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Abstract

In this paper we consider a particular class of algorithms which present certain difficulties
to formal verification. These are algorithms which use a single data structure for two or more
purposes, which combine program control information with other data structures or which are
developed as a combination of a basic idea with an implementation technique. Our approach
is based on applying proven semantics-preserving transformation rules in a wide spectrum lan-
guage. Starting with a set theoretical specification of “reachability” we are able to derive
iterative and recursive graph marking algorithms using the “pointer switching” idea of Schorr
and Waite. There have been several proofs of correctness of the Schorr-Waite algorithm, and a
small number of transformational developments of the algorithm. The great advantage of our
approach is that we can derive the algorithm from its specification using only general-purpose
transformational rules: without the need for complicated induction arguments. Our approach
applies equally well to several more complex algorithms which make use of the pointer switching
strategy, including a hybrid algorithm which uses a fixed length stack, switching to the pointer
switching strategy when the stack runs out.
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1 Introduction

There are several approaches to the formal development of executable programs from abstract
specifications (expressed in say First Order Logic), for instance:

1. Write the program and then attempt to formally verify its correctness against the specific-
ation. This has the problem that most informally developed programs will contain bugs, so
the verification step is almost certain to fail. Also, for a large and complex program, after
the fact verification is extremely difficult;

2. Develop the program and its correctness proof concurrently, this is the approach used by
Gries [18] for example;

3. Starting with the specification, successively transform it into an executable program. There
are two variants on this approach:

(a) The user invents ad hoc refinements at each stage which must be verified after the fact.
Each step will therefore carry with it a set of proof obligations, which are theorems which
must be proved for the refinement step to be valid;

(b) The user selects and apply a sequence of transformation rules from a catalogue of rules,
which have been previously proven to preserve the semantics. The correctness of the
resulting program is thus guaranteed by construction.

Approach (3a), which is generally favoured in the Z and VDM communities, is used in several pro-
gram development systems including µral [23], RAISE [31] and the B-tool [1]. These systems thus
have a much greater emphasis on proofs, rather than the selection and application of transformation
rules. Discharging these proof obligations can often involve a lot of tedious work, and much effort is
being exerted to apply automatic theorem provers to aid with the simpler proofs. However, Sennett
in [36] indicates that for “real” sized programs it is impractical to discharge much more than a
tiny fraction of the proof obligations. He presents a case study of the development of a simple
algorithm, for which the implementation of one function gave rise to over one hundred theorems
which required proofs. Larger programs will require many more proofs. In practice, since few if
any of these proofs will be rigorously carried out, what claims to be a formal method for program
development turns out to be a formal method for program specification, together with an informal
development method. For this approach to be used as a reverse-engineering method, it would be
necessary to discover suitable loop invariants for each of the loops in the given program, and this is
very difficult in general, especially for programs which have not been developed according to some
structured programming method.

Transformational development seems to be the most suitable for scaling up to large programs:
this is because a single proof of a large program will be almost impossible to understand let alone
develop, while transformational development allows the “proof” to be broken down into small
manageable steps. The great advantage of method (3b) over (3a) is that the proof steps only
need be carried out once for each transformation: once a transformation has been proved and its
correctness conditions determined, it can be applied to many different programs without generating
further proof obligations. This is particularly advantageous when the transformation process can be
carried out by a computer system which takes care of checking all applicability conditions, applying
the transformations, and maintaining the various program versions.

There are two types of proof theory in transformational programming: the algebraic and the
model based. The algebraic approach describes programs as an algebra of expressions: a set of
axioms is given which defines certain equivalences and refinements between programs. Two general
programs are defined to be equivalent if there exists a sequence of these “axiomatic transformations”
which will transform one program into the other. The general idea is that the “meaning” of a
programming construct is defined by giving a list of properties which the construct must satisfy.
Any other construct which satisfies these properties can be substituted for the given one and all
proofs will still be valid. In contrast, the model based approach gives a model for the semantics
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of the programming language which maps each program to some mathematical object (such as a
function or a relation) which is its “semantics”. Two programs are defined to be equivalent if they
have the same semantics.

In the model based approach, all the required proofs are captured in a library of general purpose
transformations, but if the model is weak a plethora of low-level transformations is applicable at
each step (as has been reported by Balzer [6]). In contrast, experience to date with transformations
defined using denotational semantics, and proved using weakest preconditions expressed in infinitary
logic, suggests that the method is sufficiently powerful to form the basis of a practical transformation
system. The basis for our formal transformation theory is a Wide Spectrum Language (called
WSL), developed in [39,43] which includes low-level programming constructs and high-level abstract
specifications within a single language. Working within a single language means that the proof
that a program correctly implements a specification, or that a specification correctly captures the
behaviour of a program, can be achieved by means of formal transformations in the language. We
don’t have to develop transformations between the “programming” and “specification” languages.
An added advantage is that different parts of the program can be expressed at different levels of
abstraction, if required.

1.1 Criteria for Success

We consider the following criteria to be important for any practical wide-spectrum language and
transformation theory:

1. General specifications in any “sufficiently precise” notation should be included in the lan-
guage. For sufficiently precise we will mean anything which can be expressed in terms of
mathematical logic with suitable notation. This will allow a wide range of forms of specifica-
tion, for example Z specifications [20] and VDM [22] both use the language of mathematical
logic and set theory (in different notations) to define specifications. The “Representation The-
orem” (proved in [43]) proves that our specification statement is sufficient to specify any WSL
program (and therefore any computable function, since WSL is certainly Turing complete);

2. Nondeterministic programs. Since we do not want to have to specify everything about the
program we are working with (certainly not in the first versions) we need some way of spe-
cifying that some executions will not necessarily result in a particular outcome but one of an
allowed range of outcomes. The implementor can then use this latitude to provide a more
efficient implementation which still satisfies the specification. (Note that the example in this
paper is a deterministic program derived from a deterministic specification);

3. A well-developed catalogue of proven, general-purpose transformations which do not require
the user to discharge complex proof obligations before they can be applied. In particular,
it should be possible to introduce, analyse and reason about imperative and recursive con-
structs without requiring loop invariants. It should also be possible to derive algorithms from
specifications without recourse to complicated induction proofs;

4. Techniques to bridge the “abstraction gap” between specifications and programs. See Sec-
tion 4.3 and [45,49] for examples;

5. Applicable to real programs—not just those in a “toy” programming language with few
constructs. This is achieved by the (programming) language independence and extendibility
of the notation via “definitional transformations”. See [40,42] for examples;

6. Scalable to large programs: this implies a language which is expressive enough to allow
automatic translation from existing programming languages, together with the ability to cope
with unstructured programs and a high degree of complexity. Obviously, space constraints
preclude the detailed discussion of a really large program, instead we will focus on scaling
the method from simple algorithms to complex data-intensive algorithms. See [46] for a
description of the FermaT tool: a transformation system based on our theory which has been
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used successfully to reverse engineer commercial Assembler modules ranging up to 40,000
lines of code.

A system which meets all these requirements would have immense practical importance in the
following areas:

• Improving the maintainability (and hence extending the lifetime) of existing mission-critical
software systems;

• Translating programs to modern programming languages, for example from obsolete Assem-
bler languages to modern high-level languages;

• Developing and maintaining safety-critical applications. Such systems can be developed by
transforming high-level specifications down to efficient low level code with a very high de-
gree of confidence that the code correctly implements every part of the specification. When
enhancements or modifications are required, these can be carried out on the appropriate
specification, followed by “re-running” as much of the formal development as possible. Al-
ternatively, the changes could be made at a lower level, with formal inverse engineering used
to determine the impact on the formal specification;

• Extracting reusable components from current systems, deriving their specifications and stor-
ing the specification, implementation and development strategy in a repository for subsequent
reuse. This is discussed in [44].

1.2 Our Approach

In developing a model based theory of semantic equivalence, we use the popular approach of defining
a core “kernel” language with denotational semantics, and permitting definitional extensions in
terms of the basic constructs. In contrast to other work (for example, [7,8,32]) we do not use a
purely applicative kernel; instead, the concept of state is included, using a specification statement

which also allows specifications expressed in first order logic as part of the language, thus providing
a genuine wide spectrum language.

Fundamental to our approach is the use of infinitary first order logic (see [25]) both to express the
weakest preconditions of programs [13] and to define assertions and guards in the kernel language.
We use the logic Lω1ω which allows countably infinite disjunction and conjunction, and finite nesting
of quantifiers. It is the smallest infinitary logic. Engeler [14] was the first to use infinitary logic to
describe properties of programs; Back [4] used such a logic to express the weakest precondition of a
program as a logical formula. His kernel language was limited to simple iterative programs. We use
a different kernel language which includes recursion and guards, so that Back’s language is a subset
of ours. We show that the introduction of infinitary logic as part of the language (rather than just
the metalanguage of weakest preconditions), together with a combination of proof methods using
both denotational semantics and weakest preconditions, is a powerful theoretical tool which allows
us to prove some general transformations and representation theorems.

The denotational semantics of the kernel language is based on the semantics of infinitary first
order logic. Kernel language statements are interpreted as functions which map an initial state
to a set of final states (the set of final states models the nondeterminacy in the language: for a
deterministic program this set will contain a single state). A program S1 is a refinement of S2 if,
for each initial state, the set of final states for S1 is a subset of the final states for S2. Back and
von Wright [5] note that the refinement relation can be characterised using weakest preconditions
in higher order logic (where quantification over formulae is allowed). For any two programs S1 and
S2, the program S2 is a refinement of S1 if the formula ∀R.WP(S1,R)⇒WP(S2,R) is true. This
approach to refinement has two problems:

1. It can be difficult to find a finite formula which characterises the weakest precondition of a
general loop or recursive statement. Suitable invariants can sometimes provide a sufficiently
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good approximation to the weakest precondition but, as already noted, these can be difficult
to discover for large and complex programs;

2. Second order logic is incomplete in the sense that not all true statements are provable. So
even if the refinement is true, there may not exist a proof of it.

In [43] we present solutions to both of these problems. Using infinitary logic allows us to give a
simple definition of the weakest precondition of any statement (including an arbitrary loop) for
any postcondition.

A program S is a piece of formal text, i.e. a sequence of formal symbols. There are two ways in
which we interpret (give meaning to) these texts:

1. Given a structure M for the logical language L from which the programs are constructed,
and a final state space (from which we can construct a suitable initial state space), we can
interpret a program as a function f (a state transformation) which maps each initial state s
to the set of possible final states for s. By itself therefore, we can interpret a program as a
function from structures to state transformations;

2. Given any formula R (which represents a condition on the final state), we can construct the
formula WP(S,R), the weakest precondition of S on R. This is the weakest condition on
the initial state such that the program S is guaranteed to terminate in a state satisfying
R if it is started in a state satisfying WP(S,R). For example, the weakest precondition
of the if statement if B then S1 else S2 is (B ⇒ WP(S1,R)) ∧ (¬B ⇒ WP(S2,R)).
Using infinitary logic we can define the weakest precondition of a recursive statement as the
countable disjunction of the weakest preconditions of the finite truncations:

WP(proc F ≡ S.,R) =
DF

∨

n<ω

WP(proc F ≡ S.n,R)

where proc F ≡ S.0 =
DF

abort and proc F ≡ S.n+1 =
DF

S[proc F ≡ S.n/F ] which
is S with each occurrence of F replaced by proc F ≡ S.n.

These interpretations give rise to two different notions of refinement: semantic refinement and
proof-theoretic refinement.

1.3 Semantic Refinement

A state is a collection of variables (the state space) with values assigned to them; thus a state is a
function which maps from a (finite, non-empty) set of variables to a set of values. There is a special
extra state ⊥ which is used to represent nontermination or error conditions. A state transformation
f maps each initial state s in one state space, to the set of possible final states f(s) which may be
in a different state space. If ⊥ is in f(s) then so is every other state; also f(⊥) is the set of all
states (including ⊥).

Semantic refinement is defined in terms of these state transformations. A state transformation
f is a refinement of a state transformation g if they have the same initial and final state spaces and
f(s) ⊆ g(s) for every initial state s. Note that if ⊥ ∈ g(s) for some s, then f(s) can be anything
at all. In other words we can correctly refine an “undefined” program to do anything we please. If
f is a refinement of g (equivalently, g is refined by f) we write g ≤ f . A structure for a logical
language L consists of a set of values, plus a mapping between constant symbols, function symbols
and relation symbols of L and elements, functions and relations on the set of values. A model for a
set of sentences (formulae with no free variables) is a structure for the language such that each of
the sentences is interpreted as true. If the interpretation of statement S1 under the structure M is
refined by the interpretation of statement S2 under the same structure, then we write S1 ≤ M S2.
If this is true for every model of a countable set ∆ of sentences of L then we write ∆ |= S1 ≤ S2.
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1.4 Proof-Theoretic Refinement

Given two statements S1 and S2, let x be a sequence of all the variables assigned in either S1

or S2 and let x
′ be a sequence of new variables of the same length as x. We can construct the

two (infinitary logic) formulae WP(S1,x 6= x′) and WP(S2,x 6= x′). If there exists a proof of the
formula WP(S1,x 6= x′) ⇒ WP(S2,x 6= x′) using a set ∆ of sentences as assumptions, then we
write ∆ ` S1 ≤ S2.

A fundamental result, proved in [43] is that these two notions of refinement are equivalent.
More formally:

Theorem 1.1 For any statements S1 and S2, and any countable set ∆ of sentences of L:

∆ |= S1 ≤ S2 ⇐⇒ ∆ ` S1 ≤ S2

These two equivalent definitions of refinement give rise to two very different proof methods for prov-
ing the correctness of refinements. Both methods are exploited in [43]—weakest preconditions and
infinitary logic are used to develop the induction rule for recursion and the recursive implementation
theorem, while state transformations are used to prove the representation theorem.

The theorem illustrates the importance of using Lω1ω rather than a higher-order logic, or indeed
a larger infinitary logic. Back and von Wright [5] describe an implementation of the refinement cal-
culus, based on (finitary) higher-order logic using the refinement rule ∀R.WP(S1,R)⇒WP(S2,R)
where the quantification is over all formulae. However, the completeness theorem fails for all
higher-order logics. Karp [25] proved that the completeness theorem holds for Lω1ω and fails for
all infinitary logics larger than Lω1ω. Finitary logic is not sufficient since it is difficult to determine
a finite formula giving the weakest precondition for an arbitrary recursive or iterative statement.
Using Lω1ω (the smallest infinitary logic) we simply form the infinite disjunction of the weakest
preconditions of all finite truncations of the recursion or iteration. We avoid the need for quanti-
fication over formulae because with our proof-theoretic refinement method the single postcondition
x 6= x′ is sufficient. Thus we can be confident that the proof method is complete, in other words
if S1 is refined by S2 then there exists a proof of WP(S1,x 6= x′) ⇒ WP(S2,x 6= x′). Basing our
transformation theory on any other logic would not provide the two different proof methods we
require.

2 Data Intensive Programs

In the context of deriving algorithms from specifications, a serious problem is that there may be
no simple relationship between the specification structure and the program structure. A particular
case is where the program modifies a complex data structure as it operates, while this data structure
directs the operation of the program: an example is using a stack to implement recursion. The
problem is compounded when the implementor wishes (for efficiency reasons) to combine two or
more “abstract” data structures into a single “concrete” data structure. Such a refinement step
does not fit into the top-down paradigm, and this is where the techniques of formal program
transformation come into play. We class this sort of program as a data intensive program. A data
intensive program satisfies one or more of the following:

• Using one data structure for two or more purposes: i.e. two or more abstract data types are
implemented in a single concrete data object;

• Combining control flow information (such as a protocol stack) with other data structures used
by the program;

• A program which is developed as a combination of a basic algorithm together with an imple-
mentation technique which reduces the amount of storage required for the basic algorithm.

Ideally, the derivation of the algorithm should treat the basic algorithm and implementation tech-
nique separately. This suggests a transformational approach where the different ideas are introduced
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in stages, starting with an abstract specification. An algorithm which exhibits all these properties is
the Schorr-Waite graph marking algorithm, first published in 1967 [35]: we have therefore selected
this algorithm as our main example.

2.1 Ghost Variables

The usual approach to “data reification” (a refinement which changes the representation of data in
the program) involves defining an abstraction function—a function from concrete states to abstract
states which shows precisely which abstract state is represented by a particular concrete state (see
for example [12,29]). For simple cases such a stacks and sets, there is no difficulty in finding such a
function, but for data intensive programs the relationship between abstract and concrete states may
be very complicated. Also, the relationship may be a general relation rather than a strict function.
Programs which implement several data objects in a single data structure can be particularly
hard to analyse, especially if one of the data objects is also used to direct the control flow of the
program. Our approach to data intensive programs is based on the use of “ghost variables” which
are variables which have no effect on the computation, but which shadow the actual variables used
in the program. This technique is used in [9,24,47]. We use ghost variables to define intermediate
stages in the development in which both abstract and concrete data structures are present. We
introduce the ghost variables in the recursive version of the program, two trivial invariants are
used which are proved correct using only local information. These invariants are used to gradually
replace references to abstract states by appropriate references to concrete states. Thus a formal
derivation can be achieved without knowing the precise relationship between abstract and concrete
data structures. The method uses the following stages:

1. Start with a formal specification and develop a recursive algorithm using the recursion im-
plementation theorem [43]. This uses abstract data structures;

2. Introduce parallel data structures (which will ultimately be the concrete data structures) as a
collection of “ghost variables”. These are variables which are assigned to but never accessed
(except within assignments to ghost variables). Assign values to these variables so as to
maintain local invariants between the two data structures. The key idea here is that only
local information is required to prove the correctness of these invariants; all the work of the
algorithm is done by the abstract variables which are still present and can be referred to;

3. Gradually replace references to abstract variables by references to the new variables. Since
both sets of variables are present in the program, the references can be replaced in stages,
perhaps removing the variables one at a time. Keep in the assignments to the abstract
variables so that their values are still the same and they can still appear in invariants;

4. Once all references to the abstract variables have been replaced, the abstract variables become
“ghost variables” and can be removed from the program without affecting its operation;

5. At the last possible moment, remove the recursion using a general recursion removal theorem
(see Theorem 4.5 below). This is best done as late as possible since recursive programs are
generally easier to manipulate than iterative ones;

6. Finally, the iterative algorithm can be restructured by applying further transformations.

The abstract program in stage 2 acts as a “scaffolding” which ensures that the program gives
the correct result. We build the “real” program, using the scaffolding as support. In stage 3 we
gradually transfer the weight onto the real program. Finally, all the work is done by the real
program and the scaffolding can be demolished.

The advantages of this approach are:

• The use of ghost variables means that the assertions we introduce are simple and easy to
prove. We do not need to determine the precise relationship between abstract and concrete
states, only that the ghost variables are preserved by the recursive calls;
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• We remove the recursion at a late stage in the development, using a powerful recursion removal
transformation followed by general-purpose restructuring transformations;

• The most important benefit is that we can separate the algorithm idea (depth-first searching)
from the implementation technique (pointer switching). This separation of concerns provides
a method for applying the pointer switching technique to many other algorithms. We use
the same implementation technique to derive a “hybrid” algorithm which combines the time
efficiency of the recursive algorithm with the space efficiency of the pointer switching strategy.

In the next section we introduce the wide spectrum language WSL and give some example
transformations, and then go on to tackle the algorithm derivation. See [39,43] for the formal
semantics of WSL and details of the kernel language from which it is developed.

3 The Wide Spectrum Language

Within expressions we use the following notation:

Sequences: s = 〈a1, a2, . . . , an〉 is a sequence, the ith element ai is denoted s[i], s[i . . j] is the
subsequence 〈s[i], s[i + 1], . . . , s[j]〉, where s[i . . j] = 〈〉 (the empty sequence) if i > j. The
length of sequence s is denoted `(s), so s[`(s)] is the last element of s. We use s[i . .] as an
abbreviation for s[i . . `(s)].

Sequence concatenation: s1 ++ s2 = 〈s1[1], . . . , s1[`(s1)], s2[1], . . . , s2[`(s2)]〉.

Stacks: Sequences are also used to implement stacks. For this purpose we have the following
notation: For a sequence s and variable x: x

pop
←− s means x := s[1]; s := s[2 . .] which pops

an element of the stack into variable x. To push the value of the expression e onto stack s

we use: s
push
←− e which is equivalent to: s := 〈e〉 ++ s.

Sets: We have the usual set operations ∪ (union), ∩ (intersection) and − (set difference), ⊆
(subset), ∈ (element), ℘ (powerset). { x ∈ A | P (x) } is the set of all elements in A which
satisfy predicate P . For the sequence s, set(s) is the set of elements of the sequence, i.e.
set(s) = { s[i] | 1 6 i 6 `(s) }. For a set A, #A denotes the number of elements of A.

We use the following notation for statements, where S, S1, S2 etc. are statements and B, B1, B2,
etc. are formulae of first order logic:

Sequential composition: S1; S2; S3; . . . ; Sn

Deterministic Choice: if B then S1 else S2 fi

Assertion: {B} is an assertion: it acts as a partial skip statement, it aborts if the condition
is false but does nothing if the condition is true. Thus inserting an assertion statement by
means of a transformation is the same as proving that the condition is always true at that
point.

Assignment: x := x′.Q is a general assignment which assigns new values to the list x of variable
such that the condition Q is true. Unprimed variables in Q refer to initial values and primed
variables refer to the values assigned, thus 〈x〉 := 〈x′〉.(x′ = x + 1) increments the value of
variable x

Simple Assignment: if x is a list of variables and t a list of expressions, then x := t means
x := x′.(x′ = t)

Variable Rotation: y←〈x1, x2, . . . , xn〉 where the xi are variables or array references, stands for
the assignment: 〈x1, x2, . . . , xn〉 := 〈x

′
1, x

′
2, . . . , x

′
n〉.(x

′
1 = x2 ∧ x′

2 = x3 ∧ · · · ∧ x′
n =

x1). This therefore “rotates” the values of the variables or array references. For example,
y←〈a[i], a[j]〉 swaps the values of a[i] and a[j].
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Nondeterministic Choice: The “guarded command” of Dijkstra [13]:

if B1 → S1

ut B2 → S2

. . .
ut Bn → Sn fi

Deterministic Iteration: while B do S od

Initialised local Variables: var x := t : S end

Counted Iteration: for i := b to f step s do S od Here, i is local to the body of the loop

Recursive procedure: proc X ≡ S. Here X is a statement variable, an occurrence of X within
S is a call to the procedure.

Block with local procedure: begin S1 where proc X ≡ S2. end This is equivalent to the
statement S1[proc X ≡ S2./X] which consists of S1 with each occurrence of X replaced by
the recursive statement proc X ≡ S..

Unbounded loops and exits: Statements of the form do S od, where S is a statement, are
“infinite” or “unbounded” loops which can only be terminated by the execution of a statement
of the form exit(n) (where n is an integer, not a variable or expression) which causes the
program to exit the n enclosing loops. To simplify the language we disallow exits which leave
a block or a loop other than an unbounded loop. This type of structure is described in [26]
and more recently in [37].

3.1 Action Systems

A true wide spectrum language requires some notation for unstructured transfer of control (goto
statements). We introduce the concept of an Action System as a set of parameterless mutually
recursive procedures. A program written using labels and jumps translates directly into an action
system. Note however that if the end of the body of an action is reached, then control is passed
to the action which called it (or to the statement following the action system) rather than “falling
through” to the next label. The exception to this is a special action called the terminating action,
usually denoted Z, which when called results in the immediate termination of the whole action
system.

Arsac [2,3] uses a restricted definition of actions together with deterministic assignments, the
binary if statement and do loops with exits; so there is no place for nondeterminism in his results.
The main differences between our action systems and Arsac’s are: (i) that we use a much more
powerful language (including general specifications), (ii) we give a formal definition (ultimately in
terms of denotational semantics, see [39]), and (iii) our action systems are simple statements which
can form components of other constructs.

The idea of an action system as a single statement is what gives the recursion removal theorems
of Section 4.5 much of their power and generality. We can restructure the body of any recursive
procedure into a form in which the theorem applies. Often there will be several different forms
for which the theorem applies: these will yield different (but equivalent) iterative versions of the
procedure.

Definition 3.1 An action is a parameterless procedure acting on global variables (cf [2,3]). It is
written in the form A ≡ S. where A is a statement variable (the name of the action) and S is a
statement (the action body). A set of (mutually recursive) actions is called an action system. There
may sometimes be a special action (usually denoted Z), execution of which causes termination of
the whole action system: even if there are unfinished recursive calls. An occurrence of a statement
call X within the action body denotes a call of another action.

A collection of actions forms an action system:
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actions A1 :
A1 ≡ S1.
A2 ≡ S2.
. . .
An ≡ Sn. endactions

where statements S1, . . . ,Sn must have no exit(m) statements within less than m nested loops.

Definition 3.2 An action is regular if every execution of the action leads to an action call. (This
is similar to a regular rule in a Post production system [33]). A regular action system can only be
terminated by a call to Z.

Definition 3.3 An action system is regular if every action in the system is regular. Any algorithm
defined by a flowchart, or a program which contains labels and gotos but no procedure calls in
non-terminal positions, can be expressed as a regular action system.

3.2 Procedures and Functions with Parameters

For simplicity we only use procedures with parameters which are called by value or by value-result.
Here the value of the actual parameter is copied into a local variable which replaces the formal
parameter in the body of the procedure. For result parameters, the final value of this local variable
is copied back into the actual parameter. In this case the actual parameter must be a variable or
some other object (e.g. an array element) which can be assigned a value. Such objects are often
denoted as “L-values” because they can-occur on the left of assignment statements.

The reason for concentrating on value parameters is that they avoid some of the problems caused
by “aliasing” where two variable names refer to the same object. For example if a global variable of
the procedure is also used as a parameter, or if the same variable is uses for two actual parameters
then with other forms of parameter passing aliasing will occur but with value parameters the
aliasing is avoided (unless the same variable is used for two result parameters and the procedure
tries to return two different values). This means that procedures with value parameters have simpler
semantics.

4 Example Transformations

In this section we describe a few of the transformations we will use later:

4.1 Re-arrange IF statement

Theorem 4.1 If the conditions Qij for each i and j are disjoint (i.e. Qij ∧ Qkl ⇔ false whenever
i 6= j or k 6= l) then the nested if statement:

if B1 → if B11 → {Q11}; S11

. . .
ut B1j → {Q1j}; S1j

. . . fi
. . .
ut Bi → if Bi1 → {Qi1}; Si1

. . .
ut Bij → {Qij}; Sij

. . . fi
. . . fi

can be refined to the flattened if statement which tests Qij instead of Bij :

if Q11 → S11

. . .
ut Q1j → S1j
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. . .
ut Qi1 → Si1

. . .
ut Qij → Sij

. . . fi

The proof is by case analysis on the Qij .

4.2 Recursive Implementation of Statements

In this section we present an important theorem on the recursive implementation of statements,
and show how it can be used in a method for transforming a general specification into an equivalent
recursive statement. These transformations can be used to implement recursive specifications as
recursive procedures, to introduce recursion into an abstract program to get a “more concrete”
program (i.e. closer to a programming language implementation), and to transform a given recursive
procedure into a different form. The theorem is used in the algorithm derivations of [40] and [39].

Suppose we have a statement S′ which we wish to transform into the recursive procedure
proc F ≡ S.. We claim that this is possible whenever:

1. The statement S′ is refined by S[S′/F ] (which denotes S with all occurrences of F replaced by
S′). In other words, if we replace recursive calls in S by copies of S′ then we get a refinement
of S′; and

2. We can find an expression t (called the variant function) whose value is reduced before each
occurrence of S′ in S[S′/F ].

The expression t need not be integer valued: any set Φ which has a well-founded order 4 is a
suitable value set for t. To prove that the value of t is reduced it is sufficient to prove that if t 4 t0
initially, then the assertion {t ≺ t0} can be inserted before each occurrence of S

′ in S[S′/F ]. The
theorem combines these two requirements into a single condition:

Theorem 4.2 If 4 is a well-founded partial order on some set Φ and t is an expression giving
values in Φ and t0 is a variable which does not occur in S then if

∀t0. ((P ∧ t 4 t0)⇒ S′ ≤ S[{P ∧ t ≺ t0}; S
′/F ])

then P⇒ S′ ≤ proc F ≡ S.

Proof: See [43] ¥

4.3 A Method for Algorithm Derivation

It is frequently possible to derive a suitable procedure body S from the statement S′ by applying
transformations to S′, splitting it into cases etc., until we get a statement of the form S[S′/F ]
which is still defined in terms of S′. If we can find a suitable variant function for S[S′/F ] then we
can apply the theorem and refine S[S′/F ] to proc F ≡ S. which is no longer defined in terms of
S′.

As an example we will consider the familiar factorial function. Let S′ be the statement r := n!.
We can transform this (by appealing to the definition of factorial) to get:

S′ ≈ if n = 0 then r := 1 else r := n.(n− 1)! fi

Separate the assignment:

≈ if n = 0 then r := 1 else n := n− 1; r := n!; n := n+ 1; r := n.r fi

So we have:

≈ if n = 0 then r := 1 else n := n− 1; S′; n := n+ 1; r := n.r fi
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The positive integer n is decreased before the copy of S′, so if we set t to be n, Φ to be N and 4
to be 6 (the usual order on natural numbers), and P to be true then we can prove:

n 6 t0 =⇒ S′ ≤ if n = 0 then r := 1 else n := n− 1; {n < t0}; S
′; n := n+ 1; r := n.r fi

So we can apply Theorem 4.2 to get:

S′ ≤ proc F ≡ if n = 0 then r := 1 else n := n− 1; F ; n := n+ 1; r := n.r fi.

and we have derived a recursive implementation of factorial.

This theorem is a fundamental result towards the aim of a system for transforming specifications
into programs since it “bridges the gap” between a recursively defined specification and a recursive
procedure which implements it. It is of use even when the final program is iterative rather than
recursive since many algorithms may be more easily and clearly specified as recursive functions—
even if they may be more efficiently implemented as iterative procedures. This theorem may be used
by the programmer to transform the recursively defined specification into a recursive procedure or
function which can then be transformed into an iterative procedure.

4.4 The Induction Rule for Recursion

The nth truncation of a procedure proc F ≡ S. is defined:

proc F ≡ S.0 =
DF

abort and proc F ≡ S.n+1 =
DF

S[proc F ≡ S.n/F ]

The nth truncation of any statement Sn is formed by replacing each recursive component by its
nth truncation.

A statement has bounded nondeterminacy if each assignment statement has a finite set of values
it can assign to the variables to satisfy the given condition.

For statements with bounded nondeterminacy we have the following induction rule:

Theorem 4.3 The Induction Rule for Recursion:

If S is any statement with bounded nondeterminacy, and S′ is another statement such that
∆ ` Sn ≤ S′ for all n < ω, then ∆ ` S ≤ S′.

This result is extremely valuable in proving many transformations involving recursive and iterative
statements. It shows that the set of all finite truncations of a recursive statement tells us everything
we need to know about the full recursion. Using this induction rule we have proved a powerful
collection of general purpose transformations. These enable many algorithm derivations to be
carried out by appealing to general transformation rules rather than ad hoc induction proofs.

An example of a transformation proved by induction is the following:

Theorem 4.4 Invariant Maintenance

(i) If for any statement S1 we can prove: {P}; S[S1/X] ≤ S[{P}; S1/X] then:

{P}; proc X ≡ S. ≤ proc X ≡ {P}; S.

(ii) If in addition ∆ ` {P}; S1 ≤ S1; {P} implies ∆ ` {P}; S[S1/X] ≤ S[S1/X]; {P} then

{P}; proc X ≡ S. ≤ proc X ≡ S.; {P}

Proof: (i) Claim: {P}; proc X ≡ S.n ≤ proc X ≡ {P}; S.n. If this claim is proved
then the result follows from the induction rule for recursion (Theorem 4.3). We prove the claim by
induction on n. For n = 0 both sides are abort, so suppose the result holds for n.
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Put S1 = proc X ≡ S.n in the premise. Then:

{P}; proc X ≡ S.n+1 ≤ {P}; S[proc X ≡ S.n/X]

≤ ({P}; S)[{P}; proc X ≡ S.n/X]

from the premise

≤ ({P}; S)[proc X ≡ {P}; S.n/X]

by the induction hypothesis

≤ proc X ≡ {P}; S.n+1

The result follows by induction on n.

(ii) Claim: {P}; proc X ≡ S.n ≤ proc X ≡ {P}; S.n; {P} for all n. Again, we prove the
claim by induction on n: For n = 0 both sides are abort, so suppose the result holds for n.

{P}; proc X ≡ {P}; S.n+1 ≤ {P}; S[proc X ≡ S.n/X]

≤ {P}; S[{P}; proc X ≡ S.n/X] by part (i)

Put S1 = proc X ≡ S.n in the premise and use: {P}; proc X ≡ S.n ≤ proc X ≡ S.n; {P}

≤ proc X ≡ S.n+1; {P}

from premise (ii).

The result follows by induction on n. ¥

4.5 General Recursion Removal

Theorem 4.5 Suppose we have a recursive procedure whose body is an action system in the
following form, in which the body of the procedure is an action system. (A call Z in the action
system will therefore terminate only the current invocation of the procedure):

proc F (x) ≡
actions A1 :
A1 ≡ S1.
. . . Ai ≡ Si.
. . . Bj ≡ Sj0; F (gj1(x)); Sj1; F (gj2(x)); . . . ; F (gjnj

(x)); Sjnj
.

. . . endactions.

where the statements Sj1, . . . ,Sjnj
preserve the value of x and no S contains a call to F (i.e. all

the calls to F are listed explicitly in the Bj actions) and the statements Sj0,Sj1 . . . ,Sjnj−1 contain
no action calls. There are M +N actions in total: A1, . . . , AM , B1, . . . , BN .

We claim that this is equivalent to the following iterative procedure which uses a new local
stack K and a new local variable m:

proc F (x) ≡
var K := 〈〉, m := 0:
actions A1 :

. . . Ai ≡ Si[call F̂ /call Z].

. . . Bj ≡ Sj0; K := 〈〈0, gj1(x)〉, 〈〈j, 1〉, x〉, 〈0, gj2(x)〉, . . . , 〈0, gjnj
(x)〉, 〈〈j, nj〉, x〉〉 ++ K;

call F̂ .

. . . F̂ ≡ if K = 〈〉 then call Z

else 〈m, x〉
pop
←− K;

if m = 0 → call A1

ut . . . ut m = 〈j, k〉 → Sjk; call F̂
. . . fi fi. endactions end.

Proof: See [41]. ¥
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By unfolding the calls to F̂ in Bj we can avoid pushing and popping 〈0, gj1(x)〉:

Corollary 4.6 F (x) is equivalent to:

proc F (x) ≡
var K := 〈〉, m := 0:
actions A1 :

. . . Ai ≡ Si[call F̂ /call Z].

. . . Bj ≡ Sj0; K := 〈〈〈j, 1〉, x〉, 〈0, gj2(x)〉, . . . , 〈0, gjnj
(x)〉, 〈〈j, nj〉, x〉〉 ++ K;

x := gj1(x); call A1.

. . . F̂ ≡ if K = 〈〉 then call Z

else 〈m, x〉
pop
←− K;

if m = 0 → call A1

ut . . . ut m = 〈j, k〉 → Sjk; call F̂
. . . fi fi. endactions end.

Note that any procedure F (x) can be restructured into the required form; in fact there may be
several different ways of structuring F (x) which meet these criteria. The simplest such restructuring
is to put each recursive call into its own B action (with no other statements apart from a call to
the next action). Since it is always applicable, this is the method used by most compilers. See [42]
for further applications of the theorem.

4.6 Recursion Removal Without a Stack

Consider the following parameterless procedure, where we have restructured the body to put each
procedure call into a separate action. Suppose we have been able to insert a set of mutually disjoint
assertions Q0,Q1, . . . ,Qn where for i 6= j, Qi ∧ Qj ⇔ false:

begin F ; {Q0}
where
proc F () ≡
actions A1 :

. . . Ai ≡ Si[call F̂ /call Z].

. . . Bj ≡ Sj0; F ; {Qj}; Sj1.

. . . endactions.
end

By Corollary 4.6 we have:

begin F ; {Q0}
where
proc F () ≡
var K := 〈〉, m := 0 :
actions A1 :
. . . Ai ≡ Si.
. . . Bj ≡ Sj0; K := 〈j〉 ++ K; call A1.

. . . F̂ ≡ if K = 〈〉 then call Z

else m
pop
←− K;

if m = 1 → {Q1}; S11; call F̂

ut . . . ut m = j → {Qj}; Sj1; call F̂

. . . fi fi. endactions end.
end

Unfold F and push {Q0} into the action system (so the single call Z is replaced by {Q0}; call Z).
Now we can use the disjointness of the Qi to refine the if statements in F̂ to test Qi instead of K
(using Theorem 4.1). Then we can remove K and m (since we have deleted all accesses to these
local variables) to prove the following theorem:
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Theorem 4.7 Under these conditions, the procedure F is equivalent to:

actions A1 :
. . . Ai ≡ Si.
. . . Bj ≡ Sj0; call A1.

. . . F̂ ≡ if Q0 → call Z

ut . . . ut Qj → Sj1; call F̂

. . . fi. endactions

Thus we have removed the recursion without the need for a protocol stack.

5 Graph Marking

Definition 5.1 A graph is a pair 〈N, D〉 where N is any set (the set of nodes of the graph), and
D is any function from N to the set of all subsets of N (denoted ℘(N)). i.e. D : N → ℘(N). For
each x ∈ N, D(x) is the set of daughter nodes for x.

The purpose of a graph marking algorithm is to determine all the nodes reachable from a given
node, or set of nodes. In other words, we need to determine the set of daughters, and daughters of
daughters, etc. of the given node or nodes. For a given set X ⊆ N we define R(X) ⊆ N to be the
set of nodes reachable from X. We can determine R by constructing the transitive closure of D,
or by considering the set of paths in the graph which start at X. See Appendixes A to C which
shows how to derive the following iterative graph marking algorithm:

proc mark ≡
while X \M 6= ∅ do

var x ∈ X \M :
M :=M ∪ {x}; X := (X \ {x}) ∪ (D(x) \M ′) end od

and the following recursive algorithm:

proc mark(x) ≡
var K := 〈〉, D := 〈〉 :
do M :=M ∪ {x};

K
push
←− D; D := D(x);

do if D = ∅ then D
pop
←− K; if K = 〈〉 then exit(2) fi

else x := x′.(x′ ∈ D); D := D \ {x};
if x /∈M then exit fi fi od od end.

6 The Schorr-Waite Algorithm

The Schorr-Waite algorithm [35] seems to have acquired the status of a standard testbed for pro-
gram verification techniques applied to complex data structures. A proof of a simplified version
of the algorithm using the method of invariants was given in Gries [16]. This required two rather
complicated invariants to prove partial correctness, and an informally described termination func-
tion to demonstrate total correctness. An entirely informal transformational development from a
standard recursive algorithm is described in Griffiths [19]. Morris [30] proves the algorithm using
the axiomatic methods of Hoare [21]. Topor [38] presents a proof using the method of “intermittent
assertions” which are assertions of the form: “if at some time during the execution assertion A holds
at this point, then at some later time assertion B will hold at this point”. Intermittent assertions
are described by Manna and Waldinger in [28] where they are used to reason about some iterative
algorithms for computing recursive functions. Yelowitz and Duncan, de Roever and Kowalski [27,
34,48] also give proofs for this algorithm.

The method applied by Gries to the Schorr-Waite algorithm [16] and more generally in [18]
and [17] is to determine the “total situation” in one go, by calculating the precise relationship
between abstract and concrete data structures and expressing this in the form of invariants. Gries

16



recognises that such invariants can be very difficult to determine directly from the final program.
Griffiths [19] uses a transformational development approach, but, in order to justify some of the
development steps, he still has to appeal (informally) to global invariants which describe the total
situation. This is because he removes the recursion at an early stage in the development, resulting
in a less tractable iterative program.

Most of these proofs treat the problem as an exercise in program verification, and therefore
start with a statement of the algorithm. The methods that rely on invariants give a long list of
complex invariants, again with little indication of how these invariants could be developed. We are
more interested in developing a derivation of the algorithm: starting with an abstract specification
and a vague idea of the technique to be used, we want to see if our transformation catalogue is
sufficiently complete so as to provide a rigorous derivation of the algorithm by transformation from
the specification. We take a different route to that of Griffiths [19] since we prefer to do as much
simplification as possible with the recursive form of the algorithm before removing the recursion.
In particular we introduce the central idea of the algorithm while it is still in the form of a recursive
procedure. This gives a much clearer development than Griffith’s introduction of the central idea
after he has removed the recursion.

Gerhart [15] presents a derivation-oriented proof: the information gained during the derivation
phase is used to guide the subsequent (nearly automatic) verification, with the help of a system.

Broy and Pepper [9] use a transformational approach to the algorithm, based on algebraic
abstract data types for binary graphs and binary graphs whose pointers can be modified. They use
a combination of algebraic and algorithmic reasoning to develop a recursive marking algorithm and
transform it into the Schorr-Waite algorithm. They use ghost variables in the form of additional
parameters to applicative functions, but their development still requires several induction proofs.
We aim to produce a transformational derivation by applying a sequence of proven transformation
rules, without the need for induction arguments. The same transformations are used to apply the
“pointer switching idea” to other algorithms, and in fact it should be possible to use the same
technique with practically any graph-walking or tree-walking algorithm.

6.1 The “Pointer Switching” Idea

The problem with the iterative and recursive algorithms derived in Appendices B and C is that they
both require an unbounded amount of working storage. A common application of graph marking
is in garbage collection algorithms—and such algorithms are usually invoked when there is almost
no free storage available! The “pointer switching” idea of Schorr and Waite [35] is a technique for
walking through a graph using a small and fixed amount of extra storage.

For the rest of this section we will treat the case where each node has exactly two daughter nodes
(i.e. #D(x) = 2 for all x ∈ N). This is usual for many applications (such as LISP implementations)
where garbage collection is required. We suppose that the two daughters for each node are available
through the functions L : N → N and R : N → N so ∀x ∈ N. D(x) = {L(x), R(x)}. So called
“null pointers” can be represented by a special node Λ ∈ N with L(Λ) = R(Λ) = Λ. Typically, Λ
will be already marked, i.e. Λ ∈ M initially, though this is not essential. Broy and Pepper [9] set
R(x) = x to represent a null pointer in R(x) (and similarly for L(x)). This has the disadvantage
that their algorithm cannot be used in applications which need to distinguish between null pointers
and self-pointers (and garbage collection in LISP is such an application!).

Under these conditions, the recursive algorithm simplifies to:

proc mark(x) ≡
M :=M ∪ {x};
if L(x) /∈M then mark(L(x)) fi;
if R(x) /∈M then mark(R(x)) fi.

In the actual implementation, the values L(x) and R(x) will be stored in arrays l[x] and r[x]. The
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central idea behind the algorithm devised by Schorr and Waite is that when we return from having
marked the left subtree of a node we know what the value of L(x) is for the current node (since we
just came from there). So while we are marking the left subtree, we can use the array element l[x]
to store something else—for instance a pointer to the node we will return to after having marked
this node. Similarly, while we are marking the right subtree we can store this pointer in r[x]. The
algorithm uses some additional storage for each node (denoted by the array m[x]) to record which
subtrees of the current node have been marked. The next section turns this informal idea into a
formal transformational development.

6.2 Deriving the Algorithm

In this section we apply the pointer switching idea to the recursive algorithm, in order to produce
a formal derivation of the Schorr-Waite algorithm, for the case where each node has exactly two
daughters.

The difficulty the Schorr-Waite algorithm presents to any formal analysis, is that it uses the
same data structure for three different purposes: to store the original graph structure, to record the
path from the current node to the root, and to record the current “state of play” at each node. The
program is required to mark the graph without changing its structure, yet works by modifying that
structure as it executes. This means that any proof of correctness must also demonstrate that all
the pointers are restored on termination of the program. Hence Schorr-Waite is an ideal candidate
for the ghost variables technique discussed in Section 2.1. Consider the recursive algorithm for
binary graphs, at the end of the previous section. We can eliminate the parameter by introducing a
local variable x′ to save and restore x. So we have the following implementation of the specification
MARK({root}):

begin x := root; mark
where
proc mark ≡

M :=M ∪ {x};
var x′ := x : if L(x′) /∈M then x := L(x′); mark; x := x′ fi end;
var x′ := x : if R(x′) /∈M then x := R(x′); mark; x := x′ fi end;

6.2.1 Apply the Pointer Switching idea

To apply the pointer switching idea we will insert some assignments to the “ghost variables”, (l, r
and m). These variables are arrays with these initial values:

∀x ∈ N. (l[x] = L(x) ∧ r[x] = R(x) ∧ m[x] = 0)

we also have the variable q whose initial value is arbitrary.

There are two very simple invariants which our assignments to ghost variables will preserve:

(i) We only modify array elements which were unmarked, and which we first mark. So for any
y /∈M we know that the ghost arrays have their initial values;

(ii) All ghost variables are preserved by all calls to mark.

Invariant (i) is trivially proved since the assignment M := M ∪ {x} appears before any as-
signments to l[x], r[x] or m[x]. We preserve invariant (ii) by always pairing assignments to ghost
variables in swap statements, using the transformation:

{a = b}; S ≈ {a = b}; y←〈a, b〉; S; y←〈a, b〉

We can insert pairs of swaps freely anywhere in the program without affecting the invariants.

XXX
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We will only call mark when x /∈ M so by invariant (i), l[x] = L(x) and r[x] = R(X) at the
beginning of each call to mark. To eliminate x′ we need to save and restore x using either l[x] or
r[x] and q. This is achieved by swapping values around so that x is given the value of l[x] (or r[x]),
q holds x and the original value of x is stored in l[x] (or r[x]).

begin x := root; mark
where
proc mark ≡

M :=M ∪ {x};
var x′ := x :

y←〈l[x], q〉;
if L(x′) /∈M then y←〈x, q〉; x := L(x′); mark; x := x′; y←〈x, q〉 fi;
y←〈l[x], q〉 end;

var x′ := x :
y←〈r[x], q〉;
if R(x′) /∈M then y←〈x, q〉; x := R(x′); mark; x := x′; y←〈x, q〉 fi;
y←〈r[x], q〉 end.

The simplest way to prove that this is correct is to replace the recursive calls by copies of the
specification, prove the transformation for this (now non-recursive) procedure, and then apply
Theorem 4.2 to re-insert the recursive calls. Note that since x is preserved over the body of the
var clause, we can treat l[x] as a simple variable and use it in the roation operator.

Now we can replace references to L, R, and x′ by equivalent references to ghost variables. For
instance the assignments x := L(x′) and x := R(x′) are redundant, as are the assignments x := x′.
We get:

begin x := root; mark
where
proc mark ≡

M :=M ∪ {x};
y←〈l[x], q〉;
if q /∈M then y←〈x, q〉; mark; y←〈x, q〉 fi;
y←〈l[x], q〉;
y←〈r[x], q〉;
if q /∈M then y←〈x, q〉; mark; y←〈x, q〉 fi;
y←〈r[x], q〉.

6.2.2 Remove Recursion

In order to remove the recursion without introducing a stack (via Theorem 4.7), we need three
disjoint assertions. These are easily supplied by adding assignments to m[x]. By ensuring that we
set m[x] := 0 at the end of the procedure we guarantee that m is preserved for all recursive calls
(since we know m[x] = 0 at the start of the procedure):

begin x := root; mark
where
proc mark ≡

M :=M ∪ {x};
m[x] := 1;
y←〈l[x], q〉;
if q /∈M then y←〈x, q〉; mark; y←〈x, q〉 fi;
y←〈l[x], q〉;
m[x] := 2;
y←〈r[x], q〉;
if q /∈M then y←〈x, q〉; mark; y←〈x, q〉 fi;
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m[x] := 0;
y←〈r[x], q〉.

The first call to mark puts root into M and sets m[root] to a non-zero value before each recursive
call. So we know that m[root] 6= 0 after each recursive call. Again, this proof does not require an
induction argument: simply replace the recursive calls by the specification, insert the assertions
and apply Theorem 4.2 to re-insert the recursive calls1. We have the assertions:

begin x := root; mark; {m[root] = 0 ∧ root ∈M}
where
proc mark ≡

M :=M ∪ {x};
m[x] := 1; y←〈l[x], q〉;
if q /∈M then y←〈x, q〉;

mark; {m[q] = 1 ∧ m[root] 6= 0};
y←〈x, q〉 fi;

y←〈l[x], q〉;
m[x] := 2; y←〈r[x], q〉;
if q /∈M then y←〈x, q〉;

mark; {m[q] = 2 ∧ m[root] 6= 0};
y←〈x, q〉 fi;

m[x] := 0; y←〈r[x], q〉.

After restructuring the body of mark as an action system and removing the recursion we get
the iterative action system:

x := root;
actions A1 :
A1 ≡ M :=M ∪ {x}; m[x] := 1; y←〈l[x], q〉;

if q /∈M then y←〈x, q〉; call A1 fi;
call A2.

A2 ≡ y←〈l[x], q〉; m[x] := 2; y←〈r[x], q〉;
if q /∈M then y←〈x, q〉; call A1 fi;
call A3.

A3 ≡ m[x] := 0; y←〈r[x], q〉; call F̂ .

F̂ ≡ if m[root] = 0 ∧ root ∈M → call Z
ut m[q] = 1 ∧ m[root] 6= 0 → y←〈x, q〉; call A2

ut m[q] = 2 ∧ m[root] 6= 0 → y←〈x, q〉; call A3 fi. endactions

Finally, we can replace the two variables M and m by a single variable m′. If x /∈ M then
m[x] = 0 so we assign values to the new ghost variable m′ as follows:

m′[x] = 0 if x /∈M (m[x] must be 0)

m′[x] = 1 if x ∈M ∧ m[x] = 1

m′[x] = 2 if x ∈M ∧ m[x] = 2

m′[x] = 3 if x ∈M ∧ m[x] = 0

If we initialise m′ so that m′[x] = 0 for x /∈M and m′[x] = 3 for x ∈M then the final value of M
is { x ∈ N | m′[x] = 3 }. We can replace references to M and m by references to the new variable
m′ and then rename m′ to m to get:

1Broy and Pepper [9] use a similar recursion removal technique, but their approach introduces an artificial node
virtualroot which must not be a daughter of any other node. This has the obvious drawback that it may not be
possible to find such a node: for example in a machine with either a fully populated address range, or with some
form of virtual memory system, any address selected for virtualroot may be either an invalid address, or already in
use. Our approach avoids this problem and allows the whole address range to be used.
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x := root;
actions A1 :
A1 ≡ m[x] := 1; y←〈l[x], q〉;

if m[q] = 0 then y←〈x, q〉; call A1 fi;
call A2.

A2 ≡ y←〈l[x], q〉; m[x] := 2; y←〈r[x], q〉;
if m[q] = 0 then y←〈x, q〉; call A1 fi;
call A3.

A3 ≡ m[x] := 3; y←〈r[x], q〉; call F̂ .

F̂ ≡ if m[root] = 3
then call Z
else if m[q] = 1 → y←〈x, q〉; call A2

ut m[q] = 2 → y←〈x, q〉; call A3 fi fi. endactions

6.2.3 Restructure

The algorithm at the end of the previous section is suitable for implementation as it stands.
However, we can if we choose apply some further transformations in order to simplify the structure
of the iterative algorithm, at the expense of introducing some redundant tests. The aim is to un-
fold everything into F̂ which will become a tail recursive action, which will transform into a simple
while loop. First unfold the calls to A2 and A3 in F̂ , and add an extra line to its if statement
with the test m[q] = 0 containing a copy of A1:

x := root;
actions A1 :
A1 ≡ {m[root 6= 3 ∧ m[x] = 0}; m[x] := 1; y←〈l[x], q〉;

if m[q] = 0 then y←〈x, q〉; call A1 fi;
call A2.

A2 ≡ {m[root 6= 3 ∧ m[x] = 1}; y←〈l[x], q〉; m[x] := 2; y←〈r[x], q〉;
if m[q] = 0 then y←〈x, q〉; call A1 fi;
call A3.

A3 ≡ {m[root 6= 3 ∧ m[x] = 2}; m[x] := 3; y←〈r[x], q〉; call F̂ .

F̂ ≡ if m[root] = 3
then call Z
else if m[q] = 0 → y←〈x, q〉; y←〈l[x], q〉; m[x] := 1;

if m[q] = 0 then y←〈x, q〉; call A1 fi;
call A2

ut m[q] = 1 → y←〈x, q〉;
y←〈l[x], q〉; m[x] := 2; y←〈r[x], q〉;
if m[q] = 0 then y←〈x, q〉; call A1 fi;
call A3

ut m[q] = 2 → y←〈x, q〉;

m[x] := 3; y←〈r[x], q〉; call F̂ fi fi. endactions

Insert the “skip equivalent” statement y←〈x, q〉; y←〈x, q〉 before call Z and take y←〈x, q〉 out of the
nested if statements. Then take it out of F̂ by replacing each call F̂ by y←〈x, q〉; call F̂ . Now, by
adding some redundant tests and statements to the bodies of A1, A2 and A3 (using the assertions),
these are made identical to the body of F̂ . So we can replace all calls to Ai by calls to F̂ , we can
also make F̂ the initial action for the system instead of A1. Now F̂ becomes a tail-recursive action,
which we transform into a while loop. Finally, the action system is removed and we have:

x := root;
while m[root] 6= 3 do

if m[x] = 0 → m[x] := 1; y←〈l[x], q〉; if m[q] = 0 then y←〈x, q〉 fi
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ut m[x] = 1 → m[x] := 2; y←〈l[x], q〉; y←〈r[x], q〉; if m[q] = 0 then y←〈x, q〉 fi
ut m[x] = 2 → m[x] := 3; y←〈x, q〉; y←〈r[x], q〉 fi od;

y←〈x, q〉

If we don’t care about the final values of x and q, the last swap can be deleted. As it stands
however, this version will preserve the value of q (provided m[root] 6= 3 initially—one of our first
assumptions). We may not need to use a new local variable for q, since its value is restored when
the algorithm terminates. Any variable lying around can be used: for example any node which is
marked initially, such as Λ.

For efficiency, we merge some assignments to get the final version:

x := root;
while m[root] 6= 3 do

m[x] := m[x] + 1;
if m[x] = 1 → if m[l[x]] = 0 then 〈l[x], q, x〉 := 〈q, x, l[x]〉

else y←〈l[x], q〉 fi
ut m[x] = 2 → if m[r[x]] = 0 then 〈r[x], l[x], q, x〉 := 〈l[x], q, x, r[x]〉

else 〈r[x], l[x], q〉 := 〈l[x], q, r[x]〉 fi
ut m[x] = 3 → 〈r[x], q, x〉 := 〈x, r[x], q〉 fi od; y←〈x, q〉

6.3 Summary of the Derivation

The transformational derivation of the algorithm falls neatly into four separate stages:

1. Derive the depth-first recursive algorithm, based on properties of R and RM ;

2. Add ghost variables l and r and apply the “pointer switching” idea to save and restore the
parameter x. Then replace references to the abstract variables (the functions L() and R() and
the local variable x′) by references to the ghost variables, and remove the abstract variables;

3. Add assignments to the “extra mark”, variable m, so that suitable assertions are provided
for recursion removal without a stack. Then remove the recursion using Theorem 4.7;

4. Finally, restructure the action system to a simple while loop and merge a few assignments
to get the final version.

6.4 A Different Implementation

The algorithm derived on the last section is essentially the same as that devised by Schorr and
Waite. We can get a more compact (though slightly less efficient) form of the algorithm by changing
the assignments to the “ghost variables” l, r and q. Instead of inserting pairs of swaps we insert
three “rotations”. using the transformation:

y←〈a, b, c〉; y←〈a, b, c〉; y←〈a, b, c〉 ≈ skip

The version at the beginning of Section 6.2.1 is changed to:

begin x := root; mark
where
proc mark ≡

M :=M ∪ {x};
y←〈l[x], r[x], q〉;
var x′ := x :
if L(x′) /∈M then y←〈x, q〉; x := L(x′);

mark;
y←〈x, q〉; x := x′ fi end;

y←〈l[x], r[x], q〉;
var x′ := x :
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if R(x′) /∈M then y←〈x, q〉; x := R(x′);
mark;
y←〈x, q〉; x := x′ fi end;

y←〈l[x], r[x], q〉.

For the rest of the development, we can apply the same sequence of transformations. The final
version is:

x := root;
while m[root] 6= 3 do

m[x] := m[x] + 1;
if m[x] = 1 → if m[l[x]] = 0 then y←〈l[x], r[x], q, x〉

else y←〈l[x], r[x], q〉 fi
ut m[x] = 2 → if m[l[x]] = 0 then y←〈l[x], r[x], q, x〉

else y←〈l[x], r[x], q〉 fi
ut m[x] = 3 → y←〈l[x], r[x], q, x〉 fi od

Although the abstraction function has changed considerably, the changes needed to the development
using the ghost variables method, in order to arrive at this version, are trivial. This version can be
further simplified by re-arranging the if statements to get the final version:

x := root;
while m[root] 6= 3 do

m[x] := m[x] + 1;
if m[x] = 3 ∨ m[l[x]] = 0 then y←〈l[x], r[x], q, x〉

else y←〈l[x], r[x], q〉 fi od

7 Graphs With Arbitrary Out-Degree

Not all graphs are binary by any means. Often the nodes of a graph may have an arbitrary number
of daughters: typical examples are the call graph of a set of procedures, where the daughters of a
procedure are the procedures it calls, and the control dependency graph of a set of basic blocks,
where the daughters of a block are its potential immediate successors.

An informal development of a version of Schorr-Waite for graphs with arbitrary out-degree was
given by Derschowitz in [11]. This used a Boolean array to store the reachable nodes, and an
extra array of integers. We aim to give a simple, but rigorous, transformational development of the
algorithm which does not need the Boolean array.

Suppose that the “Daughter set” D(x) is given in the form of a pair of functions: C : N → N
and E : N × N→ N. C returns the number of daughters: C(x) =

DF
#D(x). For each x ∈ N and

i with 1 6 i 6 C(x), E(x, i) is the ith element of D(x) so D(x) = { E(x, i) | 1 6 i 6 C(x) }. With
these data structures, the recursive algorithm for MARK({root}) may be written:

begin mark(root)
where
proc mark(x) ≡

M :=M ∪ {x};
for i := 1 to C(x) step 1 do

if E(x, i) /∈M then mark(E(x, i)) fi od.
end

Although this is a quite different (and more general) algorithm to the one in the previous sec-
tion, we can apply the pointer switching idea to this algorithm using the same general purpose
transformations.

We add the arrays c[x] and e[x, i] as ghost variables with initial values C(x) and E(x, i) re-
spectively. We save x in a new variable q which is swapped with e[x, i]:
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begin x := root; mark
where
proc mark ≡

M :=M ∪ {x};
for i := 1 to C(x) step 1 do
〈e[x, i], q〉 := 〈q, e[x, i]〉;
if E(x, i) /∈M
then var x′ := x; y←〈x, q〉; mark; y←〈x, q〉 end fi;

〈e[x, i], q〉 := 〈q, e[x, i]〉 od.
end

To remove the local variable i we need an extra integer array m[x] which is initially zero, and
preserved by calls to mark. We assign i to m[x] and can then remove the abstract variables from
the program. m[x] also provides suitable assertions for recursion removal (in this case, only two
assertions are required since there is only one recursive call to mark). We get:

begin x := root; mark; {m[root] = 0 ∧ root ∈M}
where
proc mark ≡

M :=M ∪ {x};
while m[x] < c[x] do

m[x] := m[x] + 1;
y←〈e[x, m[x]], q〉;
if q /∈M
then y←〈x, q〉;

mark; {m[root] > 0 ∧ root ∈M};
y←〈x, q〉 fi;

y←〈e[x, m[x]], q〉 od;
m[x] := 0.

end

Remove the recursion and restructure, merging M and m as before. Marked elements will have
m[x] > 0:

x := root;
while m[root] 6= c[root] do

m[x] := m[x] + 1;
if m[x] = 1 → y←〈e[x, m[x]], q〉;

if m[q] < c[q] then y←〈x, q〉 fi
ut 1 < m[x] < c[x] → y←〈e[x, m[x]− 1], q〉;

y←〈e[x, m[x]], q〉;
if m[q] < c[q] then y←〈x, q〉 fi

ut m[x] = c[x] → y←〈e[x, m[x]− 1], q〉 fi od

7.1 A Different Implementation

In some situations there may not be an extra integer array available to replace the local variable
i, but there may be an unused bit available in each pointer (for example, there may be a sign
bit which is always zero, or the nodes may be aligned in memory in such a way that all pointer
addresses are even and the least significant bit of each pointer is available for use). The idea behind
this implementation is to record pointers to the daughters of a node as a circular-linked list. The
first element in the list is negated and the corresponding daughter marked. Then the list is rotated,
marking each daughter that comes up, until the negated element reaches the front of the list again.

Suppose that the list of daughters for node x is given by the function E : N → N
∗ where for

each x ∈ N, E(x) is a sequence of distinct nodes such that D(x) = set(E(x)). Then the algorithm
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at the beginning of Section 7 may be written:

begin mark(root)
where
proc mark(x) ≡

M :=M ∪ {x};
for i := 1 to `(E(x)) step 1 do

if E(x)[i] /∈M then mark(E(x)[i]) fi od.
end

For any non-empty sequence s of positive values, the following statements are equivalent to skip:

s[1] := −s[1];
for i := 1 to `(s) do

s := rotate(s) od;
s[1] := −s[1]

where rotate(s) =
DF

s[2 . .] ++ 〈s[1]〉 returns a rotated sequence, with the first element moved to
the end. Add a skip equivalent to the algorithm (which also introduces the ghost variable e[x]
initialised to E(x)), and a test for the case E(x) = 〈〉 to get:

begin mark(root)
where
proc mark(x) ≡

M :=M ∪ {x};
if E(x) 6= 〈〉
then var s := e[x] :

for i := 1 to `(E(x)) step 1 do
if E(x)[i] /∈M then mark(E(x)[i]) fi od;

s[1] := −s[1];
for i := 1 to `(s) do

s := rotate(s) od;
s[1] := −s[1] end fi.

end

The two for loops can be merged using a transformation in [39], and then converted to a do . . . od
loop (we can put the test at the end since we know 1 6 `(E(x)):

begin mark(root)
where
proc mark(x) ≡

M :=M ∪ {x};
if E(x) 6= 〈〉
then e[x][1] := −e[x][1];

var s := e[x], i := 1 :
do if E(x)[i] /∈M then mark(E(x)[i]) fi;

e[x] := rotate(e[x]);
i := i+ 1;
if i = `(E(x)) + 1 then exit fi od end;

e[x][1] := −e[x][1] fi.
end

At the beginning of the loop we have the assertion:

e[x] = rotatei−1(s) = s[(i− 1 mod `(s)) + 1 . .] ++ s[1 . . (i− 1 mod `(s))]
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So at the end of the loop:

e[x][1] < 0 ⇐⇒ s[(i− 1 mod `(s)) + 1] < 0

⇐⇒ (i− 1 mod `(s)) + 1 = 1

since s[1] is the only negative element of s

⇐⇒ i− 1 = `(s)

since i > 2 at this point

⇐⇒ i = `(s) + 1

⇐⇒ i = `(E(x)) + 1

So we can replace the termination test by e[x][1] < 0 and remove i and E from the program:

begin mark(root)
where
proc mark(x) ≡

M :=M ∪ {x};
if e[x] 6= 〈〉
then e[x][1] := −e[x][1];

do if |e[x][1]| /∈M then mark(|e[x][1]|) fi;
e[x] := rotate(e[x]);
if e[x][1] < 0 then exit fi od;

e[x][1] := −e[x][1] fi.
end

Now we have a collection of sequences e[x] where the only operations we need are to access and
update the first element, and rotate the sequence. These can be efficiently implemented by repres-
enting the sequences as circular-linked lists, using a standard data representation transformation.

We remove the parameter by introducing a local variable x′ and then using the pointer switching
idea to remove it. Note that pointer switching will set x to e[x][1] rather than |e[x][1]|, but a trivial
change to the algorithm will allow negated arguments:

begin x := root; mark
where
proc mark ≡

M :=M ∪ {|x|};
if e[|x|] 6= 〈〉
then e[|x|][1] := −e[|x|][1];

do y←〈e[|x|][1], q〉;
if |q| /∈M then y←〈|x| , q〉; mark; y←〈|x| , q〉 fi;
y←〈e[|x|][1], q〉;
e[|x|] := rotate(e[|x|]);
if e[|x|][1] < 0 then exit fi od;

e[|x|][1] := −e[|x|][1] fi.
end

To remove the recursion, we only need two disjoint assertions since there are only two calls to mark.
A simple solution (which could be used for any of the other algorithms) is to initialise q to root.
The outermost call to mark will terminate with x = root = q, for all the inner calls, just before the
call q will be a marked node (the initial value of x) while x will be unmarked, so q 6= x before (and
therefore after) each inner call. So we can use the assertions {q = x} and {q 6= x} to remove the
recursion:

x := root;
actions A1 :
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A1 ≡ M :=M ∪ {|x|};
if e[|x|] 6= 〈〉 then e[|x|][1] := −e[|x|][1]; call A2

else call F̂ fi.
A2 ≡ y←〈e[|x|][1], q〉;

if |q| /∈M then y←〈|x| , q〉; call A1 else call A3 fi.
A3 ≡ y←〈e[|x|][1], q〉; e[|x|] := rotate(e[|x|]);

if e[|x|][1] < 0

then e[|x|][1] := −e[|x|][1]; call F̂
else call A2 fi.

F̂ ≡ if q = x then call Z else y←〈|x| , q〉; call A3 fi.

Finally, we restructure and represent the sequences e[x] by circular-linked lists where first[x] is a
pointer to the first element of the list (or 0 if the list is empty), next[p] is a pointer to the next
element of the list, and node[p] is the node pointed at by p. So for e[x] = 0 we have first[x] = 0 and
for e[x] 6= 〈〉 we have:

e[x] = 〈node[first[x]], node[next[first[x]]], . . . 〉

and node`(e[x])[first[x]] = first[x]. We also represent the set M by an array m[x].

x := root;
actions A1 :
A1 ≡ m[|x|] := 1;

if first[|x|] 6= 0 then node[first[|x|]] := −node[first[|x|]]; call A2

else call F̂ fi.
A2 ≡ y←〈node[first[|x|]], q〉;

if m[|q|] = 0 then y←〈x, q〉; call A1 else call A3 fi.
A3 ≡ y←〈node[first[|x|]], q〉; first[|x|] := next[first[|x|]];

if node[first[|x|]] < 0

then node[first[|x|]] := −node[first[|x|]]; call F̂
else call A2 fi.

F̂ ≡ if q = x then call Z else y←〈x, q〉; call A3 fi.

8 Acyclic Graph Marking

A cycle in a graph is a path 〈x1, . . . , xn〉 ∈ P (D) where n > 1 and x1 = xn. A graph is acyclic
if it has no cycles. If 〈x1, . . . , xn〉 is a cycle then the path 〈x2, . . . , xn〉 is a witness to the fact
that x1 ∈ R({x2}) ⊆ R(D(x1)). Conversely, if x ∈ R(D(x)) then a witness p to this fact can be
extended to a cycle 〈x〉 ++ p. Hence we have the theorem:

Theorem 8.1 A graph 〈N, D〉 is acyclic iff ∀x ∈ N. x /∈ R(D(x))

For our algorithm it is sufficient for there to be no unmarked cycles, i.e. ∀x ∈ N. x /∈ RM (D(x)).
In particular we can still use node Λ to represent a null pointer, where Λ ∈ M initially and
L(Λ) = R(Λ) = Λ.

An important property of acyclic graphs is the following:

Theorem 8.2 If 〈N, D〉 is acyclic then for any x /∈M :

RM∪{x}(D(x)) = RM (D(x))

Proof: “⊆” is trivial, so suppose y ∈ RM (D(x)) and let p be a witness to this. If some element
of p equals x, say p[i] = x then the path 〈x〉 ++ p[1 . . i] is a cycle. So p must avoid {x}, so it is a
witness to y ∈ RM∪{x}(D(x)). ¥
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So for an acyclic binary graph, where D(x) = {L(x), R(x)}, we have for x /∈M :

MARK({x}) ≈ M :=M ∪ {x};
if L(x) /∈M then M :=M ∪RM (L(x)) fi;
if R(x) /∈M then M :=M ∪RM (R(x)) fi

By Corollary A.8.

≈ if L(x) /∈M then M :=M ∪RM (L(x)) fi;
M :=M ∪ {x};
if R(x) /∈M then M :=M ∪RM (R(x)) fi

By Theorem 8.2.

≈ if L(x) /∈M then MARK({L(x)}) fi;
M :=M ∪ {x};
if R(x) /∈M then MARK({R(x)}) fi

by Corollary A.8 again.

≈ proc mark(x) ≡
if L(x) /∈M then mark(L(x)) fi;
M :=M ∪ {x};
if R(x) /∈M then mark(R(x)) fi.

By Theorem 4.2. We have x ∈ R({root}) at the top of mark which is equivalent to x = root ∨ x ∈
R(D(root)) (by Corollary A.7). So L(x) ∈ R(D(root)) and R(x) ∈ R(D(root)). So, since the graph
is acyclic we must have L(x) 6= root and R(x) 6= root.

As in Section 6.2 we remove parameter by introducing a local variable x′ and then introduce
the ghost variables l, r and q. We can then replace references to L, R and x′ by references to ghost
variables. We get: MARK({root}) ≈

begin x := root; mark; {x = root}
where
proc mark ≡

y←〈l[x], r[x], q〉;
if q /∈M then y←〈x, q〉;

mark; {x 6= root ∧ x /∈M};
y←〈x, q〉 fi;

M :=M ∪ {x}
y←〈l[x], r[x], q〉;
if q /∈M then y←〈x, q〉;

mark; {x 6= root ∧ x ∈M};
y←〈x, q〉 fi;

y←〈l[x], r[x], q〉.

For the recursion removal step, we already have a set of suitable assertions for Theorem 4.7 so no
additional storage is required. After recursion removal and restructuring we get:

x := root;
do do y←〈l[x], r[x], q〉;

if q /∈M then y←〈x, q〉 else exit fi od;
do M :=M ∪ {x}; y←〈l[x], r[x], q〉;

if q /∈M then y←〈x, q〉; exit fi;
do y←〈l[x], r[x], q〉;

if x = root then exit(3) fi;
if x /∈M then exit fi od od od

This program has a rather more complex control flow structure than the program in Section 6.2
but it does no unnecessary tests and only requires a single mark bit instead of the two bits required
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by the general algorithm.

9 A Hybrid Algorithm

Although the Schorr-Waite algorithm is very efficient in the use of storage, it is less efficient than
the original recursive procedure in terms of the number of assignments carried out. Also if we knew
that the graph structure was similar to a “bushy tree” (with many nodes, but few long paths) then
a small fixed stack would be able to deal with most, if not all, of the nodes. For example: with
a binary tree in which each node had either zero or two subtrees, a stack of length 40 could deal
with trees containing more than 1,000,000,000,000 nodes more efficiently than the Schorr-Waite
algorithm.

Fancy algorithms are slow when n is small, and n is usually small. — Rob Pike.

However, it is impossible to tell in advance how large a stack is required for a given tree: in the
other extreme case where each node has no more than one daughter, the stack would require as
many elements as the graph being marked. A typical application for graph marking is garbage
collection: and in this situation it is vital to minimise the amount of memory required and know in
advance how much memory will be used. This suggests using a stack to deal with the short paths
and using the general “pointer switching” strategy when the stack runs out.

The algorithm we derive in this section is much more complex than previous algorithms, but
we only need to apply the same transformations: the algorithm involves no new ideas or proofs.
As one reviewer of this paper remarked: “Transformational developments (and automatic aids) are
really the only hope for reasoning about such large, complex programs”.

Starting with the version at the beginning of Section 6.2 we add an integer i to record the
current depth of recursion nesting and insert a (redundant) test of i:

begin x := root; i := 0; K := 〈〉; mark;
where
proc mark ≡

M :=M ∪ {x}; i := i+ 1;
if i > N then var x′ := x : if L(x′) /∈M then x := L(x′); mark; x := x′ fi end;

var x′ := x : if R(x′) /∈M then x := R(x′); mark; x := x′ fi end
else var x′ := x : if L(x′) /∈M then x := L(x′); mark; x := x′ fi end;

var x′ := x : if R(x′) /∈M then x := R(x′); mark; x := x′ fi end fi;
i := i− 1.

end

If the depth is 6 N then we remove the local variable x′ using a stack, if the depth is > N , we
use the pointer switching idea to eliminate x′. We also add the ghost variable m[x] and some
assertions:

begin x := root; i := 0; K := 〈〉; mark; {i = 0}
where
proc mark ≡

M :=M ∪ {x}; i := i+ 1;
if i > N then m[x] := 1; y←〈l[x], q〉;

if q /∈M then y←〈x, q〉; mark; {m[q] = 1 ∧ i > N}; y←〈x, q〉 fi;
m[x] := 2; y←〈l[x], q〉; y←〈r[x], q〉;
if q /∈M then y←〈x, q〉; mark; {m[q] = 2 ∧ i > N}; y←〈x, q〉 fi;
y←〈r[x], q〉

else m[x] := 1;

if l[x] /∈M then K
push
←− x; x := l[x];

mark; {m[x] = 1 ∧ 0 < i 6 N};

x
pop
←− K fi;
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m[x] := 2;

if r[x] /∈M then K
push
←− x; x := r[x];

mark; {m[x] = 2 ∧ 0 < i 6 N};

x
pop
←− K fi fi;

m[x] := 0; i := i− 1.
end

Broy and Pepper claim [9] that adding a “depth counter” such as i, requires an unbounded work-
space, since the counter will require up to lg(#N) bits for graphs with #N nodes. In practice,
this is a bounded amount of storage, since even if every subatomic particle in the visible universe
was pressed into service to represent a node in the graph, then 266 bits (or 34 bytes) would be
sufficient to hold i. On the other hand, if one were to accept their argument, then the requirement
for bounded workspace has still not been met by their algorithm: since the q pointer has to be
able to hold at least #N different values, so it requires at least lg(#N) bits. Our version of the
algorithm restores the final value of q: so any variable can be used for q, for example a variable
from another part of the program, or a node which is already marked (e.g. the Λ node).

We have five calls to mark, requiring five disjoint assertions for recursion removal. But the test
i > N can be used to distinguish between two pairs of calls, so only three values are needed for
m[x]. The test i = 0 is used to detect the outermost call. So we can restructure the body of mark
as an action system and remove the recursion (we also merge M and m as usual)2:

x := root; i := 0; K := 〈〉;
actions A1 :
F ≡ if i > N then A1 else B1 fi.
A1 ≡ m[x] := 1; i := i+ 1;

if m[x] 6= 0 then y←〈l[x], q, x〉; call A1

else y←〈l[x], q〉; call A2 fi.
A2 ≡ m[x] := 2;

if m[x] 6= 0 then y←〈r[x], l[x], q, x〉; call A1

else y←〈r[x], l[x], q〉; call A3 fi.
A3 ≡ m[x] := 3; i := i− 1; y←〈r[x], q〉;

if i < N then call B̂ else call Â fi.
B1 ≡ m[x] := 1; i := i+ 1;

if m[l[x]] 6= 0 then K
push
←− x; x := l[x]; call F else call B2 fi.

B2 ≡ m[x] := 2;

if m[r[x]] 6= 0 then K
push
←− x; x := r[x]; call F else call B3 fi.

B3 ≡ m[x] := 3; i := i− 1; if i = 0 then call Z else call B̂ fi.

Â ≡ y←〈x, q〉; if m[x] = 1 then call A2 else call A3 fi.

B̂ ≡ x
pop
←− K; if m[x] = 1 then call B2 else call B3 fi. endactions

10 Conclusion

The method of algorithm derivation discussed here, which involves formal transformation in a wide
spectrum language, together with the “ghost variable” technique for changing data representations
has proved a powerful way to prove the correctness of some challenging algorithms. In this paper we
discuss “pointer switching idea” first used in the Schorr-Waite graph marking algorithm [35]. This
algorithm is a particularly interesting challenge in that the same data structure is used to direct
the control flow and to store the original graph structure. A correctness proof for the algorithm
has to show that:

1. The original graph structure is preserved by the algorithm (although it is temporarily dis-
rupted as the algorithm proceeds);

2This version minimises the number of tests and assignments.
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2. The algorithm achieves the correct result (all reachable nodes are marked).

Most published correctness proofs for the algorithm [16,19,27,30,34,38,48] have to treat these two
problems together. The methods involving assertions (and intermittent assertions) require an
understanding of the “total situation” at any point in the execution of the program. The “ghost
variable” approach adopted by Broy and Pepper [9] and ourselves, makes it possible to separate the
two requirements: starting with a simple abstract algorithm which is known to mark all the nodes,
the concrete data structure is introduced as a collection of ghost variables which the algorithm is
shown to preserve. Broy and Pepper use a completely applicative programming style and introduce
a new abstract data type for binary graphs with various operations on the pointers. This means
that they have to prove various properties of this new data structure, and their algorithm derivation
requires several induction proofs. In contrast, we believe that the basic idea behind the algorithm
can be formulated and clearly explained as a recursive procedure, representing the graph as a
collection of arrays. Efficient algorithms can then be derived by the application of general-purpose
recursion removal and restructuring transformations.

We derive several marking algorithms which make use of the pointer switching ides and which
illustrate the advantages of transformational development using a wide spectrum language:

1. The development divides into four stages: (i) Recursive Algorithm; (ii) Apply the pointer
switching idea; (iii) Recursion Removal; and (iv) Restructuring. Each stage uses general-
purpose transformations with no complicated invariants or induction proofs;

2. The method easily scales up to larger programs: for example, the hybrid algorithm in Sec-
tion 9 is much more complex than the simple algorithms, yet our development uses the same
transformations and involves no new ideas or proofs;

3. Elimination of induction arguments: the tactics we used to introduce ghost variables can be
applied over and over again in transformational developments. The technique of replacing
recursive calls by the equivalent specification means that most of our reasoning of invariants
on ghost variables is carried out on non-recursive and non-iterative programs. Hence there
is no need for an induction argument!
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Appendices

A Graph Marking

Definition A.1 Given any set N and any function D : N→ ℘(N), the transitive closure TC(D) :
℘(N)→ ℘(N) of D is defined as:

TC(D) =
DF

⋃

n<ω

TCn(D)

where ω represents infinity, so
⋃

n<ω Xn means X0 ∪X1 ∪X2 ∪ . . . and for each X ⊆ N:

TC0(D)(X) =
DF

X and for all n > 0: TCn+1(D)(X) =
DF

⋃

{ D(y) | y ∈ TCn(D)(X) }

We therefore define R =
DF
TC(D). The set of nodes reachable from X is R(X).

Theorem A.2 For any function D, the function R = TC(D) is a closure operator on sets of nodes.
For all X, Y ⊆ N:

1. X ⊆ R(X);

2. If X ⊆ Y then R(X) ⊆ R(Y );

3. R(R(X)) = R(X).

An equivalent definition of R(X) may be given in terms of the set of “closed” sets of nodes. For
each D we define ΓD ⊆ ℘(N), to be the set of subsets X ∈ ΓD which are closed under the D(·)
function, i.e.:

ΓD =
DF
{ X ⊆ N | ∀x ∈ X. D(x) ⊆ X }

Then for X ⊆ N we can define:

R(X) =
DF

⋂

{ Y ∈ ΓD | X ⊆ Y }

See [10] for the proof of this equivalence.

From this we can define a specification for a program which marks all nodes reachable from the
given set X. We “mark” a node by adding it to the set M of marked nodes:

MARK(X) =
DF

M :=M ∪R(X)

Our algorithm will be designed to work correctly when some nodes are already marked: most
derivations assume M = ∅ initially. We will derive several implementations of this specification,
each of which starts by marking a node x ∈ X and then marking the nodes reachable from the
daughters D(x) of x. For efficiency reasons, we want to assume that all unmarked nodes reachable
from X are reachable via unmarked nodes. To see why this is needed, consider this situation:

x

x

x

x

x

¡
¡

¡
¡

@
@
@
@
¡

¡
¡
¡

@
@
@
@

x (marked)

y (unmarked)

z1

r

z2

where X = {r}, M = {x}, D(r) = {z1, x}, D(x) = {z2, y} and D(z1) = D(z2) = D(y) = ∅. After
marking r and z1 we reach x and find it already marked. We have no way of knowing whether
there are any unmarked descendants of x, so every marked node would have to be explored fully.
But now suppose r = z2. Then exploring z2 fully would lead to an infinite loop.
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This problem is avoided if all unmarked nodes reachable from X are reachable via unmarked
nodes. For each x ∈ N we define DM (x) =DF

D(x) \M to be the set of unmarked daughters.
Then the set of unmarked nodes reachable via unmarked nodes from X is RM (X \ M) where
RM =

DF
TC(DM ). Our new specification assumes that all the unmarked reachable nodes are

reachable via unmarked nodes.

MARK(X) =
DF
{M ∪R(X) =M ∪RM (X)}; M :=M ∪R(X)

The following theorem follows from the definition of RM , it shows that marked nodes can be
removed from X without affecting RM (X):

Theorem A.3 If Y ⊆M then RM (X) = RM (X \ Y ).

If a node is reachable, then there must be a way to reach it, and this observation leads to the
concept of a path:

Definition A.4 A path from X to y is a non-empty sequence of nodes p = 〈x1, x2, . . . , xn〉 where
n > 1, x1 ∈ X, xn = y and for each 1 6 i < n, xi+1 ∈ D(xi). We define P (D) to be the set of all
paths, and for each n > 1, define P n(D) to be the set of paths of length n.

The next theorem shows that the intuitive “path based” definition of reachability is the same as
the transitive closure definition. A node is reachable from X if and only if there is a path to the
node from X:

Theorem A.5 y ∈ R(X) ⇐⇒ ∃p ∈ P (D). (p[1] ∈ X ∧ p[`(p)] = y)

Proof: It is sufficient to show by induction on n that y ∈ TCn(D)(X) ⇐⇒ ∃p ∈ P n+1(D). (p[1] ∈
X ∧ p[`(p)] = y). For n = 0 we have TC0(D)(X) = X and P 1(D) = { 〈x〉 | x ∈ N }, so the result
follows.

Suppose the result holds for n and suppose y ∈ TCn+1(D)(X). Then there exists y′ ∈ TCn(X)
such that y ∈ D(y′). By the induction hypothesis, there exists p′ ∈ Pn+1(D) such that p′[1] ∈ X
and p′[`(p′)] = y′. Hence p = p′ ++ 〈y〉 is a path from X to y of length in P n+2(D).

Conversely, let p ∈ P n+2(D) be a path from X to y. Then p′ = p[1 . . n + 1] is a path from X
to some element y′ = p[n + 1] where y ∈ D(y′). By the induction hypothesis, y′ ∈ TCn(D)(X) so
y ∈ TCn+1(D)(X) as required. ¥

So for every y ∈ R(X) there is a path to y from X which we call a witness to the fact that
y ∈ R(X). Conversely, every path p ∈ P (D) whose first element is in X is a witness to the fact
that its last element is in R(X). In particular, every path p is a witness that p[`(p)] ∈ R({p[1]}).
If no element of a path p is in the set M then we say p avoids M .

Theorem A.6 Reachability Theorem:

Let M and X be sets of nodes such that M ∪R(X) =M ∪RM (X) and let x ∈ X \M . Let A and
B be any subsets of RM ({x}) such that RM ({x}) \A ⊆ RM∪A(B). Then:

M ∪RM (X) = M ∪A ∪RM∪A((X \ {x}) ∪B) = M ∪A ∪R((X \ {x}) ∪B)

Proof: Let M ′ =M ∪A and X ′ = (X \ {x}) ∪B. For convenience we define:

LHS =M ∪RM (X) CHS =M ′ ∪RM ′(X ′) RHS =M ′ ∪R(X ′)

Part 1: We claim LHS ⊆ CHS ⊆ RHS. The second relation follows from RM (X) ⊆ R(X) for any
M and X. So suppose y ∈ LHS. If y ∈M ′ then the result is trivial, so suppose y ∈ RM (X).

(i) If y ∈ RM ({x}) then, since y /∈ A, we have y ∈ RM ({x}) \A ⊆ RM ′(B) ⊆ CHS.

(ii) If y /∈ RM ({x}) then, since y ∈ RM (X) = RM (X \ {x}) ∪ RM ({x}), we must have y ∈
RM (X \ {x}). Let p be a witness for this. Suppose element p[i] of p is in A ⊆ RM ({x}) and
let p′ be a witness of this fact. Then p′ ++ p[i+ 1 . . ] is a witness that y ∈ RM ({x}) which is
a contradiction. So p must avoid A, so p is a witness that y ∈ RM ′(X \ {x}) ⊆ CHS.
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So part 1 is proved.

Part 2: We claim RHS ⊆ LHS which together with part 1 proves the equalities. Suppose y ∈ RHS.
If y ∈M ′ then the result is trivial, so suppose y ∈ R(X ′) = R(X \ {x}) ∪R(B).

(i) Suppose y /∈ R(B), so y ∈ R(X\{x}) ⊆ R(X). Then y ∈ RM (X) sinceM∪R(X) =M∪R(X)
and y /∈M . So y ∈ CHS.

(ii) Suppose y ∈ R(B). We have B ⊆ RM ({x}) so by the properties of closure operators we have
R(B) ⊆ R(RM ({x})) ⊆ R(RM (X)) ⊆ R(R(X)) = R(X). So y ∈ R(X) so y ∈ RM (X) as for
(i).

So part 2 is proved and the theorem is proved. ¥

Two obvious choices for A are {x} and RM ({x}). In the former case, a suitable choice for B is
D(x) \ (M ∪ {x}) and in the latter case, the only choice for B is ∅. So we have two corollaries:

Corollary A.7 If M ∪R(X) =M ∪RM (X) and x ∈ X \M then:

M ∪RM (X) = M ∪ {x} ∪RM∪{x}(X
′) = M ∪ {x} ∪R(X ′)

where X ′ = (X \ {x}) ∪ (D(x) \ (M ∪ {x})).

Corollary A.8 If M ∪R(X) =M ∪RM (X) and x ∈ X \M then:

M ∪RM (X) =M ∪R({x}) ∪RM∪R({x})(X \ {x}) =M ∪R({x}) ∪R(X \ {x})

B An Iterative Algorithm

By applying Corollary A.7 we can transform MARK(X) as follows:

MARK(X) ≈ {M ∪R(X) =M ∪RM (X)};
if X ⊆M then skip

else {X \M 6= ∅}; M :=M ∪RM (X) fi

≈ {M ∪R(X) =M ∪RM (X)};
if X ⊆M
then skip
else var x ∈ X \M :

M :=M ∪ {x}; X := (X \ {x}) ∪ (D(x) \M ′);
{M ∪R(X) =M ∪RM (X)};
M :=M ∪R(X) end fi

If the set R(X) is finite, then the set R(X) \M is reduced before the copy of MARK(X) on the
RHS. So by the recursive implementation theorem (Theorem 4.2), MARK(X) is equivalent to:

proc mark ≡
if X ⊆M then skip

else var x ∈ X \M :
M :=M ∪ {x}; X := (X \ {x}) ∪ (D(x) \M ′);
mark end fi.

Apply the recursion removal theorem (Theorem 4.5) to get the iterative algorithm:

proc mark ≡
while X \M 6= ∅ do

var x ∈ X \M :
M :=M ∪ {x}; X := (X \ {x}) ∪ (D(x) \M ′) end od

Note that if M ∩X = ∅ initially then this will always be true at the beginning of the loop, and we
can replace X \M by X.

This algorithm maintains a setX of nodes which have not been marked completely, it repeatedly
removes an element from X, marks it, and adds its unmarked daughters to X.
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C A Recursive Algorithm

By applying Corollary A.8 we can transform MARK(X) as follows:

MARK(X) ≈ {M ∪R(X) =M ∪RM (X)}; M :=M ∪RM (X)

6 if X 6= ∅ then var x ∈ X :
if x /∈M then M :=M ∪RM ({x}) fi;
X := X \ {x}; {M ∪R(X) =M ∪RM (X)};
M :=M ∪RM (X) end fi

≈ if X 6= ∅ then var x ∈ X :
if x /∈M then M :=M ∪RM ({x}) fi;
X := X \ {x}; MARK(X) end fi

Apply Theorem 4.2 using the fact that X is reduced to get:

≈ proc F ≡ if X 6= ∅
then var x ∈ X :

if x /∈M then M :=M ∪RM ({x}) fi;
X := X \ {x}; F end fi

Remove the recursion:

≈ for x ∈ X do
if x /∈M then M :=M ∪RM ({x}) fi od

≈ for x ∈ X do
if x /∈M then var X := {x} : MARK(X) end fi od

Now suppose X contains the single element x /∈M . Then:

MARK({x}) ≈ {M ∪R({x}) =M ∪RM ({x})}; M :=M ∪RM ({x})

≈ {M ∪R({x}) =M ∪RM ({x})}; M :=M ∪ {x};
M :=M ∪RM (D(x) \M)

Apply Corollary A.7:

≈ {M ∪R(X) =M ∪RM (X)}; M :=M ∪ {x};
var X := D(x) \M :
{M ∪R(X) =M ∪RM (X)}; M :=M ∪RM (X) end

≈ {M ∪R(X) =M ∪RM (X)}; M :=M ∪ {x};
var X := D(x) \M :
MARK(X) end

≈ {M ∪R(X) =M ∪RM (X)}; M :=M ∪ {x};
for x ∈ D(x) \M do

if x /∈M then var X := {x} : MARK(X) end fi od

by the result above. Now we can apply Theorem 4.2 again:

≈ {M ∪R(X) =M ∪RM (X)};
proc F ≡

M :=M ∪ {x};
for x ∈ D(x) \M do

if x /∈M then F fi od

There is no need to remove elements of M from D(x) in the for loop since these will be tested for
in the loop body. Also, the result is slightly clearer if we add a parameter to the procedure and
rename the iteration variable. So we have the following recursive marking algorithm, which marks
all nodes reachable from x. If x /∈M andM∪R({x}) =M∪RM ({x}) then mark(x) ≈ MARK({x})
where:
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proc mark(x) ≡
M :=M ∪ {x};
for y ∈ D(x) do

if y /∈M then mark(y) fi od.

We can remove the recursion for this program to get a different iterative algorithm to that of
Section B (we do not need a stack for the parameter, but we do need a stack for the local set
variable D introduced by the for loop):

proc mark(x) ≡
var K := 〈〉, D := 〈〉 :
do M :=M ∪ {x};

K
push
←− D; D := D(x);

do if D = ∅ then D
pop
←− K; if K = 〈〉 then exit(2) fi

else x := x′.(x′ ∈ D); D := D \ {x};
if x /∈M then exit fi fi od od end.

It is an interesting and instructive exercise to transform this iterative program into a refinement of
the program derived in Section B.
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