Derivation of a Sorting Algorithm

Martin Ward
Computer Science Dept
Science Labs
South Rd
Durham DH1 3LE

February 25, 1999

1 Transformations

Theorem 1 Proving Termination: If < is a well-founded partial order on some set I' and t is a
term giving values in I' and #g is a variable which does not occur in S then if

Vio. (P A t < t9) = WP(SH{P A t <tg}/X], true)) (1)

then P = WP(proc X = S., true).
Theorem 2 If < is a well-founded partial order on some set I' and t is a term giving values in I’
and tg is a variable which does not occur in S then if

Vio. (P A t<tg) =S < SH{P A t=<to}; S'/X)) (2)

then P = S’ < proc X = S.
Theorem 3 I[fAFS; < Sand AF Sy < S then At join S; LI Sy nioj < S.

2 An Example of an Algorithm Derivation

In this section we sketch the derivation of a version of Hoare’s Quicksort algorithm [3]. This
illustrates the use of the join construct in writing concise abstract specifications which can be
transformed into efficient algorithms. It also illustrates the application of the theorem on recursive
implementation of statements (Theorem 2) and the refinement rules.

2.1 Notation

We use a..b to represent the sequence of integers from a to b inclusive. If A is an array then
Ala .. b] represents the sequence of array elements Afa| to A[b] inclusive. On the left hand side of an
assignment it indicates that A takes on a new value with only those elements changed. If m is less
than every element of Afa..b] we write m < Ala..b]. Similarly if each element of A[a’..b'] is less
than every element of Afa..b] we write Ala’..b'] < Ala..b]. The array A is sorted if each element
is less than or equal to the next ie:

sorted(Ala..b]) =5, Va <i<b. Ali] < A[i + 1]
An array A is a permutation of A’ if they contain the same elements in a different order, ie:

perm(Ala..b,A'la..b]) =, Im:a..b = a..b.Va<i<b Ali]=A[n(i)]

DF

2.2 The Specification

With this notation the specification of a sorting program is simple. We want a program which leaves
array A sorted and which achieves this end by carrying out a permutation of the elements of the
array. Thus the specification of a program which sorts Aa..b] may be written:

SORT(a,b) =, join SORTED(a,b) L PERM(a,b) nioj

where

SORTED(a,b) =, (Ala..b])/{).sorted(Ala..b])

DF

and
PERM(a,b) =, Ala..b]:= A'la..b].perm(Ala..b],A'la..b])

This concisely expresses what a sorting algorithm is to achieve without being biased to any
particular implementation (the direct translation: “try every possible sorted array until one is found
which is a permutation of the original” cannot be regarded as an algorithm—particularly if the set
of possible element values is infinite!). An important thing to note about this specification is that
Theorem 3 provides a simple way to test the correctness of a possible implementation: test that it
refines both components of the join.

So one way (not necessarily the clearest!) to write a program to sort the array Afa..b] where
b>ais:
SORT(a,b) = join for i :=a to b step 1 do
(7)/()-(a <j < n);

(Alil, Alj]) := (Alj], Ali]) o Swap Alj] and A[i]

U (z) /() .true; Pick any value for z
Ala] := z;
fori:=a+1tobstep1do
() /().(x > Afi — 1]); Pick a value bigger than Ai — 1]

Ali] := = od nioj.

2.3 Quicksort

The Quicksort algorithm was described by Hoare in [3]. The basic idea is to divide the array into two
components which can be sorted separately resulting in a sorted array. Thus we have the following
outline:
QSORT(a,b) = begin p :(Ala..b],p) := (A'la..b],p").Q;
SORT(a,p—1); SORT(p+ 1,b) end
We need to determine Q: ie what to assign to A and p so that QSORT is a refinement of SORT.
Since SORT(a,b) is a refinement of PERM(a,b), the same must be true of QSORT. Thus the
assignment involving Q, followed by two refinements of PERM is also a refinement of PERM. This
means that this assighment must also be a refinement of PERM’ (a modification of PERM which
also assigns to p), so we can join PERM’(a,b) to the first component of QSORT thus:
QSORT(a,b) =
begin p :join PERM'(a,b)
U(Ala..b],p) := (A'[a..b],p').Q nioj;
SORT(a,p —1); SORT(p + 1,b) end

where
PERM'(a,b) =,. (Ala..b],p):= (A'la..b],p').perm(Ala..b], A'[a..b])

Turning to the other component of SORT we note that A can only finish sorted if after the join
in QSORT we have: Ala..p — 1] < Alp] < Al[p + 1..b] (this relation is invariant over the inner

SORTSs so it must hold after the join statement). Thus we arrive at the following definition of
QSORT:

QSORT(a,b) =
begin p :join (Ala..b],p) := (A'[a..b],p).perm(Ala..b], A'[a..b])
U(Ala..b],p) :=(A'[a..b],p).(Aa..p' — 1] < A'[p'] < A'[p' +1..b]) nioj
SORT(a,p —1); SORT(p + 1,b) end

To formally verify that this is a correct refinement of SORT":

e Prove that it refines PERM(a, b). This follows because SORT refines PERM and a sequence
of PERM statements is equivalent to one PERM;

e Prove that it refines SORTED(a, b) This follows because:

1. The join establishes Ala..p— 1] < A[p] < A[p+1..b];

2. This relation is preserved by SORT(a,p — 1) and SORT'(p+ 1, b) since it is preserved by
PERM(a,p — 1) and PERM (p + 1,b) (which are defined in the obvious way);

3. SORT(a,p — 1) establishes sorted(Afa..p — 1]) and
SORT (p + 1,b) establishes sorted(A[p +1..b]);

these three relations together establish sorted(A[a, b)]);

Thus QSORT(a,b) refines both components of SORT(a,b) and therefore by Theorem 3 it is a
refinement of SORT(a, b) itself.

At the moment QSORT is still defined in terms of SORT. However, if we take out the case
a > b (when the array is already sorted) we can use the theorem on recursive implementation of
specifications (Theorem 2) to automatically derive a recursive version:
proc QSORT(a,b) =
ifb>a

then begin p :join (Afa..b],p) := (A'[a..b],p’).perm(Ala..b], A'[a..b])
U (Ala..b,p)/().a<p<b A (Ala..p—1] < Alp] < A[p+ 1..}]) nioj
QSORT(a,p — 1); QSORT(p + 1,b) end fi.

This program is closer to an implementation, but still contains a join construct to which we
now turn our attention. The effect of this construct is to permute A and assign some value to p so
that the relation Ala..p — 1] < Alp] < A[p+ 1..0] is satisfied.

We will implement this using a loop: for the loop invariant we weaken the condition by in-
troducing two variables i, to replace p. (This technique of “weakening the required condition” is
discussed by Gries in [2]). We arbitrarily choose the element A[b] to be the element which ends up
in A[p]. Our loop invariant is: Afa..i — 1] < A[b] < A[j + 1..b] The terminating condition will be
i > j. On termination we can swap A[j + 1] and A[b] and set p := j + 1 and our required relation
will be satisfied. The invariant is easily initialised with the assignments ¢ := a; j := b — 1. We have
the following loop:
begini:=a, j:=b—-1:

while 7 < j do
{Ala..i] < AP < A[j..b]};
(Ala..b],i,5) := (A'a..b], ', j").
perm([a..b], A’[a..b]) (' >iV 3 <j)AN (Aa..i! —1] < AD] < A[j' +1..1]) od;
(AJj + 1, Alb]) = (Alpl, Alj +1)); p = j end

To prove that this correctly refines the join above we can use the theorem on termination of
recursion (Theorem 1) to prove that the while loop terminates (first using the definitional trans-
formation of while to express it as a suitable tail recursion). The term max(j — ,—1) is re-
duced at each execution of the body and always > —1 and the body of the loop must terminate.
The invariant plus termination condition together prove that the loop establishes Afa..p — 1] <
Alp] < Alp + 1..b]. Finally, note that the body of the loop is a refinement of: (A[a..d],1,7) :=
(A'la..b],4,j").perm(Ala..b],A'la..b]) A (' >i V j' < j) and a loop with this body is a refine-
ment of PERM. So by Theorem 3 this is a correct refinement of the join.

Finally, to refine the atomic description we consider the cases Afi + 1] < A[b], A[j — 1] > A[b].
In these cases we can increment ¢ or decrement j as appropriate. For the case A[i + 1] > A[b],
Alj — 1] < A[b] we can swap A[i + 1] and A[j — 1] and increment i and decrement j. This leads to
the following executable implementation of quicksort:
proc QSORT(a,b) =
ifb>a
then begin p :
begini:=a—-1, j:=b:
while i < j —1do
if Ali+1] < A »i:=i+1
DAj—1]>Ap| —»j:=j—1
OAfi+1] > Ab) N A[j — 1] <A »i:=i+1; j:=j—1;
(AL, ALj)) = (Alj], Alil) i od;
(A[j], A1) = (Alp), A[j]); p = end
QSORT(a,p — 1); QSORT(p + 1,b) end fi.

This algorithm, although proven correct, does have some flaws as far as efficiency is concerned.
The algorithm degenerates to O(n?) in the case of an already sorted array. It also does many more
tests in the inner loop than necessary. To ensure the best efficiency it is necessary to try to split the
array into roughly equal-sized components at each step. Sedgewick [4] suggests using the median
of three elements taken from the array as the pivot. The elements being the first, last and middle
elements in the array. Naturally, this is only sensible when there are at least three elements in the
array. With this choice the recursive program looks like this:
proc QSORT(a,b) =
ifb—a<4

then {b — a < 4}; SORT(a, b)

else begin p:

if Ala) > Alp] then ([a], Alp]) := (Alp], Ala]) £
if Ala] > A[b] then (A[a], Ab]) := (A[b], Ala]) fi;
if Alp] > AT then (Alp], AP} = (A5, Alpl) i
(Alp], Alb — 1)) = (A]b — 1], Alpl);

{Ala] < Alb 1] < AB);

join (Ala+1..b—2],p) :==(A'la+1..b—2],p).

perm(Ala+1..b6—2],A'la+1..b—2))
U (Ala..b],p)/).a+1<p<b—2 A (Ala..p] < A[b—1] < A[p+ 1..b]) nioj;
(Alpl, Alb —1]) := (A[b — 1], Ap]);
QSORT(a,p — 1); QSORT(p + 1,b) end fi.

The proof that this refines SORT is straightforward. For the implementation of the join we replace
two occurrences of p by new variables ¢ and j and introduce a loop with the invariant: Afa..i—1] <
Alb—1] < A[j + 1..b]. We can initialise the invariant with the assignments i :=a; j:=b— 1. We
get the following loop which implements the join statement above:
{Ala] < A[b—1] < A]b]}; begini:=a+1; j:=b—2:
while i < j do
if Al < Ab—1] —»i:=i+1
OAj] > Ap—1] - j:=j—1
O A[f] > Ab—1] A Alj] < A[b—1]
— (A[i], Alj]) = (], Ali)); i =i+ 1; j = j — 1 od:
p:=j+1end

The next stage is to use program transformations to turn this into an efficient algorithm. First
we resolve the nondeterminacy in the if statement in such a way that the third arm is chosen in

preference to the others (this ensures that the subarrays are more equal in size when there are many
equal elements):
{Ala] < A[b—1] < Ab]}; begini:=a+1; j:=b—2
{A[i] < A]p—1] < A[j]};
while i < j do
if Ali] < Ab—1] theni:=i+1
elsif A[j] > Ab— 1] then j:=j—1
else (Ali], Alj]) := (A[j), Alil); i == i+1; j = j — 1 od;

p:=j+1end

Next we do an “entire loop unroll” which copies the loop into one terminal position:
begini:=a+1; j:=b—2:
{Ali] < Alb— 1] < A[j]};
while i < j do
if Afi] < A[b— 1] then i :=17+ 1;
while i < j A Afi] < Ab—1] doi:=i+1od
elsif Alj] > Alb— 1] then j :=j — 1
else (Ali], Alj]) := (A[j], Ali)); i = i+1; j = j — 1 i od;
p:=j+1lend

For the inner while loop we know that A[i + 1] < A[b— 1] = ¢ < j because from the loop invariant
A[j] = A[b — 1]. So we can remove this test from the while. We can insert a similar loop in the
second arm of the if statement to get:
begini:=a+1; j:=b—2:
{Al] < A — 1] < A[j])
while i < j do
if Afi] < A[b— 1] then i :=17 + 1;
while Afi] < A[b—1]doi:=i+ 1 od
elsif A[j] > Ab— 1] then j :— j — 1
while A[j] > A[b
else (A[i], Aljl) =

~1doj:=jlod
(Alj], Ali]); t:=1+1; j:=j— 11i od;
p:=j+1end

After the first inner while loop we have A[i] > A[b — 1]. If we selectively unroll the body of the
loop with the extra test A[j] > A[b — 1] then we can prune it as follows:
begini:=a+1; j:=b—2:
{Al] < ADp— 1] < A[j]}:
while ¢ < j do
if Afi] < A[b— 1]
then i :=17 + 1;
while Ai] < Ab—1] do i :=i+ 1 od;
if Aj] > Alb— 1] then j = j — 1
while A[j] > A[b
else (A[i], A[j]) = (4

—1]doj:=j—-1od =
U, Ald]); i:=i+1; ji=j-11
elsif A[j] > Al — 1]
then j:=j -1
while A[j] > A[b
else (Ali], Aljl) =
p:=j+1lend

—1]doj:=j-1cd
(Al Ali]); i:==i+1; j:=j — 11fi od;

At the point * we have A[i] > A[b— 1] and A[j] < A[b— 1] so if we unroll here the body reduces to
if i < j then (Afi], Alj]) := (A[j], A[i]); i :=i+1; j:= j— 1 fi. With some simple manipulation,
the body of the first if clause becomes:

while A[i] < A[b—1] doi:=i+ 1 od;
while A[j] > A[b—1] do j:=j — 1 od,;
if i < 7 then (Ali, Alj}) = (], Ali); i:=i+1; je=j 18

We can similarly express the second if clause as:
while A[j] > A[b—1] do j :=j — 1 od;
if i < j then (A[i], Alj)) = (A[j), Alil); i:=i+1; ji=j 16

and insert while A[i] < A[b — 1] do i := i+ 1 od at the beginning. We can do the same with the
third if clause (insert two redundant while loops and a redundant test). With these additions the
whole if test is redundant so the loop can be simplified to:
begini:=a+1; j:=b—2:
{Ali] < Alb— 1] < A[j]};
while ¢ < j do
while Afi] < Ab — 1]
while A[j] > A[b— 1]
if i < j then (A[i], A[5])
pi=j+1end

oi:=1+ 1 od;
0j:=j—1od;
= (Alj], Ald]); i:=i+1; j:=j— 14 od;

do
do

Re-write the loops as do ... od loops:
begini:=a+1; j:=b—2:
{Ali] < Alb— 1] < A[j]};
do if 7 > j then exit fi;
while Afi] < A[b—1] doi:=1i+ 1 od;
while A[j] > A[b—1] do j :=j — 1 od;
if 7 > j then exit fi;
(ALi], ALj)) == (L), Alil); 6= i+ 1; j = j — 1 od;
p:=j+1end

Now the condition 7 < j is true initially and true at the end of the loop body, so the first test for
exit can be removed. The statements 2 := ¢+ 1; j := j — 1 can be moved to the beginning of the
loop by initialising to ¢ := a; j := b—1. These can be absorbed into the inner while loops by “loop
inversion”:
begini:=a; j:=b—1:
{Ali] < Alb— 1) < A[j]};
dodoi: =i+ 1;
if A[i] > A[b — 1] then exit fi od;
doj:=j—-1
if A[j] < A[b — 1] then exit fi od;
if : > j then exit fi;
(Ali], Alj]) = (Alj], Afi]) od;
p:=j+1end

Here we have replaced while loops by loops with multiple exits, the definitional transformations
for these constructs are given in [6], their use is argued by Bochmann [1| and Taylor [5] among
others.

This is a highly optimised version; the inner loops basically do a single test and increment.
However, a simple insertion sort is still more efficient for “small” partitions. We can get the best of
both worlds by using quicksort on the large partitions and ignoring small partitions. This results
in a file which is “nearly sorted” and which can be sorted efficiently in linear time using insertion
sort. To develop this algorithm replace the original SORT specification by the following NSORT
(nearly sort):

NSORT(a,b) =, join (Ala..b])/().nsorted(Ala..b]) U PERM(a,b) nioj

where

nsorted(Ala..b]) =

DF

Va<i<=bAla..i—k <Al <

Ali+ k.. b]

where k is the size of the partitions to ignore (with & = 1, NSORT is equivalent to SORT). With this
specification, for b—a+1 < k, NSORT is refined by skip. This leads to the following nearly-sorting

algorithm:
proc NQSORT(a,b)
ifb—a+1<k
then skip
else begin p :

p:= [(a+0)/2];

if Ala] > A[p| then (A[a], A[p]) := (A[p], Ala]) fi;
if Ala] > A[b] then (Alal, A[b]) := (A[b], Ala]) £i;
if Alp| > A[b] then (A[p|, A[b]) := (A[b], Alp]) fi;
(Alp], A[b — 1)) := (A[b — 1], Alp]);
begini:=a; j:=b—1:

{Ali] < Ap - 1] < Afjl};

dodoi:=i+1;
if Ai] > A[b — 1] then exit fi od;
doj:=j 1

if Alj] <

Alb — 1] then exit fi od;

if > j then exit fi;
(A[d], Alj]) == (Alj], Ali]) od;

p:=j+1end
(Alpl, Alb —1]) := (A[b — 1], Ap]);
NQSORT(a,p —1); NQSORT(p + 1,b) end fi.

Removing the recursion and introducing a stack AS to implement the parameters

the following algorithm:

proc QSORT(a,b)

AS = ();

= begin ¢, j,v, AS :

ggﬁb—a+1>k

a and b we get

if Ala] > ALj] then (Alal, AL} :— (Alj] Ala) f
if Afa] > A[b] then (Ala], A[b]) := (A[b], Ala]) fi
if A[j] > A[D then (A[j], Alb]) == (A[t], A[j)
(ALj], Alb — 1]) = (Alb — 1], A[j]);
i:=a; j:=b—1; v:=A[b—1];
dodoi: =i+ 1;
if Afi] > j then exit fi od;
doji=j-1;

if A[j] < j then exit fi od;
if 7 > j then exit fi;
(Ali], Alg]) := (Al5], A[i]) od;

Ab—1:=A[j+1]; Alj+1] =
ifj a>bj 2

then AS < a; AS+ j;a:=5+2
else AS«+ j+2; AS«+b; b:=j

else if AS = () then exit

fi

else b + AS; a <+ AS fi fi od;

fori:=a-+1tobstep1ldo

vi=ali; j =4

Here, the first loop uses nearly-quicksort to get A sorted to within k& (a parameter to be empirically
determined), then the for loop finishes the job using insertion sort.

Bibliography

[1] G. V. Bochmann, “Multiple exits from a loop without the goto,” Comm. ACM 16 (July, 1973),
443-444.

[2] D. Gries, The Science of Programming, Springer-Verlag, New York-Heidelberg-Berlin, 1981.

[3] C. A. R. Hoare, “Quicksort,” Comput. J. 5 (1962).

[4] R. Sedgewick, Algorithms, Addison Wesley, Reading, MA, 1988.

[6] D. Taylor, “An Alternative to Current Looping Syntax,” SIGPLAN Notices 19 (Dec., 1984), 48—
53.

[6] M. Ward, “Proving Program Refinements and Transformations,” Oxford University, DPhil The-
sis, 1989.

