. An equivalent program
which internally uses two data structures might contain more statements and be
less efficient while still being easier to analyse and understand. See [37] and [38]
for a discussion of the issues.

Semantic refinement is implemented in FermaT via a process of abstraction and
refinement. The Representation Theorem of WSL shows that for any WSL program
there exists a WSL specification (containing a single specification statement) which
implements that program:

Theorem 6.19. The Representation Theorem
Let S : V → V , be any kernel language statement and let x be a list of all the
variables in V . Then for any countable set ∆ of sentences:

∆ ⊢ S ≈ [¬WP(S, false)]; x := x
′.(¬WP(S,x 6= x

′) ∧ WP(S, true))
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Proof: Let V ′ = V ∪x
′, where let M be any model for ∆, and let f = intM (S, V, V )

and f ′ = intM (S, V ′, V ′).
Now, f ′ is the program f with its initial and final state spaces extended to include

x’, hence if s is any state in DH(V ) and t ∈ f(s) and s′ is any extension of the
state s to x’ then there exists t′ ∈ f ′(s′), the corresponding extension of t, with
t′(z) = s′(z) for every z ∈ x

′ and t′(z) = t(z) for every z /∈ x
′.

If S is null for some initial state then WP(S, false) is true for that state, hence the
guard is false and the specification is also null. If S is undefined then WP(S, true) is
false, and the specification statement is also undefined. So we only need to consider
initial states for which S is both defined and non-null. Fix s as any element of
DH(V ) such that f(s) is non-empty and ⊥ /∈ f(s). Then for any extension s′ of s,
f ′(s′) is non-empty and ⊥ /∈ f ′(s′). Let:

g = intM (add(x′); [¬WP(S,x 6= x
′)], V, V ′)

For each t ∈ DH(V ) we define st ∈ DH(V )′ to be the extension of s which assigns
to x’ the same values which t assigns to x. We will prove the following Lemma:

Lemma 6.20. For every t ∈ f(s) there is a corresponding st ∈ g(s) and every
element of g(s) is of the form st for some t ∈ f(s).

Proof: Let t be any element of f(s). t gives a value to each variable in x and
therefore can be used to define an extension st ∈ DH(V )′ of s where the values
assigned to x’ by st are the same values which t assigns to x. (The values given to
any other variables are the same in s, t, and st since S can only affect the values
of variables in x.) Then we claim:

st /∈ intM (WP(S,x 6= x
′), V ′)

To prove this we note that a possible final state for f ′ on initial state st is the
extension t′ ∈ DH(V )′ of the state t, where t′ gives the same values to x’ as st (the
initial state). But these values are the same as the values t (and hence t′) gives to x,
so t′ does not satisfy the condition intM (x 6= x

′, V ′). So not all final states for f ′ on
initial state st satisfy the condition, so st does not satisfy intM (WP(S,x 6= x

′), V ′).
Hence:

st ∈ intM (¬WP(S,x 6= x
′), V ′)

and hence st ∈ g(s).
Conversely, every final state t′ ∈ g(s) leaves the values of x the same as in s and

assigns values to x’ such that t′ /∈ wp(f ′, intM (x 6= x
′, V ′)) is satisfied. For each

such t′ we can define a state t ∈ DH(V ) which assigns to x the values t′ assigns to
x’. Then t′ = st where st is as defined above. Suppose t /∈ f(s), then every terminal
state in f(s) must have values assigned to x which differ from those st assigns to x’.
But then every terminal state of f ′(st) would satisfy intM (x 6= x

′, V ′) and hence st,
and therefore t′, would satisfy wp(f ′, intM (x 6= x

′, V ′)) which is a contradiction.
So t ∈ f(s) as required. This completes the proof of the Lemma. �

To complete the main proof, we note that the state transformation

g′ = intM (add(x); [x = x
′], V ′, V ′)
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maps each st to the set {t}. Hence f(s) = (g; g′)(s) and this holds for all initial
states s on which S is defined and determinate. Hence S is equivalent to the given
specification. �

For a general statement S : V → W we have the corollary:

Corollary 6.21. Let S : V → W , be any kernel language statement and let x

be a list of all the variables in W . Without loss of generality we may assume that
W ⊆ V (Any variables added by S are already in the initial state space). Let y

be a list of the variables removed by S, so x ∩ y = ∅ and x ∪ y = V . Then S is
equivalent to:

(1) [¬WP(S, false)];
(2) x := x

′.(¬WP(S,x 6= x
′) ∧ WP(S, true));

(3) remove(y)

This theorem gives us an alternative representation for the weakest precondition
of a statement:

Corollary 6.22. For any statement S:

WP(S,R) ⇐⇒

WP(S, false) ∨
(

∃x
′.¬WP(S,x 6= x

′) ∧ WP(S, true)

∧ ∀x
′. (¬WP(S,x 6= x

′) ⇒ R[x′/x])
)

where x is the variables assigned to by S as above.

Proof: Convert S to its specification equivalent using Theorem 6.19, take the
weakest precondition for R and simplify the result. �

The point of this corollary is that it expresses the weakest precondition of a state-
ment for any postcondition as a simple formula containing a single occurrence of
postcondition itself plus some weakest preconditions of fixed formulae.

In [41] we describe a partial implementation of the representation theorem in
the form of a program transformation called Prog To Spec. This is used in com-
bination with a syntactic slicing algorithm plus other transformations to develop
a powerful conditioned semantic slicing algorithm. A conditioned slice [11,17] is a
program slice which makes use of assertions added to the code to simplify the slice.
The slicer applies the abstraction transformation Prog To Spec to blocks of code
which do not contain loops, it then uses FermaT’s condition simplifier to simplify
the resulting specification. The simplifier can make use of assertions to simplify
the specification, thus generating conditioned slices. A syntactic slicing algorithm
is applied to the resulting program (with some semantic slicing extensions). Fur-
ther simplification transformations, such as Constant Propagation, are applied and
any remaining specification statements are refined (using the Refine Spec trans-
formation) into combinations of assertions, assignments and IF statements, where
possible.

For example, the statement:

var 〈x := x〉 :
if p = q
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then x := 18
else x := 17 fi;

if p 6= q
then y := x
else y := 2 fi end

is abstracted, via Prog To Spec, to the specification statement:

〈y〉 := 〈y′〉.(y′ = 2 ∧ p = q ∨ y′ = 17 ∧ p 6= q)

and subsequently refined, via Refine Spec to:

if p = q then y := 2 else y := 17 fi

The abstraction and refinement process can be used to simplify statements based
on preceding and subsequent assertions: semantic slices can delete code which would
falsify a later assertion if executed. This will be particularly important when we
consider Conditioned Slicing in Section 6.14.

Returning to the example in Section 6.5, applying FermaT’s Semantic Slice trans-
formation to the program:

(1) y := y + 1;
(2) if y > 0
(3) then x := 2
(4) else x := 2 fi

to slice on the final value of x gives x := 2 as the result.

6.10 Operational Slicing

An intermediate option between syntactic slicing and full semantic slicing is to
restrict the transformations to preserve operational semantics, using the technique
in Section 5.

Definition 6.23. Program S′ is an operational slice of S on X if there exists
a sequence of statements S1, . . . ,Sn such that S1 = S, Sn = S′ and for each
1 ≤ i < n: either Si+1 is a syntactic slice of Si on X, or:

∆ ⊢ annotate(Si) 4 annotate(Si+1)

It might be thought that the following is a simpler definition (which does not
require a sequence of intermediate programs):

∆ ⊢ annotate(S); remove(W \ X) 4 annotate(S′); remove(W \ X)

But this is incorrect because the seq variable (recording the sequence of states) is
one of the variables removed by the statement remove(W \ X), which means that
all of the annotations are redundant code! On the other hand, if we add seq to X
to stop it from being removed, then the suggested definition is much too restrictive:
no statements can be deleted since they all contribute to the value of seq. This is
why we define operational slicing in terms of a finite sequence of syntactic slicing
and operational transformation steps. Some of the operational transformations may
enable further slicing, and the slicing step may enable further transformation, so it
is not sufficient to define operational slicing in terms of a single transformation step
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followed by a single slicing step if we want a definition of slicing that is transitive.
(In other words: if we want a slice of a slice to be itself a valid slice). The example
in Section 8 illustrates this point.

An operational slice is therefore a combination of syntactic slicing and operational
transformations (such as restructuring). The implementation of operational slicing
can iterate the slicing and transformation steps until the result converges (the
convergence is guaranteed provided the operational transformations either leave
the program unchanged or return a strictly smaller program).

6.11 Slicing At Any Position

To slice at an arbitrary position in the program we need to preserve the sequence of
values taken on by the given variables at that point in the program. To do this, we
simply insert an assignment to a new variable slice at the required position which
records the current values of the variables on a list. If X = {x1, . . . , xn} is the set
of variables we are interested in then we insert the statement:

slice := slice ++ 〈〈x1, . . . , xn〉〉

at the point of interest, in order to record the current values of the variables at that
point. Then we slice at the end of the program on the single variable slice. (Note
that we append to the list in slice, rather than simply assign to it, because we are
interested in the whole sequence of values, not just the last set of values taken on
by the variables.)

This process can be generalised to slicing at several points in the program, per-
haps with a different set of “variables of interest” at each point, simply by inserting
the slice assignments at the appropriate places.

One peculiarity of this definition is that if we slice at a point in the program
which is within a compound statement that does not modify any of the variables in
the slicing criteria, then we can end up with slices which appear to be larger than
necessary. For example, suppose that we slice on x within this if statement at the
point just before the assignment to z on line 3:

(1) x := g(z);
(2) y := f(z);
(3) if y = 0 then z := 1 fi

The annotated program is:

(1) x := g(z);
(2) y := f(z);
(3) if y = 0 then slice := slice ++ 〈〈x〉〉; z := 1 fi;
(4) remove(x, y, z)

This is equivalent to:

(1) x := g(z);
(2) y := f(z);
(3) if y = 0 then slice := slice ++ 〈〈x〉〉 fi;
(4) remove(x, y, z)

We cannot delete the assignment y := f(z) on line 2 because it determines which
branch of the if statement is taken, and this affects the final value of slice (although
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it does not affect the value of x). According to our definition, the slice has to
preserve the test y = 0 and therefore preserve any previous modifications to y.
In effect, by slicing at a particular position we are insisting that the given position
should also appear in the sliced program. This is arguably correct in the sense that,
if the slice has to preserve the sequence of values taken on by x at a particular point
in the program, then a corresponding point (at which x takes on the same sequence
of values) must appear in the slice. But if the if statement in the above example is
deleted, then x may take on a different sequence of values! To be precise, there is
no point in the new program at which x takes on the same sequence of values as
at the slice point in the original program.

However, if it is not required to preserve the slice point then a simple solution is
to allow the slicing algorithm to move all the assignments to slice upwards out of
any enclosing structures as far as possible, before carrying out the slicing operation
itself.

6.12 Dynamic Slicing

Although the term “dynamic program slice” was first introduced by Korel and Laski
[21], it may be regarded as a non-interactive version of Balzer’s notion of flowback
analysis [5]. In flowback analysis, one is interested in how information flows through
a program to obtain a particular value: the user interactively traverses a graph that
represents the data and control dependences between statements in the program.

A dynamic slice of a program P is a reduced executable program S which repli-
cates part of the behaviour of P on a particular initial state. We can define this
initial state by means of an assertion. Suppose V = {v1, v2, . . . , vn} is the set of
variables in the initial state space for P, and V1, V2, . . . , Vn are the initial values
of these variables in the state of interest. Then the condition

A =
DF

v1 = V1 ∧ v2 = V2 ∧ · · · ∧ vn = Vn

is true for this initial state and false for every other initial state. The assertion {A}
is abort for every initial state other than the specified one. So we define:

Definition 6.24. A Dynamic Syntactic Slice of S with respect to a formula A

of the form

v1 = V1 ∧ v2 = V2 ∧ · · · ∧ vn = Vn

where V = {v1, v2, . . . , vn} is the initial state space of S and Vi are constants, and
the set of variables X is a subset of the final state space W of S, is any program
S′ ⊑ S such that:

∆ ⊢ {A}; S; remove(W \ X) 4 {A}; S′; remove(W \ X)

The following is an example of a dynamic slice, from Danicic’s thesis [13] which
is based on an example by Agrawal and Horgan [1], which we have translated into
WSL:

(1) while i < n do

(2) read( var x, input);
(3) if x < 0
(4) then y := f1(x)
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(5) else y := f2(x) fi;
(6) z := f3(y);
(7) write(z var output);
(8) i := i + 1 od

where read( var x, input) removes the first element of the list in input and stores it
in x, and write(z var output) appends the value of z to the list in output.

The initial state has: i = 1, n = 3, input = 〈−4, 3〉, and we are slicing on the
final value of z. Unrolling the first two iterations of the while loop and simplifying
gives:

(1) i = 1 ∧ n = 3 ∧ input = 〈−4, 3〉;
(2) read( var x, input);
(3) if x < 0
(4) then y := f1(x)
(5) else y := f2(x) fi;
(6) z := f3(y);
(7) write(z var output);
(8) i := 2;
(9) read( var x, input);

(10) if x < 0
(11) then y := f1(x)
(12) else y := f2(x) fi;
(13) z := f3(y);
(14) write(z var output);
(15) i := 3;
(16) while i < n do . . . od

The final loop is equivalent to skip, since n = 3. So the loop body can be trans-
formed in any way we please: in particular, by deleting the assignment y := f1(x).
Outside the loop, the first occurrence of y := f1(x) is redundant because the value
of y is only used in the first assignment to z, which is overwritten by the next
assignment to z. The second occurrence of y := f1(x) is not executed, so can also
be deleted. The write calls can also be deleted, since it only affects variable output

which is not in the slicing criterion. We can then roll up the loop again to give:

(1) i = 1 ∧ n = 3 ∧ input = 〈−4, 3〉;
(2) while i < n do

(3) read( var x, input);
(4) if x < 0
(5) then skip

(6) else y := f2(x) fi;
(7) z := f3(y);
(8) i := i + 1 od

Agrawal and Horgan [1]. describe an algorithm for computing this slice by com-
puting a dynamic dependency graph from an execution of the program on the given
initial state. This contains a node for every execution of every statement in the
program. An equivalent, but more efficient, structure is the reduced dynamic depen-
dency graph in which a node is created only if another node with the same transitive
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dependencies does not already exist. This still requires executing the program on
the given initial state: in fact, a considerable amount of computation is required as
each statement in the program is executed, so the algorithm can take a long time
to execute on a long running program.

The program transformation approach gives a way to compute a dynamic slice
without necessarily executing the program and recording all or part of the sequence
of states taken on. Consider the following slight change to Agrawal and Horgan’s
example:

(1) while i < n do

(2) read( var x, input);
(3) if true → y := f1(x)
(4) ⊓⊔ true → y := f2(x) fi;
(5) z := f3(y);
(6) write(z var output);
(7) i := i + 1 od

where the conditional statement has been replaced by a nondeterministic choice.
When the program is executed, it may choose the second branch of the if on both
iterations of the loop body: in which case, the dynamic dependency graph will
not include the first branch of the if, and it will be excluded from the slice. The
transformation approach gives the correct result:

(1) while i < n do

(2) read( var x, input);
(3) if true → y := f1(x)
(4) ⊓⊔ true → y := f2(x) fi;
(5) z := f3(y);
(6) i := i + 1 od

The problem is that for a nondeterministic program there may be no unique se-
quence of states, even when the program is started in a unique initial state. So
it is not possible to extend any of the dynamic slicing algorithms which actually
execute the program to an algorithm for slicing nondeterministic programs.

6.13 Minimal Dynamic Slices for Deterministic Programs

If we restrict our attention to deterministic programs, then it would appear to be
possible, at least in theory, to compute the minimal dynamic slice for a given initial
state. Recall that we are interested in the set of statements which are essential to
computing the given output (the value(s) of the variable(s) in the slicing criterion).
Surely we can simply keep deleting statements and re-running the program to see
if we still get the same result? There are two problems with this “brute force”
approach to computing minimal dynamic slices:

(1) It is not sufficient to delete statements one at a time until the program stops
working. Consider the program:

x := 1;
x := x + 2;
x := x − 2
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Deleting any individual statement will lead to a non-equivalent program, but
deleting both the second and third statements gives the obvious minimal slice.
The “brute force” algorithm is therefore to re-run the program for each of the
O(2n) possible reductions of the original program (where the original program
had n statements).

(2) It may be possible to delete statements from a program to yield a minimal
slice that takes arbitrarily longer to compute than the original program. For
example, consider slicing on the final value of y in:

while x > 1000 do x := x − 1000 od;
while x > 0 do

y := −y;
x := x − 1 od

Deleting the first while loop will not affect the final value of y but could dra-
matically increase the running time. Potential slices which increase the running
time have to be ignored by the brute force algorithm, since otherwise it cannot
distinguish between a non-terminating program and one which is simply taking
arbitrarily longer to compute the same answer (this is the Halting Problem
again).

Beszédas et al [6] claim that the union of all minimal dynamic slices will be a
minimal static slice. Given an efficient algorithm for computing minimal dynamic
slices, it would therefore be possible to compute a reasonable selection of minimal
dynamic slices and therefore get at least an approximation to a minimal static slice
(it is not possible to compute all the minimal dynamic slices, of course). One
problem with this approach is that the union of two slices is not necessarily a slice
[22]. A more serious problem, as the next theorem shows, is that the union of all
minimal dynamic slices is not necessarily a minimal static slice.

Theorem 6.25. The union of all minimal dynamic slices is not necessarily a
minimal static slice.

Proof: Consider the program:

(1) x := 2;
(2) x := y;
(3) x := 2 ∗ x;

where we are slicing on the final value of x. If y = 1 initially, then the minimal
dynamic slice is just line 1 x := 2. On the other hand, if y = 2 initially, then the
minimal dynamic slice is lines 2 and 3 x := y; x := 2 ∗ x. The union of these two
slices is the whole program, which is strictly larger than the minimal static slice
x := y; x := 2 ∗ x. �

6.14 Conditioned Slicing

Researchers have generalised dynamic slicing and combined static and dynamic
slicing in various ways. For example: some researchers allow a finite set of initial
states, or a partial initial state which restricts a subset of the initial variables to
particular values [29]. In our formalism, all of these generalisations are subsumed
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under the obvious generalisation of dynamic slicing: why restrict the initial assertion
to be of the particular form {v1 = V1 ∧ v2 = V2 ∧ · · · ∧ vn = Vn}?

If we allow any initial assertion, then the result is called a conditioned slice:

Definition 6.26. A Conditioned Syntactic Slice of S with respect to any for-
mula A and set of variables X is any program S′ ⊑ S such that:

∆ ⊢ {A}; S; remove(W \ X) 4 {A}; S′; remove(W \ X)

Conditioned slicing is thus a generalisation of both static slicing (where the con-
dition A is true) and dynamic slicing (where A takes on the form v1 = V1 ∧
v2 = V2 ∧ · · · ∧ vn = Vn and the set {v1, v2, . . . , vn} lists all the variables in
the program). One algorithm for computing a conditioned slice is to use the ini-
tial condition to simplify the program before applying a syntactic slicing algorithm.
Danicic et al [17] describe a tool called ConSIT, for slicing a program at a particular
point, given that the initial state satisfies a given condition.

The ConSIT tool works on an intraprocedural subset of C using a three phase
approach:

(1) Symbolically Execute: to propagate assertions through the program where pos-
sible;

(2) Produce Conditioned Program: eliminate statements which are never executed
under the given conditions;

(3) Perform Static Slicing: using a traditional (syntactic) slicing method.

In ConSIT, the slicing condition can be given in the form of ASSERT statements
scattered through the program: the authors [17] claim that these ASSERT statements
are equivalent to a single condition on the initial state, but in general this requires
assertions to be formulae of infinitary logic. This is because the general case of
moving an assertion “backwards” over or out of a loop breaks down into a countably
infinite sequence of cases depending on the number of possible iterations of the loop.
Fortunately, the assertion statements in WSL are already expressed in infinitary
logic, so this is not a problem in our framework.

In our transformation framework, the ASSERT statements are simply WSL asser-
tions. The symbolic execution and producing the conditioned program are examples
of transformations which can be applied to the WSL program plus assertions. In
[30] we provide a number of transformations for propagating assertions and elimi-
nating dead code.

Theorem 6.27. A set of assertions scattered through a program can be replaced
by an equivalent assertion at the beginning of the program (in the sense that the two
programs are equivalent).

Proof: Let S be any program and let S′ be constructed from S by deleting asser-
tions (i.e. replacing the assertions with skip statements). Each assertion deletion
is a semi-refinement, so by the Replacement Property (Section 6), S’ is a semi-
refinement of S. So, by the definition of semi-refinement (Definition 6.4):

∆ ⊢ S ≈ {WP(S, true)}; S′

which proves the theorem. �
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For example, to delete the assertion from S; {Q} we have:

∆ ⊢ S; {Q} ≈ {WP(S; {Q}, true)}; S

≈ {WP(S,WP({Q}, true))}; S

≈ {WP(S,Q)}; S

So, for example, x := y + 1; {x > 0} becomes {y + 1 > 0}; x := y + 1.
For an assertion in a loop we have:

∆ ⊢ while B do {Q}; S od

≈ {
∧

n>0

(
∧

i<n WP((S;)i,B) ⇒ WP((S;)n,Q)
)

};

while B do S od

where (S;)0 is skip and (S;)n+1 is S; (S;)n.

6.15 Conditioned Semantic Slicing

Again, a generalisation is suggested: why restrict ourselves to the assertion moving
and dead code removal transformations of ConSIT? A conditioned semantic slice
can be defined by simply removing the syntactic condition from the definition of a
syntactic slice (i.e. the condition that S′ ⊑ S):

Definition 6.28. Suppose we have a program S and a slicing criterion, defined
from S by inserting assertions and assignments to the slice variable to form S′. A
conditioned semantic slice of S with respect to this criterion is any program S′′ such
that:

∆ ⊢ S′; remove(W ) 4 S′′; remove(W )

Any syntactic slice is also a semantic slice (but not vice versa), so the conditioned
semantic slice is a generalisation of syntactic, semantic, dynamic, conditioned and
operational slicing in the sense that any of these slices is also a conditioned semantic
slice.

7. SLICING IN FERMAT

Our transformation theory was developed in roughly the following stages:

(1) Start with a very simple and tractable kernel language;

(2) Develop proof techniques based on set theory and mathematical logic, for prov-
ing the correctness of transformations in the kernel language;

(3) Extend the kernel language by definitional transformations which introduce
new constructs (the result is the WSL wide spectrum language);

(4) Develop a catalogue of proven WSL transformations: each transformation is
proved correct by appealing to already proven transformations, or by translat-
ing to the kernel language and applying the proof techniques directly.

(5) Tackle some challenging program development and reverse engineering tasks to
demonstrate the validity of this approach [31,33,37,39,42,46];

(6) Extend WSL with constructs for implementing program transformations (the
result is called METAWSL);
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(7) Implement an industrial strength transformation engine in METAWSL with
translators to and from existing programming languages. This allowed us to
test our theories on large scale legacy systems (including systems written in
IBM Assembler [34,35,40]).

FermaT is an industrial strength program transformation system, the result of
over eighteen years of research and development, which has recently been released
under the GNU GPL (General Public Licence). It is available for downloading from
the following sites:

http://www.dur.ac.uk/martin.ward/fermat.html
http://www.cse.dmu.ac.uk/∼mward/fermat.html

FermaT’s transformations include three slicers:

—Simple Slice, which implements the algorithm in Section 6.3. The source code for
Simple Slice is given in the Appendix;

—Syntactic Slice which is an interprocedural syntactic slicer which can handle un-
structured programs; and

—Semantic Slice which is a semantic slicer which uses abstraction and refinement.

FermaT implements a large number of powerful program transformations, these
combined with syntactic slicing make it possible to use FermaT for general condi-
tioned semantic slicing.

The FermaT syntactic slicer has the following features:

—Handles arbitrary control flow (including WSL code translated from assembler
language) via “action systems”;

—Interprocedural slicing, which handles the “calling context” problem correctly
(see [19] and Section 7.1) combined with action systems;

—Efficient algorithms for handling large and complex programs;

Intermediate steps in the algorithm are not restricted to being a reduction of
the original program, so long as the final result is a reduction. So FermaT uses a
“destructuring” algorithm (the opposite of restructuring) to convert the program to
“basic blocks” form. Then we slice on the basic blocks form of the program, using
a dataflow algorithm. Then determine which statements in the original program
are present in the sliced blocks program: any statements not still present can be
deleted.

—Construct the Basic Blocks file by analysing control flow;

—Construct control dependencies using the optimal algorithm of Pingali and Bi-
lardi [25].

—Construct the Static Single Assignment form [7,12] of the basic blocks file: this
is a concise representation of all data dependencies in the file. We use the near-
linear algorithm given in [7].

—Track control and data dependencies backwards from the given starting points
and variables using a simple graph reachability algorithm. Mark all node/variable
pairs reached.
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—Delete all statements where none of the modified variables in the statement were
marked. The deletion is carried out as a two-stage process: first paste skip or
exit statements over the unwanted statements (this preserves the positions of
all statements in the program and constructs the reduced program), then use
FermaT transformations to delete all skips and all redundant actions in action
systems.

7.1 Interprocedural Slicing in FermaT

Weiser’s original algorithm for interprocedural slicing [43] constructed dataflow
links from every procedure call to the top of the procedure body, and from the
end of the procedure body to every procedure return point. His algorithm there-
fore does not take into account the calling context, and this leads to two problems:

—If a slice includes one call-site on a procedure then the slice includes all call-sites
on the procedure, and

—If a slice includes one parameter of a procedure, it must include all parameters.

FermaT solves both of these problems by generating procedure summaries.
A procedure summary contains a list of the variables modified (directly or indi-

rectly) by the procedure body. For each modified variable, the summary lists all
the input parameters and global variables which contribute to the new value of the
variable. So to calculate a procedure summary, all we need to do is slice backwards
from each output variable from the end of the procedure body back to the beginning
and see which input parameters are included in the slice. For this slicing procedure
to work accurately, we need to already have available summaries of all procedures
called by the current procedure: so the summaries are calculated in a “bottom up”
traversal of the call graph. Procedures which call no other procedures are sum-
marised first, and so on. For recursive procedures, or mutually-recursive groups
of procedures the recursion is ignored and an initial “empty” set of summaries is
provided: i.e. the system assumes that the outputs do not depend on any inputs.
Then the whole procedure summary calculation is iterated to convergence. This
process is guaranteed to terminate because each iteration can only add dependencies
to the summary. The result is guaranteed to be correct because any dependency
which appears via a recursive call must ultimately resolve to a set of dependencies
which do not depend on recursive calls. So by starting with the “non recursive”
dependencies and iterating we are guaranteed to include all dependencies.

A different approach is given by Forgacs and Gyimothy [15] which works by
finding the set of Strongly Connected Components (SCC) in the call graph. A
strongly connected component is a maximal subgraph in which every vertex is
reachable from every other vertex. A single recursive component forms a SCC,
as does a collection of mutually recursive procedures. Forgacs and Gyimothy’s
approach [15] is to reduce the call graph by replacing each SCC by a single node.
The processing for this “supernode” uses the algorithm of Weiser [43] and therefore
does not track call site information. If the call graph is reduced by replacing each
SCC by a single node, then the graph becomes a DAG (Directed Acyclic Graph)
and there is no recursion. The nodes in the DAG can be topologically sorted to give
a general invocation order which gives the order in which to compute summaries.
This algorithm is efficient for large programs, but has the drawback that within each
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SCC it is not possible to preserve information across call sites. In the worst case,
where every procedure is strongly connected to every other procedure, the algorithm
reduces to Weiser’s simple algorithm. This worst case could occur for example, if
every procedure directly or indirectly calls a particular “utility” procedure which
in turn calls a procedure at the top of the calling hierarchy.

The example at the end of Section 6.5 illustrates the effect of a loss of call site
information: with Weiser’s algorithm, slicing on z in the body of Inc creates a
dependency on the second parameter of Add. This dependency is tracked into
the body of A, so the slicer incorrectly concludes that the first parameter of A is
needed. FermaT’s procedure summaries ensure that the slice is computed correctly
in this case. Each summary is computed from accurate call site information, so each
summary provides accurate information. Even for recursive and mutually recursive
procedures, the iteration to convergence prevents information from “leaking” from
one call site to another.

8. SLICING EXAMPLES

The following WSL program is a translation of the C program in [11]:

(1) i := 1;
(2) posprod := 1;
(3) negprod := 1;
(4) possum := 0;
(5) negsum := 0;
(6) while i 6 n do

(7) a := input[i];
(8) if a > 0
(9) then possum := possum + a;

(10) posprod := posprod ∗ a
(11) elsif a < 0
(12) then negsum := negsum − a;
(13) negprod := negprod ∗ (−a)
(14) elsif test0 = 1
(15) then if possum > negsum

(16) then possum := 0
(17) else negsum := 0 fi;
(18) if posprod > negprod

(19) then posprod := 1
(20) else negprod := 1 fi fi;
(21) i := i + 1 od;
(22) if possum > negsum

(23) then sum := possum

(24) else sum := negsum fi;
(25) if posprod > negprod

(26) then prod := posprod

(27) else prod := negprod fi
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Suppose we want to slice this program with respect to the sum variable at the
end of the program and with the additional constraint that all the input values are
positive. We can either add the assertion {∀i. 1 6 i 6 n ⇒ input[i] > 0} to the top
of the program, or equivalently add the assertion {a > 0} just after the assignment
to a at the top of the loop (i.e. after line 7). We also append the remove statement:

remove(i, posprod, negprod, possum, negsum, n, a, test0)

to the program. This removes all the variables we are not interested in.
We use the assertion to delete unreachable code and then apply the FermaT

syntactic slicing transformation. The resulting conditioned syntactic slice is:

(1) i := 1;
(2) possum := 0;
(3) negsum := 0;
(4) while i 6 n do

(5) a := input[i];
(6) {a > 0};
(7) if a > 0
(8) then possum := possum + a fi;
(9) i := i + 1 od;

(10) if possum > negsum

(11) then sum := possum fi;
(12) remove(i, posprod, negprod, possum, negsum, n, a, test0)

ConSIT [17], a conditioned syntactic slicer, took about 20 minutes on a Pentium II
running at 233MHz to compute the same slice which FermaT computed in a fraction
of a second. Note that ConSIT was unable to remove the variable negsum since it
is a purely syntactic conditioned slicer: both programs have computed a minimal
syntactic slice since no further statements can be deleted. But with semantic slicing
we can do much more. FermaT’s semantic slicer took just over half a second (0.63
seconds) on a 2.6GHz PC to produce the slice:

(1) {input[1..n] > 0};
(2) sum := REDUCE(“+”, input[1..n])

Here, the initial slice over the program deleted the assignments to negsum in the
loop body. A subsequent Constant Propagation replaced references to negsum by
zero, after which a second slicing operation removed negsum from the program. At
this point, the While To Reduce transformation could reduce the simplified while

loop to the assignment:

(1) possum := possum + REDUCE(“+”, input[1..n])

Then a subsequent abstraction and refinement step could simplify the whole pro-
gram: making use of the fact that if input[1..n] > 0 then REDUCE(“+”, input[1..n]) >

0, so FermaT can deduce the result of the test in the final if statement.
All these transformations were carried out automatically by Semantic Slice to

give the result above. This is a concise specification of the final value of sum under
the given slicing condition.
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9. CONCLUSION

In this paper we have provided a complete mathematical foundation for program
slicing in terms of the WSL transformation theory. The mathematical foundation
is independent of the various representations of programs upon which our slicing
algorithms act. Slicing is no longer so closely intertwined with the presence of
absence of various types of edges in the program dependency graphs. Instead,
new ideas about slicing or algorithms for slicing can be represented and analysed
in WSL and then implemented. The implementations can be checked against the
formal definition of slicing: in fact it is even possible to prove the correctness of a
slicing algorithm by transforming the specification into the implementation.

Traditional (or syntactic) slicing, which is restricted to deleting irrelevant state-
ments has the advantage of a finite set of solutions and may be useful in debugging
situations where programmers are already familiar with the layout of the code. But
in more general program comprehension, reverse engineering, reengineering and mi-
gration tasks, it is much more useful to use transformations to simplify the slices
and even present the sliced program at a higher level of abstraction.

A particularly useful application of conditioned semantic slicing is to remove the
error handling code during program comprehension or reverse engineering. Often
much of the code in a program is there to handle errors: this code can obscure the
structure and function of the “main line” code. By adding assertions in appropriate
places and slicing on the outputs of interest a much more concise specification of
the main function can be generated.

We finish with a summary of the various forms of slicing discussed in the paper.
In each case except the last, S’ is a slice of S under the slicing criterion X. In
the last case, the slicing criterion is defined by inserting assignments to the slice

variable at the points of interest.

(1) Syntactic Slice: S′ ⊑ S and

∆ ⊢ S; remove(W \ X) 4 S′; remove(W \ X)

(2) Minimal Slice: S’ is a syntactic slice and if S′′ ⊑ S′ is also a syntactic slice,
then S′′ = S′.

(3) Semantic Slice.

∆ ⊢ S; remove(W \ X) 4 S′; remove(W \ X)

(4) Operational Slice: there exists a sequence of statements S1, . . . ,Sn such that
S1 = S, Sn = S′ and for each 1 ≤ i < n: either Si+1 is a syntactic slice of Si

on X, or:

∆ ⊢ annotate(Si+1) 4 annotate(Si)

(5) Dynamic Syntactic Slice: S′ ⊑ S and

∆ ⊢ {A}; S; remove(W \ X) 4 {A}; S′; remove(W \ X)

where A is of the form: v1 = V1 ∧ v2 = V2 ∧ · · · ∧ vn = Vn.

(6) Conditioned Syntactic Slice: S′ ⊑ S and

∆ ⊢ {A}; S; remove(W \ X) 4 {A}; S′; remove(W \ X)

where A is unrestricted.
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(7) Conditioned Semantic Slice:

∆ ⊢ S′′; remove(W ) 4 S′; remove(W )

where S” is constructed from S by adding assertions and assignments to a new
variable, slice, at the points of interest.
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Appendix

In this Appendix we briefly describe the METAWSL notation used in the source
code for the Simple Slice transformation, and then give the source itself.

The @Simple Slice Test procedure tests the applicability conditions for the trans-
formation and calls either @Pass (if the conditions are met), or @Fail (passing a
string which describes the reason for the failure). The @Simple Slice Code func-
tion implements the transformation by calling the @Slice function on the currently
selected statement.

@I The currently selected item (statement, expression, condition etc.)

@GT Returns the “generic type” of the given item (Statement, Expression etc.)
@ST Returns the “specific type” (a Statement can be a While, Assignment etc.)
@V Returns the value of the given item (eg the name of the variable)
@Type Name Returns a string giving the name of the type

@Make Name Convert a string to the internal representation of a name
@N String Convert a name to a string (the opposite of @Make Name)
@Stat Types Returns the set of specific types of statements in the given item

@Cs Returns a list of the components of the given item
@Size Returns the number of components in the given item
@Make Returns a new item with the given specific type, value and components
@Assigned Returns the list of variables assigned in the given item

@Used Returns the list of all variables appearing in the given item
Iˆn Returns the nth component of item I

Table I. METAWSL functions used in the simple slicer

Table I describes the METAWSL functions used in the program. The first com-
ponent of a var is the list of assignments, the first component of that is the first
assignment, and the first component of an assignment is the assigned variable. So
if I is the statement var 〈v := e〉 : S end then Iˆ1ˆ1ˆ1 is v, Iˆ1ˆ1ˆ2 is e and Iˆ2 is S.

(1) proc @Simple Slice Test() ≡
(2) if @GT(@I) 6= Statements ∧ @GT(@I) 6= Statement

(3) then @Fail(“Can only slice statements.”)
(4) elsif @Stat Types(@I) ⊆
(5) {Cond, D If, While, Assignment, Assert, Skip, Abort}
(6) then foreach Lvalue do

(7) if @ST(@I) 6= Var Lvalue

(8) then @Fail(“All assignments must be to simple variables.”) fi od;
(9) foreach Statement do

(10) if @ST(@I) = Assignment ∧ @Size(@I) > 1
(11) then @Fail(“Statement contains a parallel assignment.”) fi od;
(12) if ¬@Failed? then @Pass fi

(13) else @Fail(“Current item contains an item which cannot be sliced.”) fi.;
(14)

(15) proc @Simple Slice Code(Data) ≡
(16) var 〈X := MAP(“@Make Name”, @Split(Data)), R := 〈〉〉 :
(17) print(“Simple Slice, input variables are: ”,

(18) @Join(“ ”, MAP(“@N String”, X)));
(19) R := @Slice(@I, @Make Set(X));
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(20) @Paste Over(R[1]);
(21) print(“Simple Slice, output variables are: ”,

(22) @Join(“ ”, MAP(“@N String”, R[2]))) end.;
(23)

(24) funct @Slice(I, X) ≡
(25) var 〈R := 〈〉, new := 〈〉, newX := 〈〉〉 :
(26) if @ST(I) = Statements

(27) then for S ∈ REVERSE(@Cs(I)) do

(28) R := @Slice(S, X);
(29) new := 〈R[1]〉 ++ new;
(30) X := R[2] od;
(31) R := 〈@Make(Statements, 〈〉, new), X〉
(32) elsif @ST(I) = Abort

(33) then R := 〈I, 〈〉〉
(34) elsif @GT(I) = Statement ∧ X ∩ @Assigned(I)) = 〈〉
(35) then R := 〈@Skip, X〉
(36) elsif @ST(I) = Assignment

(37) then R := 〈I, (X \ @Assigned(I)) ∪ @Used(I)〉
(38) elsif @ST(I) = Cond ∨ @ST(I) = D If

(39) then for guard ∈ @Cs(I) do

(40) R := @Slice(guardˆ2, X);
(41) new := 〈@Make(Guarded, 〈〉, 〈guardˆ1, R[1]〉)〉 ++ new;
(42) newX := newX ∪ @Variables(guardˆ1) ∪ R[2] od;
(43) R := 〈@Make(@ST(I), 〈〉, REVERSE(new)), newX〉
(44) elsif @ST(I) = While

(45) then var 〈B := @Variables(Iˆ1),S := Iˆ2, newX := X〉 :
(46) do R := @Slice(S, newX);
(47) R[2] := R[2] ∪ newX ∪ B;
(48) if R[2] = newX then exit(1) fi;
(49) newX := R[2] od end;
(50) R := 〈@Make(While, 〈〉, 〈Iˆ1, R[1]〉), R[2]〉
(51) elsif @ST(I) = Var

(52) then var 〈v := Iˆ1ˆ1ˆ1, e := Iˆ1ˆ1ˆ2,S := Iˆ2, newX := 〈〉〉 :
(53) R := @Slice(Iˆ2, X \ {@V(v)});
(54) S := R[1];
(55) newX := (R[2] \ {@V(v)}) ∪ ({@V(v)} ∩ X);
(56) if @V(v) ∈ R[2]
(57) then R := 〈fill Statement var 〈∼?v := ∼?e〉 : ∼?S end endfill,

(58) newX ∪ @Used(e)〉
(59) else R := 〈fill Statement var 〈∼?v := BOTTOM〉 : ∼?S end endfill,

(61) else ERROR(“Unexpected type: ”, @Type Name(@ST(I))) fi;
(62) (R).
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