
Program Analysis by Formal Transformation

M.P. Ward

Martin.Ward@@durham.ac.uk

Computer Science Department

University of Durham

Science Laboratories

South Rd

Durham DH1 3LE, UK

Abstract
This paper treats Knuth and Szwarcfiter’s topological sorting program, presented in their paper “A Structured

Program to Generate All Topological Sorting Arrangements” (Knuth and Szwarcfiter 1974), as a case study for the
analysis of a program by formal transformations. This algorithm was selected for the case study because it is a
particularly challenging program for any reverse engineering method. Besides a complex control flow, the program uses
arrays to represent various linked lists and sets, which are manipulated in various “ingenious” ways so as to squeeze
the last ounce of performance from the algorithm. Our aim is to manipulate the program, using semantics-preserving
operations, to produce an abstract specification. The transformations are carried out in the WSL language, a “wide
spectrum language” which includes both low-level program operations and high level specifications, and which has been
specifically designed to be easy to transform.

1 Introduction

In (Knuth and Szwarcfiter 1974) a program is presen-
ted for “topological sorting”, i.e. determining all the
extensions of a given partial order to a linear order.
Despite the title of the paper (“A Structured Program
to Generate All Topological Sorting Arrangements”) ,
the program is, by modern standards, highly unstruc-
tured, containing jumps into and out of the middle of
loops and implementing linked lists and circular lists
using pointers into arrays. Our aim in this paper is
to transform it into a structured program, and from
there into a formal specification, by means of formal,
semantics-preserving transformations.

The language and transformation techniques to be
used are described in (Ward 1989) and (Ward 1994a).
The techniques are used in software development (re-
fining a specification into an efficient implementation)
in (Ward 1990) and (Priestley and Ward 1994), and a
simple example of program analysis by transformation
is given in (Ward 1993). In (Ward 1994b) we deal
with a program which implements a tree structure as
a collection of four-way linked nodes, represented as
pointers into arrays. The example in this paper also
uses pointers, but in this case there are no “nodes”:
the arrays implement disjoint sets of elements and the
pointer values are the actual elements.

Our example program exhibits a high degree of
both control flow complexity and data representation
complexity, using linked lists and circular lists imple-
mented with pointers into arrays. In the process of our
analysis we discover that one of the arrays is used for
two different purposes: to record integer counts and to

save and restore pointers. Our aim in this paper is to
demonstrate that our program transformation theory,
based on weakest preconditions and infinitary logic, can
form the basis for a method for reverse engineering
programs with complex data structures and control
flow. The reverse engineering method is a heuristic
method based on the selection and application of formal
transformations and abstractions, with tool support to
check correctness conditions, apply the transformations
and store the results. No reverse engineering process
can be totally automated, for fundamental theoretical
reasons, but as we gain more experience with this
approach, we are finding that more and more of the
process is capable of being automated.

1.1 The FermaT Project

The WSL language and transformation theory forms
the basis of the FermaT project (Bull 1990; Ward,
Calliss and Munro 1989) at Durham University and
Software Migrations Ltd. which is developing an in-
dustrial strength program transformation tool for soft-
ware maintenance, reverse engineering and migration
between programming languages (for example, Assem-
bler to COBOL). The tool consists of a structure editor,
a browser and pretty-printer, a transformation engine
and library of proven transformations, and a collection
of translators for various source and target languages.

The initial prototype tool was developed as part of
an Alvey project at the University of Durham. This
work on applying program transformation theory to
software maintenance formed the basis for a joint re-
search project between the University of Durham, CSM
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Ltd1 and IBM UK Ltd. whose aim was to develop
a tool to interactively transform assembly code into
high-level language code and Z formal specifications
(McMorran and Nicholls 1989). A prototype translator
was built and tested on sample sections of up to 20,000
lines assembler code, taken from very large commercial
assembler systems. One particular module had been re-
peatedly modified over a period of many years until the
control flow structure had become highly convoluted.
Using the prototype translator and transformation tool
we were able to turn this into a hierarchy of (single-
entry, single-exit) subroutines resulting in a module
which was slightly shorter and considerably easier to
read and maintain. The transformed version was hand-
translated back into Assembler which, after fixing a
single mis-translated instruction, “worked first time”.
(The programmer had selected the wrong Assembler
instruction to implement a particular operation in the
WSL program: this mistake was easily discovered and
fixed). See (Ward and Bennett 1993; Ward and Bennett
1995a; Ward and Bennett 1995b) for a description of
this work and the methods used.

For the next version of the tool (i.e. FermaT itself)
we decided to extend WSL to add domain-specific con-
structs, creating a language for writing program trans-
formations, which we calledMETAWSL. The extensions
include an abstract data type for representing programs
as tree structures and constructs for pattern matching
and schema filling, together with powerful operators for
iterating over the structure of a program: for example,
to selectively modify all the terminal statements in
a section of code. The “transformation engine” of
FermaT is implemented entirely inMETAWSL. The im-
plementation of METAWSL involves a translator from
METAWSL to LISP, a small LISP runtime library (for
the main abstract data types) and a WSL runtime
library (for the high-levelMETAWSL constructs). One
aim was so that the tool could be used to maintain
its own source code: and this has already proved pos-
sible, with transformations being applied to simplify
the source code for other transformations! Another aim
was to test our theories on language oriented program-
ming (Ward 1994c), with an explicitly “middle-out”
approach to the development (developing a very high
level, domain-specific language) we expected to see a
reduction in the total amount of source code required
to implement a more efficient, more powerful and more
rugged system. We also anticipated noticeable im-
provements in maintainability and portability. These
expectations have been fulfilled, and we are achieving a
high degree of functionality from a small total amount
of easily maintainable code: the current prototype con-
sists of around 16,000 lines of METAWSL and LISP
code, while the previous version required over 100,000
lines of LISP.

The tool is designed to be interactive, because the
reverse engineering process can never be completely

automated—there are many ways of writing the spe-
cification of a program, several of which may be useful
for different purposes. The maintainer provides high-
level “guidance” to the transformation process, while
all the tedious condition checking and source code ma-
nipulation is carried out automatically. In the course
of the development of the tool, we have been able to
capture much of the knowledge and expertise that we
have developed through manual experiments and case
studies with earlier versions of the tool, and incorporate
this knowledge within the tool itself. For example,
restructuring a regular action system (a collection of
gotos and labels) can now be handled completely auto-
matically through a single transformation. See (Ward
1994) for more details.

The strategy for reverse engineering using the
FermaT tool is to start by restructuring the program,
using general-purpose transformations and heuristics,
and then attempting to massage the structure into a
suitable form for the recursion introduction transform-
ation: this “massaging” usually involves nothing more
difficult than taking out the stack manipulation oper-
ations into separate actions (the “B-type” actions of
Appendix A.3). Occasionally two or more actions will
have to be combined into one, using a transformation
dedicated to this process (see Section 6.2).

Once a recursive version of the program has been
arrived at, it becomes possible to deduce various prop-
erties of the program, which allow further simplifica-
tions to take place. The data structure complexity is
dealt with in several stages: first an abstract data type
is developed and abstract variables are added to the
program alongside the “real” (concrete) variables. At
this stage, the abstract variables are “ghost” variables
whose values have no effect on the program’s opera-
tion. It is now possible to determine the relationships
between abstract and concrete variables: and these
relationships can be proved using local information
rather than requiring global invariants. One by one,
the references to concrete variables are replaced by
equivalent references to abstract variables. Once all
references to concrete variables have been removed,
they become “ghost” variables and can be eliminated
from the program. The result is an abstract program
which is guaranteed to be a valid abstraction of the
original concrete program. This abstract program can
then be further simplified, again using general-purpose
transformations, until a high-level abstract specifica-
tion is arrived at.

FermaT can also be used as a software development
system (but this is not the focus of this paper): starting
with a high-level specification expressed in set-theory
and logic notation (similar to Z or VDM (Jones 1986)),
the user can successively transform it into an efficient,
executable program. See (Priestley and Ward 1994;
Ward 1990) for examples of program development in
WSL using formal transformations.

1Centre for Software Maintenance Ltd: a Durham company, now called Software Migrations Ltd
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More recently, FermaT has been applied to the task
of migrating from assembler code (IBM 370 Assembler
and a proprietary 16-bit assembler) to maintainable
structured programs written in high level languages
(including C and COBOL). Assembler modules of up
to 39,000 lines have been processed, with FermaT auto-
mating much of the restructuring and data translation
process. One of the more difficult tasks which FermaT
has achieved is to move blocks of code into procedures:
in the Assembler, a procedure call is implemented by
storing a return address and jumping into the proced-
ure, which returns by loading a register with the return
address and branching to the register. FermaT has to
cope with overwritten return addresses, multiple entry
points into procedures, “calls” which do not store a
return address, incrementing the return address before
returning, and other “tricks” beloved by Assembler
programmers!

FermaT has also been applied to the “year 2000
problem” in assembler: determining which instructions
manipulate two-digit dates, and tracing data flows
through assembler programs.

1.2 Overview of the Paper

In Section 2 we discuss related work in the area of
program transformations. In Section 3 we introduce the
concept of topological sorting and prove that the nodes
in a directed graph can be topologically sorted if and
only if the graph is cycle-free. Section 4 introduces the
WSL language and transformation theory, (Appendix A
gives some example program transformations which are
used in the analysis). Knuth’s algorithm is described
in Section 5 and Section 6 shows that this algorithm
can be transformed into an equivalent high-level ab-
stract specification. Finally, in Section 7 we conclude
with some remarks on the transformational approach
to reverse engineering.

2 Related Work

The Refinement Calculus approach to program deriva-
tion (Hoare et al. 1987; Morgan 1994; Morgan, Robin-
son and Gardiner 1988; Morgan and Vickers 1993)
is superficially similar to our program transformation
method. It is based on a wide spectrum language,
using Morgan’s specification statement (Morgan 1988)
and Dijkstra’s guarded commands (Dijkstra 1976).
However, this language has very limited programming
constructs: lacking loops with multiple exits, action
systems with a “terminating” action, and side-effects.
These extensions are essential if transformations are to
be used for reverse engineering. The most serious lim-
itation is that the transformations for introducing and
manipulating loops require that any loops introduced
must be accompanied by suitable invariant conditions
and variant functions. This makes the method unsuit-
able for a practical reverse-engineering method.

A second approach to transformational develop-
ment, which is generally favoured in the Z community

and elsewhere, is to allow the user to select the next re-
finement step (for example, introducing a loop) at each
stage in the process, rather than selecting a transform-
ation to be applied to the current step. Each step will
therefore carry with it a set of proof obligations, which
are theorems which must be proved for the refinement
step to be valid. Systems such as mural (Jones et al.
1991), RAISE (Neilson et al. 1989) and the B-tool (Ab-
rial et al. 1991) take this approach. These systems thus
have a much greater emphasis on proofs, rather than
the selection and application of transformation rules.
Discharging these proof obligations can often involve a
lot of tedious work, and much effort is being exerted
to apply automatic theorem provers to aid with the
simpler proofs. However, (Sennett 1990) indicates that
for “real” sized programs it is impractical to discharge
much more than a tiny fraction of the proof obligations.
He presents a case study of the development of a simple
algorithm, for which the implementation of one function
gave rise to over one hundred theorems which required
proofs. Larger programs will require many more proofs.
In practice, since few if any of these proofs will be
rigorously carried out, what claims to be a formal
method for program development turns out to be a
formal method for program specification, together with
an informal development method. For this approach
to be used as a reverse-engineering method, it would be
necessary to discover suitable loop invariants for each of
the loops in the given program, and this is very difficult
in general, especially for programs which have not been
developed according to some structured programming
method.

The well known Munich project CIP (Computer-
aided Intuition-guided Programming) (Bauer and
Group 1985; Bauer et al. 1989; Bauer and The CIP Sys-
tem Group 1987) uses a wide-spectrum language based
on algebraic specifications and an applicative kernel
language. They provide a large library of transform-
ations, and an engine for performing transformations
and discharging proof obligations. The kernel is a
simple applicative language which uses only function
calls and the conditional (if. . . then) statement. This
language is provided with a set of “axiomatic trans-
formations” consisting of: α-, β-and η-reduction of the
Lambda calculus (Church 1941), the definition of the
if-statement, and some error axioms. Two programs
are considered “equivalent” if one can be reduced to the
other by a sequence of axiomatic transformations. The
core language is extended until it resembles a functional
programming language. Imperative constructs (vari-
ables, assignment, procedures, while-loops etc.) are
introduced by defining them in terms of this “applic-
ative core” and giving further axioms which enable the
new constructs to be reduced to those already defined.
Similar methods are used in (Broy, Gnatz and Wirsing
1979; Pepper 1979; Wossner et al. 1979) and (Bauer and
Wossner 1982). However this approach does have some
problems with the numbers of axioms required, and the
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difficulty of determining the exact correctness condi-
tions of transformations. These problems are greatly
exacerbated when imperative constructs are added to
the system.

The method adopted in the FermaT project: repres-
enting a transformation as an algorithm in a language
designed for the purpose, is also used in the ZAP system
(Feather 1987; Feather 1982). But with this system, the
user needs to write (often large and complex) scripts
in the meta language, HOPE (Burstall, McQueen and
Sannella 1980), for each transformational development,
making the system cumbersome to use. In (Hildum
and Cohen 1990) a transformation is also specified as
an algorithm which takes a given program as input and
produces an equivalent program as output. Programs
are stored as text sequences, necessitating a large time
overhead in parsing. None of these meta-languages has
the METAWSL facilities for pattern matching, schema
filling, and iterating over the structure of a program.

The REDO project (Zuylen 1992), involving LLoyds
Register and ten other partners including the Uni-
versity of Durham, ran from January 1989 to December
1991, and aimed to assist software engineers in the
maintenance, restructuring and validation of large soft-
ware systems and their transportation between different
environments. The objective was to articulate a theor-
etical framework for doing this and develop methods
and prototype tools. An intermediate language was
developed, with business applications in mind, and a
handbook on reverse engineering was produced.

3 Topological Sorting

In this section we will introduce the concept of topo-
logical sorting, and give a proof that the nodes of any
cycle-free directed graph can be arranged into a straight
line such that all the arrows point in the same direction.

One application of topological sorting is resolving
dependencies: for example, the Unix “make” command
which reads a “Makefile”, listing the dependencies
between source files, and executes the sequence of
commands (compile, load etc.) required to bring the
system up to date. Another application is displaying
call graphs: the FermaT tool uses a modified algorithm
which combines cycle detection with topological sorting
to arrange the nodes on the page to minimise the num-
ber of upward pointing arrows. The graph in Figure 1
was generated by this algorithm.

Given a set P of pairs of elements taken from a base
set B, the aim of topological sorting is to determine a
permutation 〈x1, x2, . . . , xn〉 of B such that for each
pair 〈xi, xj〉 ∈ P we have i 6 j. The problem is
equivalent to arranging the vertices of a directed graph
into a straight line in such a way that all the arrows
point in the same direction. This will be possible if
and only if there are no cycles in the directed graph,
i.e. if there is no sequence 〈c1, c2, . . . , cm〉 of elements
of B such that for each 1 6 i < m the pair 〈ci, ci+1〉 is
in P . The following theorem proves the existence of a

“topological sort” (a topsort) whenever this condition
holds:

Theorem 3.1 Topological sorting of a finite set P of
pairs of elements in a finite base set B is possible if and
only if P is cycle free.

Proof: The proof is a simple induction on the size of B.
For the base case, if B is the empty set ∅, then P must
also be empty, and the empty sequence 〈〉 suffices as a
topsort. If B is not empty, then let x1 be any minimal
element of B, i.e. any element which does not appear as
the first element of any pair in P . Such an element must
exist, since otherwise there must be a cycle in P (start
from any element of B and “work backwards” through
pairs in P . Since the set is finite, we must eventually
reach either a minimal element, or a cycle of elements).
Then we remove all the pairs containing x1 from P to
form P ′, which will also be cycle-free, and remove x1

from B to form B′. The set B′ is smaller then B so,
by the induction hypothesis, we can topologically sort
P ′ to construct 〈x2, x3, . . . , xn〉. Prepending x1 to this
sequence then gives a topsort of B. ¥

We have given the proof of this well-known result,
because the proof that a solution exists also provides
an algorithm for constructing the solution. In addition,
we note that any topsort of P could be constructed
by this algorithm. In other words, if 〈x1, x2, . . . , xn〉
is a topsort of P , then x1 must be a minimal element
(or there will be an arrow in the wrong direction) and
〈x2, . . . , xn〉 must be a topsort of the P ′ constructed by
the algorithm. A small modification of the algorithm
can therefore be used to generate all topsorts of the
given set P : for each minimal element x1 of B, prepend
it to each of the topsorts of the set B \ {x1} formed by
removing all the pairs containing x1 from P . The result
will be a list of all the topsorts of P .

We will return to topological sorting in Section 5.
First we discuss the wide spectrum language and give
examples of some transformations.

4 The Language WSL

WSL is the “Wide Spectrum Language” used in our
program transformation work, which includes low-level
programming constructs and high-level abstract spe-
cifications within a single language. By working within
a single formal language we are able to prove that a
program correctly implements a specification, or that
a specification correctly captures the behaviour of a
program, by means of formal transformations in the
language. We don’t have to develop transformations
between the “programming” and “specification” lan-
guages. An added advantage is that different parts
of the program can be expressed at different levels of
abstraction, if required.

A program transformation is an operation which
modifies a program into a different form which has
the same external behaviour (it is equivalent under a
precisely defined denotational semantics). Since both
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programs and specifications are part of the same lan-
guage, transformations can be used to demonstrate that
a given program is a correct implementation of a given
specification. We write S1 ≈ S2 if statements S1 and
S2 are semantically equivalent.

A refinement is an operation which modifies a pro-
gram to make its behaviour more defined and/or more
deterministic. Typically, the author of a specification
will allow some latitude to the implementor, by re-
stricting the initial states for which the specification
is defined, or by defining a nondeterministic behaviour
(for example, the program is specified to calculate a
root of an equation, but is allowed to choose which
of several roots it returns). In this case, a typical
implementation will be a refinement of the specifica-
tion rather than a strict equivalence. The opposite of
refinement is abstraction: we say that a specification is
an abstraction of a program which implements it. See
(Morgan 1994; Morgan and Vickers 1993) and (Back
1980; Back 1988; Back and von Wright 1990) for a
description of refinement. We write S1 ≤ S2 if S2

is a refinement of S1, or if S1 is an abstraction of S2.

4.1 Syntax and Semantics

The syntax and semantics of WSL are described in
(Priestley and Ward 1994; Ward 1989; Ward 1994a;
Ward 1993) so will not be discussed in detail here.
Note that we do not distinguish between arrays and
sequences; both the “array notations” and “sequence
notations” can be used on the same objects. For ex-
ample if a is the sequence 〈a1, a2, . . . , an〉 then:

• `(a) denotes the length of the sequence a;

• a[i] is the ith element ai;

• a[i . . j] denotes the subsequence 〈ai, ai+1, . . . , aj〉;

• butlast(a) denotes the subsequence a[1 . . `(a) − 1],
that is, the sequence consisting of all but the last
element in the sequence a;

• set(a) denotes the set of elements in the sequence,
i.e. {a1, a2, . . . , an};

• The statement x
pop

←− a (where both x and a are vari-
ables, and a contains the sequence 〈a1, a2, . . . , an〉)
sets x to a1 and a to 〈a2, a3, . . . , an〉. It is equivalent
to: x := a[1]; a := a[2 . .];

• The statement a
push

←− e (where a contains a se-
quence as above, and e is any expression) sets a to
〈x, a1, a2, . . . , an〉. It is equivalent to: a := 〈e〉 ++
a[1];

• The statement x
last

←− a (where both x and a are
variables, and a contains a sequence) sets x to an

and a to 〈a1, a2, . . . , an−1〉. It is equivalent to:
x := a[`(a)]; a := a[1 . . `(a)− 1].

The concatenation of two sequences is written a ++ b.
Most of the constructs in WSL, for example if

statements, while loops, procedures and functions, are
common to many programming languages. However

there are some features relating to the “specification
level” of the language which are unusual.

Expressions and conditions (formulae) in WSL are
taken directly from first order logic: in fact, an infinit-
ary first order logic (see (Karp 1964) for details), which
allows countably infinite disjunctions and conjunctions.
This means that statements in WSL can include ex-
istential and universal quantification over infinite sets,
formulae with an infinite number of terms, and similar
(non-executable) operations.

An example of a non-executable operation in WSL
is the specification statement, written: 〈x1, . . . , xn〉 :=
〈x′1, . . . , x

′
n〉.Q which assigns new values to the variables

x1, x2, . . . , xn. In the formula Q, the variables xi

represent the old values and x′i represent the new values.
The new values are chosen so that Q will be true, then
they are assigned to the variables, so for example the
statement 〈x〉 := 〈x′〉.(x′ = x + 1) will increment the
value of x. If there are several sets of values which
satisfy Q then one set is chosen nondeterministically.
If there are no values which will satisfy Q then the
statement does not terminate. For example, the as-
signment 〈x〉 := 〈x′〉.(x = 2 ∗ x′ ∧ x ∈ Z ∧ x′ ∈ Z)
halves x if it is an even integer and aborts (does not
terminate) if x is odd or not an integer. If the sequence
contains one variable then the sequence brackets may
be omitted, for example: x := x′.(x = 2 ∗ x′). Another
example is x := x′.(y = 0) which assigns an arbitrary
value to x if y = 0 initially, and aborts if y 6= 0
initially: it does not change the value of y. Another
example is the statement x := x′.(x′ ∈ B) which picks
an arbitrary element of the set B and assigns it to x
(without changing B). The statement aborts if B is
empty, while if B is a singleton set, then there is only
one possible final value for x.

The simple assignment 〈x1, . . . , xn〉 := 〈e1, . . . , en〉,
where the xi are variables and the ei are expressions, is
an abbreviation for 〈x1, . . . , xn〉 := 〈x

′
1, . . . , x

′
n〉.(x

′
1 =

e1 ∧ · · · ∧ x′n = en). It assigns the values of the
expressions ei to the variables xi. The assignments
are carried out simultaneously, so for example 〈x, y〉 :=
〈y, x〉 will swap the values of variables x and y. The
single assignment 〈x〉 := 〈e〉 can be abbreviated to
x := e.

The local variable statement, written var 〈x1 :=
e1, . . . , xn := en〉 : S end introduces a new local vari-
ables x1, . . . , xn, initialised to the values of expressions
e1, . . . , en respectively. The local variable only exists
while the statement S, the body of the var statement,
is executed. If x also exists as a global variable, then
its value is saved and restored at the end of the block.
(Technical note: the expressions ei are allowed to refer
the variables xi, in which case it is the external global
variable which is being referenced. So for example:
var 〈x := x〉 : S end will create a local copy of the
global variable x, whose value will be restored at the
end of the block, undoing any changes S has made to
x).
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An assertion in WSL is a statement of the form {P}
where P is any formula. If the condition P is true, then
the assertion acts as a skip statement (it terminated
immediately without changing the value of any vari-
able). Otherwise it acts as an abort (a non-terminating
statement). Assertions are used for several purposes,
for example: (1) A transformation which introduces an
assertion at a certain point in the program has in effect
proved that the formula will always be true at that
point. (2) An assertion at the beginning of a program
can be treated as a precondition: the transformations
can assume that the condition is true initially. The
assertion {P} is equivalent to a specification statement
〈〉 := 〈〉.P with an empty list of variables. The state-
ment skip is equivalent to {true}, and the statement
abort is equivalent to {false}.

An unbounded loop is written do S od and can
only be terminated by the execution of an exit state-
ment exit(n) (where n is a non-negative integer, not a
variable or expression), or an action call (see below).
exit(n) causes immediate termination of the n nested
enclosing do . . . od loops, with execution continuing
after the outermost loop. exit(1) may be abbreviated
to exit, while exit(0) is equivalent to skip.

An action is a parameterless procedure acting on
global variables (cf (Arsac 1982a; Arsac 1982b)). It is
written in the form A ≡
S. where A is a statement variable (the name of the
action) and S is a statement (the action body). A set
of mutually recursive actions is called an action system.
There may sometimes be a special action Z, execution
of which causes termination of the whole action system
even if there are unfinished recursive calls. An occur-
rence of a statement call X within the action body is
a call of another action. There are some restrictions
on the placing of action calls within an action system:
action calls can only appear at the top level or within
if statements and do . . . od loops. The symbol ≡
is also used for procedure definition (see below) and
should be distinguished from the symbol for semantic
equivalence: ≈ .

An action system is written as follows, with the first
action to be executed named at the beginning. In this
example, the system starts by calling A1:

actions A1 :
A1 ≡

S1.
A2 ≡

S2.
. . .
An ≡

Sn. endactions

For example, this action system is equivalent to the
while loop while B do S od:

actions A :
A ≡
if ¬B then call Z fi;
S; call A. endactions

With this action system, each action call must lead to
another action call, so the system can only terminate
by calling the Z action (which causes immediate ter-
mination). Such action systems are called regular.

Normal procedures (with or without parameters)
and functions are defined using a where clause:

begin

S
where

proc F1(x) ≡ S1.
. . .

end

Within the main body S, and the bodies Si, statements
Fi(x) are procedure calls with parameters. These can
occur in any statement position since every procedure
call always returns.

For a given set X, the nondeterministic iteration
over X is written for i ∈ X do S od. This executes
the body S once for each element in X, with i taking
on the value of each element. It is equivalent to the
following:

var 〈i := 0, X ′ := X〉 :
while X ′ 6= ∅ do

i := i′.(i′ ∈ X ′); X ′ := X ′ \ {i};
S od end

For a sequence X, the iteration over the elements of
X is written for x

pop

←− X do S od. The elements are
taken in their order in the sequence, so in this case the
iteration is deterministic. The loop is equivalent to:

var 〈i := 0, X ′ := X〉 :
while X ′ 6= ∅ do

i
pop

←− X ′;
S od end

5 Knuth’s Topological Sorting Algorithm

The algorithm presented by Knuth and Szwarcfiter
(Knuth and Szwarcfiter 1974) is written in a “pseudo
PASCAL” notation. Although the title claims it is a
structured program, it in fact contains various features
which make the program very difficult to analyse and
prove correct. These include the use of comments as
the labels for goto statements, jumping into and out of
the middle of loop structures, and the use of pointers
into arrays to represent linked lists.

We have translated the algorithm into WSL, with
some slight changes:

• The input is taken from an array R rather than by
calling the read procedure;

• Instead of printing the result, we call process(s)
for each topological sorting arrangement s. This
generalises the algorithm without introducing any
complications.

var 〈count := 〈〉, top := 〈〉, link := 〈〉,
suc := 〈〉, next := 〈〉, s := 〈〉,
d := 0, k := 0, t := 0, q := 0, n := 0,
p := 0, j := 0, d1 := 0〉 :
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for j := 1 to n step 1 do
count[j] := 0; top[j] := 0 od;

for k := 1 to m step 1 do
〈i, j〉 := R[k]; suc[k] := j;
next[k] := top[i]; top[i] := k;
count[j] := count[j] + 1 od;

link[0] := 0; d := 0;
for j := 1 to n step 1 do

if count[j] = 0 then link[d] := j; d := j fi od;
actions start :
start ≡
if d = 0 then call done else link[d] := link[0] fi;
k := 0; t := 0; call alltopsorts.

alltopsorts ≡
if k = n− 1 then s[n] := d; process(s)

else base[k] := link[d]; call L fi;
call endloop.

L ≡
q := link[d]; d1 := link[q];
p := top[q];
while p 6= 0 do

j := suc[p];
count[j] := count[j]− 1;
if count[j] = 0
then if d = q then d := j else link[j] := d1 fi;

d1 := j fi;
p := next[p] od;

link[d] := d1;
s[k + 1] := q;
if d1 = q then call done fi;
count[q] := t; t := q; k := k + 1;
call alltopsorts.

return ≡
k := k − 1;
q := t; t := count[q]; count[q] := 0;
p := top[q];
while p 6= 0 do

j := suc[p]; count[j] := count[j] + 1;
p := next[p] od;

link[d] := q; d := q;
if link[d] 6= base[k] then call L fi;
call endloop.

endloop ≡
if k > 0 then call return fi; call done.

done ≡
call Z. endactions end

Figure 1 shows the call graph of the main action system.

start

alltopsorts endloop

return

L done Z

Figure 1: The Call Graph of Knuth’s Topological
Sorting Algorithm

6 Transformational Analysis

We will now show how such an algorithm can be ana-
lysed by applying a sequence of transformation steps
which first transform it into a structured form and then
derive a mathematical specification of the algorithm.
Since each of the transformation steps has been proven
to preserve the semantics of a program, the correctness
of the specification so derived is guaranteed.

The program exhibits both control flow complexity
and data representation complexity, with the control
flow directed by the data structures. With the aid of
program transformations it is possible to “factor out”
these two complexities, dealing first with the control
flow and then changing the data representation. Both
control and data restructuring can be carried out using
only local information, it is not until near the end of
the analysis (when much of the complexity has been
eliminated, and the program is greatly reduced in size)
that we need to determine the “big picture” of how the
various components fit together. This feature of the
transformational approach is essential in scaling up to
large programs, where it is only practicable to examine
a small part of the program at a time.

The analysis of the algorithm breaks down into
several stages:

1. Restructure to remove some of the control-flow com-
plexity;

2. Recast as an iterative procedure in the right format
for applying Corollary A.6;

3. Restructure the resulting recursive procedure;

4. Hypothesise a specification for the procedure, and
remove the recursive call(s);

5. Add abstract variables to the program and update
them in parallel with the actual (concrete) variables;

6. Replace references to concrete variables by equival-
ent references to abstract variables and remove the
concrete variables to give an abstract program;
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7. Show that the abstract program is a refinement of
the expected specification.

6.1 Restructuring

The first step in analysing the program involves simple
restructuring. We begin by looking for procedures and
variables which can be “localised”. In this case the
variables p and j are used locally in two sections of
code, which we turn into procedures. Since we have
yet to determine what these procedures do, they have
been called P1 and P2. The next stage is to restructure
the “spaghetti” of labels and jumps by unfolding ac-
tion calls, introducing loops, re-arranging if statements,
merging action calls, and so on.

In the FermaT tool this process is automated in the
transformation Collapse Action System which follows
heuristics we have developed over a long period of time:
selecting the sequence of transformations required to
restructure a program. The heuristics include:

• Unfolding and removing an action which is only
called once;

• Removing the tail recursion in an action which calls
itself: by introducing a double-nested do . . . od

loop and replacing the self-calls by exits. Further
transformations are then attempted to reduce the
double loop to a single loop;

• Merging calls—if an action calls another action in
several places, then it is sometimes possible to
combine these into a single call. For example:
if B then S1; call A fi; S2; call A is equivalent
to if B then S1; call A else S2; call A fi which in
turn is equivalent to: if B then S1 else S2 fi; call A;

• Automatically converting a block of code into a
procedure: for example, an action which is called
in several places and which calls one other action
(possibly several times), can be converted into a
procedure call followed by an action call. Then all
the calls to the action can be unfolded cheaply and
the action removed from the system.

The overall aim of these heuristics is to reduce the
number of actions in the system; the secondary aim is
to reduce the total number of action calls in the system.
These aims are to be achieved as far as possible without
introducing new variables, or copying large blocks of
code. See (Ward 1991; Ward 1993; Ward and Bennett
1993) for further details of these and other heuristics
and examples of their application.

For Knuth’s algorithm, the following sequence of
transformations was discovered and applied automat-
ically by the system:

1. Unfold the single call to return and remove that
action from the system;

2. Remove the tail recursion thus created in the endloop
action (this introduced what will become the inner
loop in the program);

3. Unfold the remaining call to endloop and remove that
action;

4. Now the two calls to L are brought together into the
same action, and can be merged into a single call;

5. Unfold and remove the action L;

6. This creates a tail recursion in action alltopsorts

which is removed to create the outer loop in the
program;

7. Unfold and remove the action alltopsorts, since there
is now a single call to it;

8. Now the three calls to done have been brought into
the same action and can be merged;

9. Unfold and remove the action done.

The resulting action system contains a single action
(start), so the action system is replaced by a do . . . od
loop with the calls to Z replaced by appropriate exit

statements. Further transformations allow us to re-
structure the loop body and remove this extra loop.

The result of this totally automated process is as
follows:

for j := 1 to n step 1 do count[j] := 0; top[j] := 0 od;
for k := 1 to m step 1 do
〈i, j〉 := R[k]; suc[k] := j; next[k] := top[i];
top[i] := k; count[j] := count[j] + 1 od;

link[0] := 0; d := 0;
for j := 1 to n step 1 do

if count[j] = 0 then link[d] := j; d := j fi od;
if d 6= 0
then link[d] := link[0];

k := 0; t := 0;
do if k = n− 1

then s[n] := d; process(s);
do if k 6 0 then exit(2) fi;

k := k − 1;
q := t; t := count[q];
count[q] := 0;
P2();
if link[d] 6= base[k]
then exit(1) fi od

else base[k] := link[d] fi;
P1();
s[k + 1] := q;
if d1 = q then exit(1) fi;
count[q] := t;
t := q; k := k + 1 od fi

where the two procedures we have taken out are:

proc P1() ≡
q := link[d]; d1 := link[q];
var 〈p := top[q], j := 0〉 :
while p 6= 0 do

j := suc[p];
count[j] := count[j]− 1;
if count[j] = 0
then if d = q then d := j else link[j] := d1 fi;

d1 := j fi;
p := next[p] od;

link[d] := d1 end.

and
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proc P2() ≡
var 〈p := top[q], j := 0〉 :
while p 6= 0 do

j := suc[p]; count[j] := count[j] + 1;
p := next[p] od;

link[d] := q;
d := q end.

6.2 Prepare for Recursion Introduction

Our next aim is to restructure the program in the form
of a recursive procedure, by applying Corollary A.6.
We have discovered that for a great many program
analysis problems, it is very important to get to a
recursive form of the program as early as possible in
the analysis process. Discovering the overall structure
and operation of a complex program, such as this one,
is enormously easier once a recursive form has been
arrived at.

Before we can introduce recursion, we need to re-
structure the program into a suitable action system.
This will make explicit the places where recursive calls
will ultimately appear, and where the tests for termina-
tion occur. First we introduce the procedure and create
an action system for its body.

begin

if d 6= 0 then link[d] := link[0]; k := 0; t := 0; F () fi
where

proc F () ≡
actions A1 :
A1 ≡
if k = n− 1

then s[n] := d; process(s); call F̂1

else base[k] := link[d]; call A2 fi.
A2 ≡

P1(); s[k + 1] := q;
if d1 = q then call Z

else call B1 fi.
B1 ≡
count[q] := t; t := q; k := k + 1; call A1.

F̂1 ≡
if k 6 0
then call Z
else k := k − 1;

q := t; t := count[q]; count[q] := 0;
P2();
if link[d] 6= base[k] then call A2

else call F̂1 fi fi.
end

For the transformation of Corollary A.6 to be applicable
there must be a single call Z statement in the F̂1 action,
and none elsewhere. So we somehow need to eliminate
the call Z in A2. The “A-type” actions are supposed
to call F̂1, which in turn will call Z provided k 6 0. So
our first attempt is to replace call Z by k := 0; call Z.
Recall that since k is a local variable, this additional
assignment does not change the semantics of the pro-
gram as a whole. The procedure in Corollary A.6 only
changes k by incrementing or decrementing it, but we

can implement the assignment k := 0 as a while loop:
while k > 0 do k := k− 1 od; call Z. This loop can be
transformed into a tail-recursive action:

F̂2 ≡
if k 6 0 then call Z

else k := k − 1; call F̂2 fi.

Action F̂2 is now quite similar to F̂1, and the two
actions can be combined into one by adding a flag (a
new local variable) and calling a “composite” action F̂
which either acts like F̂1 or F̂2, depending on whether
flag = 1 or flag = 2. The result of these manipulations
is:

proc F () ≡
actions A1 :
A1 ≡
if k = n− 1

then s[n] := d; process(s); call F̂
else base[k] := link[d]; call A2 fi.

A2 ≡
P1(); s[k + 1] := q;

if d1 = q then flag := 2; call F̂
else call B1 fi.

B1 ≡
count[q] := t; t := q; k := k + 1; call A1.

F̂ ≡
if k 6 0
then call Z
else k := k − 1;

if flag = 2

then call F̂
else q := t; t := count[q]; count[q] := 0;

P2();
if link[d] 6= base[k]

then call A2 else call F̂1 fi fi.

One final point is that this program contains more
references to the k variable than are required for Corol-
lary A.6, although it does contain the right assignments
to k in the right places. So we do not (at this stage)
want to remove k from the program. These extra
references are easily accommodated by adding a new
local variable k′ to the program which “shadows” the k
variable (adding an identical assignment to k′ after each
assignment to k). The transformation in Corollary A.6
can then be allowed to eliminate k′, leaving k behind.
The result is the following recursive procedure:

proc F () ≡
actions A1 :
A1 ≡
if k = n− 1
then s[n] := d; process(s); call Z
else base[k] := link[d]; call A2 fi.

A2 ≡
P1(); s[k + 1] := q;
if d1 = q then flag := 2; call Z

else call B1 fi.
B1 ≡
count[q] := t; t := q; k := k + 1; F (); k := k − 1;
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if flag = 2
then call Z
else q := t; t := count[q]; count[q] := 0;

P2();
if link[d] 6= base[k] then call A2

else call Z fi fi.

It is often very important to cast a program into a
recursive form, as early as possible in the analysis pro-
cess. This is because recursive programs are generally
much easier to analyse than their iterative equivalents.

6.3 Restructure the Recursive Procedure

For the next step in the analysis, we can remove the
array base since it is only used to save the value of
link[d] across the inner recursive calls. Since base is
a local variable, we can replace the array by a local
variable within the procedure body. It is also clear that
the array elements s[k + 1 . . n] are not used, so we will
replace s by a sequence of length k. The variable k is
then redundant, as its value is available as the length
of s:

proc F () ≡
if `(s) = n− 1
then s := s ++ 〈d〉; process(s); s := butlast(s)
else var 〈base := link[d]〉 :

do P1();
s := s ++ 〈q〉;
if d1 = q then flag := 2; exit fi;
count[q] := t; t := q;
F ();
if flag = 2 then exit fi;
s := butlast(s);
q := t; t := count[q]; count[q] := 0;
P2();
if link[d] = base then exit fi od end fi.

Up to this point in the reverse engineering process,
we have not needed to know anything about the spe-
cification or purpose or method of implementation of
the program. Only general-purpose transformations
were required to get to a much more readable and
understandable recursive version of the original iter-
ative program—no new transformations needed to be
developed in order to get to this stage.

In (Knuth and Szwarcfiter 1974) the authors claim
that their “structured” algorithm was developed by a
transformation process from a recursive algorithm, so
it may seem hardly surprising that this transformation
process can be reversed. However, there is some evid-
ence to suggest that the d1 = q test was added after
conversion to an iterative program: possibly to fix a
“bug” which caused the program to loop indefinitely
when the input file contained an oriented cycle. If
the test was present in the recursive version, then
some mechanism must have been used to “unwind” the
nested recursive calls: either a flag (as in our version),
or an exception mechanism such as LISPs “catch and
throw” or C’s “longjump”. In addition, the code which
implemented the exception mechanism must have been

optimised away (which seems unlikely since no other
optimisations have been performed).

Up to this point in the analysis, we have been
working with precisely equivalent versions of the ori-
ginal program. The remarks in the previous paragraph
suggest that the d1 = q test is checking for an error case,
and this is bourne out by the program structure: if the
test succeeds then the nested recursive calls will be un-
wound and the program terminated, cutting across the
neat recursion structure. At this stage in the analysis
however, we are only interested in the normal behaviour
of the program, ignoring its behaviour for erroneous
input data. We will therefore abstract the program (i.e.
carry out the reverse of a refinement operation) by re-
placing the statement if d1 = q then flag := 2; exit fi by
a more abstract (less refined) statement: the assertion
{d1 6= q}. For the normal case, both if statement and
assertion are equivalent to skip, while for the error case,
the assertion will abort, while the if statement will even-
tually lead to the program terminating, without any
further assignments or calls to the process procedure.
Once the normal case has been sorted out, it should
be much easier to determine the condition on the input
variable R which leads to the abnormal termination.
The abstracted procedure looks like this (where the,
now redundant, flag variable has been removed from
the program):

proc F () ≡
if `(s) = n− 1
then process(s ++ 〈d〉)
else var 〈base := link[d]〉 :

do P1(); {d1 6= q};
count[q] := t; t := q;
s := s ++ 〈q〉;
F ();
s := butlast(s);
q := t; t := count[q]; count[q] := 0;
P2();
if link[d] = base then exit fi od end fi.

6.4 Recursion Removal

With a recursive version of the program it is much
easier to deduce various properties of the algorithm,
directly from the structure of the recursive procedure.
For example, it is clear that F () preserves the sequence
s (a value is appended, F () is called, and the last value
removed). This property cannot even be stated, let
alone proved, for the original version of the algorithm.
It also appears, from the structure of the program, that
t is used to save and restore the value of q, while t is
saved and restored in count[q]. If this is indeed the case,
then we can avoid all the assignments to count and t,
because the original value of q is already available after
the call to F (): as the last element in the sequence s,
which we know for certain is preserved by F ().

In order to eliminate the recursion and determine
a “closed” form for the specification of the program
we will need to apply Theorem A.1 in reverse. To do
so we need a conjectured specification SPEC for the
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procedure, and a variant function. The variant function
is easy: the sequence s is appended to just before the
recursive call of F () and its length is no greater than
n (s grows from an empty sequence, but no recursive
call is made when `(s) reaches n − 1). So the positive
expression n − `(s) is reduced before every recursive
call. If we replace the recursive call by a copy of SPEC
and show that the result is a valid refinement of SPEC,
then Theorem A.1 tells us that the recursive procedure
is also a valid refinement of SPEC. So the next three
stages in the analysis are:

1. Conjecture which variables and array elements are
preserved by the procedure;

2. Conjecture a possible specification SPEC as an ab-
straction of the procedure;

3. Replace the recursive call F () by SPEC and show
that the result is a refinement of SPEC.

Most of the variables and array elements assigned
in F () seem to be restored before the end of F (). The
exceptions are the variable q and the link array: it is
clear that some elements of link are overwritten in P1()
and P2(). In P1(), we decrement a count value and, if
it reaches zero, assign to the corresponding link value.
So we conjecture that F () preserves link[j] for all j such
that count[j] = 0.

We know that the program is supposed to be call-
ing process(s) where s is a topsort of the elements
{1, 2, . . . , n} according to the partial order set(R).
Looking at the “base case” for F () (the case where no
recursive call is made), we see that when `(s) = n − 1
it simply calls process(s ++ 〈d〉). So s must be a
partial topsort of {1, 2, . . . , n}, and presumably d ∈
{1, 2, . . . , n}\set(s). So the recursive case must generate
and process all the extensions of s which are topsorts.
An extension s ++ t of s is a topsort of {1, 2, . . . , n} if
and only if t is itself a topsort of {1, 2, . . . , n} \ set(s).
Our specification for F () may therefore be conjectured
as:

SPEC =
DF

for t ∈ TOPSORTS(set(R), {1, 2, . . . , n} \ set(s)) do
process(s ++ t) od;

q := q′.true;
link := link′.(∀j, 1 6 j 6 n. (count[j] = 0)

⇒ (link′[j] = link[j]))

where TOPSORTS(P,B) is the set of topsorts of the
partial order P on base set B, i.e.

TOPSORTS(P,B) =
DF

{ t ∈ PERMS(B) | ∀i, j. 1 6 i < j 6 #B.〈t[j], t[i]〉 /∈ P }

where PERMS(B) is the set of all permutations of B,
i.e. sequences of length #B containing all the elements
of B:

PERMS(B) =
DF

{ t ∈ B∗ | `(t) = #B
∧ ∀x ∈ B.∃i, 1 6 i 6 `(t). x = t[i] }

Theorem 3.1 shows that if P is cycle-free, then

TOPSORTS(P,B) 6= ∅

We replace the procedure call in the body of F () by
the specification SPEC to give a non-recursive proced-
ure F ′():

proc F ′() ≡
if `(s) = n− 1
then process(s ++ 〈d〉)
else var 〈base := link[d]〉 :

do P1(); {d1 6= q};
count[q] := t; t := q;
s := s ++ 〈q〉; SPEC; s := butlast(s);
q := t; t := count[q]; count[q] := 0;
P2();
if link[d] = base then exit fi od end fi.

If we can prove that F ′() is a refinement of SPEC then
we can apply Theorem A.1 to prove that the recursive
procedure F () is also a refinement of SPEC.

Procedure F ′() can immediately be simplified some-
what, and the result makes some progress towards the
proof: it is now clear that q is saved and restored from
t, while t is saved and restored in count[q]. In order
for count[q] to be preserved over F ′(), the assignment
count[q] := 0 must be restoring its original value (this
is confirmed by Knuth’s commentary on the algorithm
which refers to using a “spare” count value to save the
value of t). So we abstract the procedure by inserting
the assertion count[q] = 0 just after P1(), in the hope
that this abstraction will not prevent us from proving
SPEC ≤ F ′(). With this addition, we can delete the
assignments to t, q and count, since the value of q is
available as the last element of s. The variable t can be
removed altogether (recall that t is a local variable in
the whole program, so we do not need to preserve its
final value):

proc F ′() ≡
if `(s) = n− 1
then process(s ++ 〈d〉)
else var 〈base := link[d]〉 :

do P1(); {d1 6= q};
{count[q] = 0};

s := s ++ 〈q〉; SPEC; q
last

←− s;
P2();
if link[d] = base then exit(1) fi od fi.

6.5 Changing the Data Representation—Adding

Abstract Variables

The program makes much use of linked lists to rep-
resent sets of integers. Our aim in this section is to
replace these concrete data structures by the equivalent
abstract data structures (i.e. actual sequences and sets
instead of linked lists). The program represents a small
set of (positive) integers by using a variable, say v, and
an array, say a. It represents an empty set by v = 0
and a singleton set {x1} by v = x1 and a[x1] = 0. In
general, v holds the first element of the set, while for
the last element a[xn] = 0, and for the other elements
a[xi] = xi+1 (for 1 6 i < n). Thus the set is represented
as an unordered list without duplicates. We define an
abstraction function, list(v, a, w) which returns the list
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represented by v and a, where w is the special value (in
this case, zero) which indicates the end of the list:

list(v, a, w) =
DF

{

〈〉, if v = w

〈v〉 ++ list(a[v], a, w) if v 6= w

For a (possibly empty) set of positive integers, represen-
ted as a linked list terminated by 0, the list is list(v, a, 0)
which gives 〈v, a[v], a[a[v]], . . . 〉. If v is non-zero, then
the effect of the assignment v := a[v] is to remove
the first element from the list, while the assignments
a[x] := v; v := x add the element x to the front of the
list (assuming that x is not already present in the list).

If we know that the set will be non-empty, then we
can avoid the need for a terminating value by creating
a circular-linked list. We do this by setting a[xn] to v,
where xn is the last element in the list: so, for example,
a one element list will have a[v] = v. The list repres-
ented by this “circular linking” is list(a[v], a, v) ++ 〈v〉.
Note that here, the value in v is the last element in the
list. In this representation, the assignment v := a[v]
has the effect of rotating the list by one step, rather
than removing the first element.

If a zero-terminated list is used to store a set S in
decreasing order, then the value of v and of each array
element whose index is in S, is completely determined
by S:

v =

{

0 if S = ∅

max(S) otherwise

and for each x ∈ S:

a[x] =

{

0 if x = min(S)

max { y ∈ S | y < x } otherwise

Conversely, list(v, a, 0) = sort(S), where sort takes a
set of integers and returns the corresponding sorted
sequence (in decreasing order).

A single array can be used to represent several
disjoint sets of integers: since each integer is in at most
one set, it can be associated with the unique “next”
element in its set (The “next” element is zero for the
last element in the set).

If variable v and array a record the set S in zero-
terminated form, then the nondeterministic iteration
for p ∈ S do S od can be implemented by these
statements:

var 〈p := v〉 :
while p 6= 0 do

S;
p := a[p] od end

(This is a deterministic refinement of the nondetermin-
istic iteration). An equivalent program using an itera-
tion over a sequence is:

for p
pop

←− list(v, a, 0) do
S od

If the list records the set S in decreasing order, then
another equivalent program is:

for p
pop

←− sort(S) do
S od

The first for loop in Knuth and Szwarcfiter’s pro-
gram simply initialises the arrays count and top to zeros.
The second for loop is:

for k := 1 to m step 1 do
〈i, j〉 := R[k]; suc[k] := j;
next[k] := top[i]; top[i] := k;
count[j] := count[j] + 1 od;

This reads each pair in the R list and updates count, top
and suc. We claim that count records for each element j,
how many pairs in R have j as the second component.
The arrays top and suc partition the set {1, 2, . . . , k}
of indices of elements of R into a collection of disjoint
subsets, one per element, where each subset contains
all the indices of pairs with the same first component.
We add an abstract variable A which records the set
of “active” indices of R (it records which pairs of R
are currently included in the representations), and this
gives a suitable invariant for the second loop:

∀j, 1 6 j 6 n. count[j]

= # { x ∈ A | R[x][2] = j }

∀i, 1 6 i 6 n. list(top[i], next, 0)

= sort { x ∈ A | R[x][1] = i }

∀x ∈ A. suc[x] = R[x][2]































(I1)

Thus count[j] is the number of pairs read so far which
have j as the second element (this is not necessarily
the number of predecessors of j in the input relation,
since the same pair may appear more than once in the
input). For each i:

top[i] =

{

0 if ¬∃k ∈ A.R[k][1] = i

max { k ∈ A | R[k][1] = i } otherwise

and for any k ∈ A, let i = R[k][1] and then:

next[k] =

{

0 if ¬∃k′ ∈ A. (k′ > k ∧ R[k′][1] = i)

max { k′ ∈ A | k′ > k ∧ R[k′][1] = i }

After the second for loop, the statements link[0] :=
0; d := 0 set up an empty, zero-terminated list in
variable d and array link. The third for loop iterates
over the set of elements which have zero count (i.e. they
do not appear as the second component of any pair),
and puts these elements into the list formed by d and
the link array. We add another abstract variable B (the
“active base”) which records which elements have been
processed so far. All assignments to B and s maintain
the invariant B = {1, 2, . . . , n} \ set(s). Define:

MINS(R,A,B) =
DF

{ x ∈ b | ¬∃k ∈ A.R[k][2] = x }

These are the minimal elements in the active base set.
From I1 we have

MINS(R,A,B) = { x ∈ B | count[x] = 0 }

12



We add another abstract variable D to record the value
of the list list(link[0], link, d) ++ 〈d〉. So we have this
invariant for the third loop:

MINS(R,A,B) = set(D) (I2)

We also have an invariant which links d, link and D:

D =

{

〈〉 if d = 0

list(link[0], link, d) ++ 〈d〉 if d 6= 0
(I3)

The statement link[d] := link[0] turns the list into a
circular list with link[d] as the first element (provided
d 6= 0). We can ignore the case d = 0 since by I2 and
I3 this implies MINS(R,A,B) = ∅ which is impossible
(for B 6= ∅) if there are no cycles in R. So after the
assingment link[d] := link[0], a slightly modified I3 is
true:

D = list(link[d], link, d) ++ 〈d〉 (I ′3)

Finally, a simple relationship between A and B will be
maintained, apart from when it is temporarily disrup-
ted within procedures P1 and P2:

A = { k ∈ 1 . .m | R[k][1] ∈ B } (I4)

the active indices are simply the indices of all pairs
whose first element is in the active base set.

The rest of the annotated initialisation code, with
assertions and abstract variables added, looks like
this:

link[0] := 0; d := 0; B := ∅; D := 〈〉;
{I1 ∧ I2 ∧ I3};
for j := 1 to n step 1 do

B := B ∪ {j};
if count[j] = 0
then link[d] := j; d := j; D := D ++ 〈j〉 fi;
{I1 ∧ I2 ∧ I3} od;

{d 6= 0}; link[d] := link[0];
{I1 ∧ I2 ∧ I ′3};
k := 0; t := 0;

Note that after the third for loop, if d = 0 then
MINS(R,A,B) = ∅ which is impossible unless the
input sequence R contains a cycle, or B = ∅. The
former is an error case, and the latter is the trivial case
n = 0, so we may safely ignore these cases and assume
d 6= 0.

Having established the abstract variables and the
invariants relating these to the concrete variables, the
next step is to add assignments to the abstract variables
to ensure that the invariants are preserved throughout
the program. To do this it is sufficient to examine each
block of code in turn, without needing to understand
the program as a whole. This is one reason why our
approach is able to “scale up” to much larger programs:
only at a later stage, when we have a more abstract
version of the program, do we need to consider the
program as a whole. At this point it is sufficient to
work on each small “chunk” at a time.

First, we consider the body of procedure P1:

q := link[d]; d1 := link[q];
var 〈p := top[q], j := 0〉 :
while p 6= 0 do

j := suc[p];
count[j] := count[j]− 1;
if count[j] = 0
then if d = q then d := j else link[j] := d1 fi;

d1 := j fi;
p := next[p] od;

link[d] := d1 end

The while loop iterates over the list represented by
top[q] and next, which we know from I1 are the ele-
ments in the set { x ∈ {1, 2, . . . ,m} | R[x][2] = q }. It
decrements count[j] for each element j in the list. In
order to maintain I1 we must therefore remove p (the
index of the pair 〈q, j〉) from the active indices set A. If
the count becomes zero, then in order to maintain I2 we
must eventually add j to the D list. Having removed all
the indices of pairs based on q from A, we must remove
q from B to restore I4. We will therefore also have to
remove q from D in order to maintain I2.

This is the motivation for adding the following ab-
stract variables to the program:

• D1 records list(d1, link, d) ++ 〈d〉;

• D′ records the list required to maintain the invari-
ant MINS(R,A,B) = set(D′) ∪ {q} as elements are
removed from A. Once q is removed from B, D′ will
be the new value of D required to restore I2;

• D0 records the initial value of D;

• d0 records the initial value of d.

Note that the initialisation of d1 means that the circular
list list(d1, link, d) ++ 〈d〉 is either D[2 . .] (if D has two
or more elements), or D (if D has only one element).

D0 := D; d0 := d;
var 〈j := 0, D′ := D[2 . .], D1 := 〈〉〉 :
{I1 ∧ I2 ∧ I ′3 ∧ I4};
q := link[d]; {q = D[1] ∧ d = D[`(D)]};
{list(q, link, d0) ++ 〈d0〉 = D0};
d1 := link[q];
if D = 〈q〉 then D1 := D else D1 := D[2 . .] fi;
{D1 = list(d1, link, d) ++ 〈d〉};
{D = 〈q〉 = D1 ∧ D′ = 〈〉 ∨ `(D) > 1 ∧ D′ = D1

∧ MINS(R,A,B) = set(D′) ∪ {q}};

for p
pop

←− sort { k ∈ A | R[k][1] = q } do
j := R[p][2];
A := A \ {p};
count[j] := count[j]− 1;
{I1};
if count[j] = 0
then if d = q

then {D = 〈q〉 ∧ D′ = 〈〉};
d := j; d1 := j;
{d ∈ A ∧ R[d][1] = q};

D′ push

←− j; D1 := 〈j〉;
{D1 = list(d1, link, d) ++ 〈d〉
∧ D′ = D1}

else {D 6= 〈q〉 ∨ D′ 6= 〈〉};
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link[j] := d1; d1 := j;
{d = d0}

D′ push

←− j; D1
push

←− j;
{D1 = list(d1, link, d) ++ 〈d〉} fi fi;

{D1 = list(d1, link, d) ++ 〈d〉
∧ MINS(R,A,B) = set(D′) ∪ {q}} od;

B := B \ {q}; {I1 ∧ I ′3 ∧ I4};
link[d] := d1;
{MINS(R,A,B) = set(D′)};
D := D1 end

The final assignment link[d] := d1 ensures that the
list list(link[d], link, d) ++ 〈d〉 is equal to D1. To en-
sure that I2 is restored by the assignment D := D1

it is sufficient to show that D1 = D′ at this point.
However, the assertion (D = 〈q〉 = D1 ∧ D′ = 〈〉) ∨
(`(D) > 1 ∧ D′ = D1) is preserved over the loop,
so if D1 6= D′ we must have D′ = 〈〉 which in turn
implies MINS(R,A,B) = ∅. This is impossible for a
non-empty B since R is cycle-free, and we know that
B is non-empty because B = {1, 2, . . . , n} \ set(s) and
`(s) 6 n− 1.

Finally, note that d is unchanged, (i.e. d = d0),
unless D was originally a singleton 〈q〉. In the lat-
ter case, the final value of d is some element of
{ k ∈ A | R[k][1] = q }. (In fact, it will be the largest
element j such that count[j] = 1.) So we have an
additional assertion at the end of P1():

`(D0) > 1 ∧ d = d0

∨ (`(D0) = 1 ∧ d ∈ A
∧ R[d][1] = q ∧ D0 = 〈q〉)

(I5)

Procedure P2 is more straightforward. It also it-
erates over a set, in fact the same set of elements
as P1, namely { x ∈ {1, 2, . . . ,m} | R[x][2] = q }, but
incrementing rather than decrementing the counts.

var 〈p := top[q], j := 0〉 :
while p 6= 0 do

j := suc[p]; count[j] := count[j] + 1;
p := next[p] od;

link[d] := q;
d := q end

From the assertion on q near the beginning of P1()
we know that list(q, link, d0) ++ 〈d0〉 = D0. After
the assignment link[d] := q we will therefore have
list(link[d], link, d0) ++ 〈d0〉 = D0. From the assertion
I5, there are two cases depending on the initial value
D0:

1. `(D0) > 1 in which case d = d0, so D0 =
list(q, link, d) ++ 〈d〉 and after link[d] = q therefore,
we have D0 = list(link[d], link, d) ++ 〈d〉. So I ′3 can
be restored by the assignment D := D0. Then the
assignment d := q rotates the circular list starting at
link[d] by one place, and I ′3 can again be restored by
the assignment D := D[2 . .] ++ 〈D[1]〉;

2. `(D0) = 1. In this case D0 = 〈q〉 and link[d0] =
d0 = q and d ∈ A ∧ R[d][1] = q. The assignment
link[d] := q merely clobbers a link value for which

count is non-zero (and this is allowed by the proposed
specification of F ′(). Then the assignment d := q
restores list(link[d], list, d) ++ 〈d〉 = 〈q〉 = D0. So
I3 can be restored by the assignment D := D0.
However, since in this case D is a singleton sequence,
the assignment D := D[2 . .] ++ 〈D[1]〉 will have no
effect and can be added if required.

Therefore, in either case, I3 is restored by the assign-
ment D := D0[2 . .] ++ 〈D0[1]〉. So we can preserve
invariants I1 to I4 with the following assignments to
abstract variables within procedure P2:

var 〈j := 0〉 :

for p
pop

←− sort { k ∈ A | R[k][1] = q } do
j := R[p][2];
A := A ∪ {p};
count[j] := count[j] + 1;
{I1} od;

B := B ∪ {q};
link[d] := q;
d := q;
D := D0[2 . .] ++ 〈D0[1]〉 end

6.6 Changing the Data Representation—Removing

Concrete Variables

We have now “built the scaffolding” around the various
parts of the program: this consists of adding abstract
variables with assignments to them, and invariants re-
lating the abstract and concrete variables. We were able
to do this for each section of the program independently
of the others, without needing to determine the “big
picture”. We are now in a position to put all the
pieces together to form a “hybrid” program. Having
done so, we can make use of the assertions to replace
references to concrete variables by equivalent references
to abstract variables. For example the test count[j] = 0
is replaced by the equivalent test ¬∃x ∈ A.R[x][2] = j
by appealing to invariant I1. References to concrete
variables appearing in assignments to other concrete
variables do not need to be removed, for example the
statement count[j] := count[j] + 1 can remain. Once
all relevant references to concrete variables have been
removed, these become “ghost variables”, since they
have no effect on the execution of the program, and
the concrete variables can be removed in their entirety.
This “ghost variables” technique has been used for pro-
gram development in (Broy and Pepper 1982; Jørring
and Scherlis 1987; Wile 1981). The result is an abstract
procedure equivalent to F ′():

proc F ′′() ≡
if `(s) = n− 1
then process(s ++ 〈d〉)
else var 〈base := D[1]〉 :

do {MINS(R,A,B) = set(D)};
var 〈D0 := D,D′ := D[2 . .]〉 :
q := D[1];

for p
pop

←− sort { k ∈ A | R[k][1] = q } do
j := R[p][2];
A := A \ {p};
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if { x ∈ A | R[x][2] = j } = ∅

then D′ push

←− j fi od;
B := B \ {q};
{MINS(R,A,B) = set(D′)};
D := D′ end;
{¬∃x ∈ A.R[x][2] = q};
{D[`(d)] 6= q};
s := s ++ 〈q〉;
SPEC;

q
last

←− s;
var 〈j := 0〉 :

for p
pop

←− sort { k ∈ A | R[k][1] = q } do
A := A ∪ {p};
j := R[p][2];
{I1} od;

B := B ∪ {q};
D := D0[2 . .] ++ 〈D0[1]〉 end
if D[1] = base then exit(1) fi od fi.

Recall that SPEC is our hypothesised specification for
the whole program. Our aim is to prove that F ′′()
itself is a refinement of SPEC, which by appealing to
Theorem A.1 proves that the recursive procedure F ()
is also a refinement of SPEC.

We can now remove the two assertions {¬∃x ∈
A.R[x][2] = q} (which was originally {count[q] = 0})
and {D[`(d)] 6= q} (which was originally {d1 6= q}). In
the first case, q = D[1] and D is a list of all minimal
elements in the active set. So no active pair (pair whose
index is in A) can have q as a second element. In the
second case, we have removed q from D and possibly
added some new elements, so q cannot still be in D.

6.7 Verifying the Abstract Program

The final step is to prove that our abstract program
(containing a copy of the hypothesised specification
SPEC) is a valid refinement of SPEC. To ease this step
we can make use of the assertions to simplify the ab-
stract program still further, in particular by removing
the two for loops. This is because the assertions tell us
the final values of the variables modified by the loops.
For example, using I4 we can remove A completely.
Define:

MINS(R,B) =
DF

MINS(R, { k ∈ 1 . .m | R[k][1] ∈ B } , B)

Also, if `(s) = n− 1 then B contains the single element
d, so the only topsort of B is 〈d〉. So process(s ++
〈d〉) ≈ SPEC in this case.

proc F ′′() ≡
if `(s) = n− 1
then SPEC

else D := sort(MINS(R,B));
var 〈base := D[1]〉 :
do var 〈D0 := D〉 :

q := D[1];
B := B \ {q};
D := sort(MINS(R,B));

s := s ++ 〈q〉; SPEC; q
last

←− s;
D := D0[2 . .] ++ 〈D0[1]〉

B := B ∪ {q} end
if D[1] = base then exit(1) fi od fi.

Now D and B do not appear in SPEC, so there is no
need to modify and then restore them:

proc F ′′() ≡
if `(s) = n− 1
then SPEC

else D := sort(MINS(R,B));
var 〈base := D[1]〉 :
do q := D[1];

s := s ++ 〈q〉; SPEC; q
last

←− s;
D := D[2 . .] ++ 〈D[1]〉 end

if D[1] = base then exit(1) fi od fi.

Now it is clear that the loop simply iterates over the
elements of MINS(R,B) in ascending order. We can
abstract this loop to a nondeterministic iteration which
iterates over MINS(R,B) in an arbitrary order:

proc F ′′() ≡
if `(s) = n− 1
then SPEC

else for q ∈ MINS(R,B)) do

s := s ++ 〈q〉; SPEC; q
last

←− s od fi.

The proof of Theorem 3.1 shows that when B
contains two or more elements (or equivalently, when
`(s) < n− 1, SPEC is refined by:

for q ∈ MINS(P,B) do
for t ∈ TOPSORTS(set(R), {1, 2, . . . , n} \ set(s)) do

process(s ++ t) od;
q := q′.true;
link := link′.(∀j, 1 6 j 6 n. (count[j] = 0)

⇒ (link′[j] = link[j])) od

Hence F ′() is a refinement of SPEC, and this was what
we needed at the end of Section 6.4 to show that F () is
a refinement of SPEC.

The program as a whole is therefore a refinement of
the abstract program:

B := {1, 2, . . . , n}; s := 〈〉;
for t ∈ TOPSORTS(set(R), {1, 2, . . . , n} \ set(s)) do

process(s ++ t) od

which simplifies to:

for t ∈ TOPSORTS(set(R), {1, 2, . . . , n}) do
process(t) od

We have shown that Knuth’s topological sorting
algorithm is a refinement of the above specification, and
hence that it does indeed generate all the topological
sorts of the given relation.

7 Conclusion

Reverse engineering in particular, and program analysis
in general, are becoming increasingly important as the
amounts spent on maintaining and enhancing existing
software systems continue to rise year by year. We
claim that reverse engineering based on the applica-
tion of proven semantic-preserving transformations in a
formal wide spectrum language is a practical approach
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to some challenging program analysis and reverse en-
gineering problems.

In (Ward 1993) we outlined a method for using
formal transformations in reverse engineering. In this
paper the method has been further developed and ap-
plied to a much more challenging example program.
Although our sample program is only a couple of pages
long, it exhibits a high degree of control flow complexity
together with complicated data structures which are
updated as the algorithm progresses. Our approach
does not require the user to develop and prove loop
invariants, nor does it require the user to determine an
abstract version of the original program and then verify
equivalence. Instead, the first stages involve the applic-
ation of general purpose transformations for restructur-
ing, simplification, and introducing recursion. Because
these are general-purpose transformations, they require
no advanced knowledge of the program’s behaviour
before they can be applied. This is essential in a
reverse engineering application where it is not clear at
the onset of the process precisely how the source code
of the program implements the (formal or informal)
specification—or indeed, whether the specification has
been implemented correctly!

For the introduction of abstract variables, prepar-
atory to the derivation of an abstract program, it is
helpful for the programmer to have some knowledge of
the implementation of data structures in the program.
Of course, this knowledge was not required for the re-
structuring and transformation to a recursive program,
and it is much easier to glean useful information such
as this from the transformed (recursive) program, than
from the original spaghetti code. The abstract variables
are introduced by making use of only local knowledge
of the program’s behaviour—a deep understanding of
the algorithm is not required at this stage, only a
local knowledge of the data manipulations. When the
abstract program has been derived and restructured
and simplified, then it can be analysed to give a deeper
knowledge of the algorithm as a whole. In this way,
the reverse engineering and program analysis tasks pro-
ceed step-by-step with progress in analysis leading to
progress in reverse engineering, which in turn makes a
more detailed analysis achievable. . . and so on.

In our case study, we were able to analyse this par-
ticularly difficult program, which combines a complex
control flow with complex linked data structures and
tight coding. An example of “tight coding” is the pair
of assignments link[d] := q; d := q which have two
quite different effects, depending on whether d points
to a singleton list or a longer list. Fortunately, the two
different effects just happen to produce the right results
in each case, so the programmers have cleverly avoided
the need to test for a singleton list2.

Appendix

A Example Transformations

In this appendix we describe some of the transform-
ations used in the transformational analysis of Knuth
and Szwarcfiter’s algorithm.

A.1 Introducing Recursion

The first transformation shows how a general state-
ment, which may be a non-recursive specification state-
ment, or a recursive or iterative statement, can be
refined into a recursive procedure. Applications of this
important result include implementing specifications
as recursive procedures, introducing recursion into an
abstract program to get a “more concrete” program (i.e.
closer to a programming language implementation),
and transforming a recursive procedure into a different
form. The transformation is also used in the algorithm
derivations of (Ward 1989; Ward 1990) and (Priestley
and Ward 1994).

Suppose we have a statement S′ which we wish to
transform into the recursive procedure proc F ≡ S.
This is possible whenever:

1. The statement S′ is refined by the statement S[S′/F ]
(which denotes S with all occurrences of F replaced
by S′). In other words, if we replace recursive calls
in S by copies of S′ then we get a refinement of S′;

2. We can find an expression t (called the variant func-
tion) whose value is reduced (in some well-founded
order) before each occurrence of S′ in S[S′/F ].

Note that the order < is not well-founded on Z, but
it is well-founded on N. The expression t need not be
an integer expression: any set Γ on which there is a
well-founded order 4, is a suitable type for t. To prove
that the value of t is reduced it is sufficient to prove
that, if t 4 t0 initially (where t0 is an otherwise unused
variable), then the assertion {t ≺ t0} can be inserted
before each occurrence of S′ in S[S′/F ]. The theorem
combines our two requirements into a single condition:

Theorem A.1 If 4 is a well-founded partial order on
some set Γ and t is an expression giving values in Γ
and t0 is a variable which does not occur in S then if
for some premiss P we have:

{P ∧ t 4 t0}; S′ ≤ S[{P ∧ t ≺ t0}; S′/F ]

then
{P}; S′ ≤ proc F ≡ S.

Proof: See (Ward 1989) for the proof. This theorem is
based on Dijkstra’s technique for reasoning about while
loops using weakest preconditions (Dijkstra 1976).

It is frequently possible to derive a suitable procedure
body S from the statement S′ by applying transforma-
tions to S′, splitting it into cases etc., until we get the
statement S[S′/F ] which is still defined in terms of S′.
If we can find a suitable variant function for S[S′/F ]

2Such cleverness is not always an unmixed blessing. I believe it was Dijkstra who remarked that maintaining a program is

acknowledged to be more difficult than writing the program in the first place, “So if you are as clever as you can be when you

are writing the program, how will you ever be able to maintain it?”
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then we can apply the theorem and refine S[S′/F ] to
proc F ≡ S. which is no longer defined in terms of S′.

A simple example of such a derivation is the familiar
factorial function. Let S′ be the statement r := n!,
where n! is the usual factorial function, defined as:

0! = 1 and for all n > 0: (n+ 1)! = (n+ 1) ∗ n!

We can transform the assignment r := n! (by appealing
to the definition of factorial) to show that:

S′ ≈ if n = 0 then r := 1 else r := n ∗ (n− 1)! fi

Separate the assignment:

S′ ≈ if n = 0
then r := 1
else n := n− 1; r := n!;

n := n+ 1; r := n ∗ r fi

So we have:

S′ ≈ if n = 0
then r := 1
else n := n− 1; S′;

n := n+ 1; r := n ∗ r fi

The positive integer n is decreased before the copy of
S′, so if we set t to be n, Γ to be N and 4 to be 6
(the usual order on natural numbers), and P to be true
then we can prove:

{n 6 t0}; S′ ≤
if n = 0
then r := 1
else n := n− 1; {n < t0}; S′;

n := n+ 1; r := n ∗ r fi

So we can apply Theorem A.1 to get:

S′ ≤
proc F ≡
if n = 0
then r := 1
else n := n− 1; F ();

n := n+ 1; r := n ∗ r fi.

and we have derived a recursive implementation of
factorial.

This theorem is a fundamental result towards the
aim of a system for transforming specifications into pro-
grams, since it “bridges the gap” between a recursively
defined specification, and a recursive procedure which
implements it. It is of use even when the final program
is iterative rather than recursive, since many algorithms
may be more easily and clearly specified as recursive
functions—even if they may be more efficiently imple-
mented as iterative procedures. This theorem may be
used by the programmer to transform the recursively
defined specification into a recursive procedure or func-
tion, which can then be transformed into an iterative
procedure using Theorem A.4 below.

A.2 The Induction Rule for Recursion

Our second transformation shows that to prove a refine-
ment of a recursive or iterative program, it is sufficient

to examine the set of “finite truncations” of the pro-
gram. This result is extremely valuable in proving
many transformations involving recursive and iterative
statements since, in a great many cases, the proof
can be carried out by induction over the set of all
finite truncations. The theorem shows that the set of
all finite truncations of a recursive statement tells us
everything we need to know about the full recursion.
Using this induction rule we have proved a powerful
collection of general purpose transformations. These
enable many algorithm derivations to be carried out by
appealing to general transformation rules rather than
ad hoc induction proofs.

The nth truncation of a procedure proc F ≡ S. is
defined recursively:

(proc F ≡ S.)0 =
DF

abort

and
(proc F ≡ S.)n+1 =

DF
S[(proc F ≡ S.)n/F ]

Here, the notation =
DF

indicates that the left hand
side of the symbol is defined to mean the right hand
side, and should be distinguished from the notation ≈
which means that the statement on the left hand side
is semantically equivalent to the statement on the right
hand side.

The nth truncation of any statement Sn is formed
by replacing each recursive component by its nth trun-
cation.

A statement has bounded nondeterminacy if each
specification statement within it has a finite set of
values it can assign to the variables to satisfy the given
condition. For statements with bounded nondetermin-
acy we have the following induction rule:

Theorem A.2 The Induction Rule for Recursion: If
S is any statement with bounded nondeterminacy, and
S′ is another statement such that for every n < ω,
Sn ≤ S′, then S ≤ S′.

Proof: See (Ward 1989).

This transformation is related to the concept of a
sequence of approximations to a continuous function
which is fundamental to denotational semantics (Stoy
1977; Tennet 1976)—the semantics of the truncations
Sn form a sequence of approximations to the semantics
of S.
An example of a transformation proved by induction is
the following:

Theorem A.3 Invariant Maintenance

(i) If for any statement S1 we can prove:

{P}; S[S1/X] ≤ S[{P}; S1/X]

then:

{P}; proc X ≡ S. ≤ proc X ≡ {P}; S.

(ii) If in addition

{P}; S1 ≤ S1; {P}

implies

{P}; S[S1/X] ≤ S[S1/X]; {P}
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then

{P}; proc X ≡ S. ≤ proc X ≡ S.; {P}

Proof: (i) Claim:

{P}; (proc X ≡ S)n ≤ (proc X ≡ {P}; S)n

If this claim is proved then the result follows from the
induction rule for recursion (Theorem A.2). We prove
the claim by induction on n. For n = 0 both sides are
abort, so suppose the result holds for n.
Put S1 = (proc X ≡ S)n in the premise. Then:

{P}; (proc X ≡ S)n+1

≤ {P}; S[(proc X ≡ S)n/X]

≤ ({P}; S)[{P}; (proc X ≡ S)n/X]

from the premise

≤ ({P}; S)[(proc X ≡ {P}; S)n/X]

by the induction hypothesis

≤ (proc X ≡ {P}; S)n+1

The result follows by induction on n.
(ii) Claim: {P}; (proc X ≡ S)n ≤ (proc X ≡
{P}; S)n; {P} for all n. Again, we prove the claim
by induction on n: For n = 0 both sides are abort, so
suppose the result holds for n.

{P}; (proc X ≡ {P}; S)n+1

≤ {P}; S[(proc X ≡ S)n/X]

≤ {P}; S[{P}; (proc X ≡ S)n/X] by part (i)

Put S1 = (proc X ≡ S)n in the premise and use:

{P}; (proc X ≡ S)n ≤ (proc X ≡ S)n; {P} to get:

≤ (proc X ≡ S)n+1; {P}

from premise (ii).
The result follows by induction on n. ¥

A.3 General Recursion Removal

Our third transformation is a general transformation
from a recursive procedure into an equivalent iterative
procedure, using a stack. It can also be applied in
reverse: to turn an iterative program into an equivalent
recursive procedure (which may well be easier to un-
derstand). The theorem was presented in (Ward 1992),
and the proof may be found in (Ward 1991).

Suppose we have a recursive procedure whose body
is a regular action system in the following form (where a
call Z appearing in one of the action bodies in the action
system will terminate the action system, and hence only
the current invocation of the procedure):

proc F (x) ≡
actions A1 :
A1 ≡

S1.
. . .
AM ≡

SM .

. . .
Bj ≡

Sj0; F (gj1(x)); Sj1; F (gj2(x)); . . . ;
F (gjnj

(x)); Sjnj
.

. . . endactions.

The actions in action system which forms the body
of the procedure are divided into two classes, the “A-
type” actions Ai and the “B-type” actions Bj . The
A-type action bodies may contain calls to any ac-
tions and assignments to any variables, but contain
no calls to F . All the calls to F are as listed expli-
citly in the B-type actions, in addition ,the statements
Sj1, . . . ,Sjnj

must preserve the value of x and the
statements Sj0,Sj1 . . . ,Sjnj−1 must contain no action
calls (the Sjnj

statements will contain action calls).
There are M +N actions in total, M “A-type” actions
A1, . . . , AM which contain no recursive calls, and N
“B-type” actions B1, . . . , BN each of which contains
one or more recursive calls. Note that the since the
action system is regular, it can only be terminated
by executing call Z, which will terminate the current
invocation of the procedure.

The aim is to remove the recursion by introducing
a local stack K which records “postponed” operations.
When a recursive call is required we “postpone” it by
pushing the pair 〈0, e〉 ontoK (where e is the parameter
required for the recursive call). Execution of the state-
ments Sjk also has to be postponed (since they occur
between recursive calls), we record the postponement of
Sjk by pushing 〈〈j, k〉, x〉 onto K. Where the proced-
ure body would normally terminate (by calling Z) we
instead call a new action F̂ which pops the top item off
K and carries out the postponed operation. If we call
F̂ with the stack empty then all postponed operations
have been completed and the procedure terminates by
calling Z.

Theorem A.4 The procedure F (x) above is equivalent
to the following iterative procedure which uses a new
local stack K and a new local variable m:

proc F ′(x) ≡
var 〈K := 〈〉,m := 0〉 :
actions A1 :
A1 ≡

S1[call F̂ /call Z].
. . .
AM ≡

SM [call F̂ /call Z].
. . .
Bj ≡

Sj0; K := 〈〈0, gj1(x)〉, 〈〈j, 1〉, x〉, 〈0, gj2(x)〉, . . . ,

〈0, gjnj
(x)〉, 〈〈j, nj〉, x〉〉 ++ K; call F̂ .

. . .

F̂ ≡
if K = 〈〉
then call Z

else 〈m,x〉
pop

←− K;
if m = 0 → call A1

ut . . . ut m = 〈j, k〉 → Sjk[call F̂ /call Z];
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call F̂
. . . fi fi. endactions end.

Proof: See (Ward 1991; Ward 1992).

In contrast to the usual “iteration plus stack” method
of recursion removal (discussed in (Knuth 1974) and
elsewhere), in which only a single statement (the return
point) is stacked, our method allows a whole sequence
of recursive calls an intermediate statements to be
stacked. Any recursive procedure can be restructured
into a suitable form for Theorem A.4 simply by putting
each recursive call into its own “B-type” action. Many
recursive procedures can be restructured differently
(but still meeting the requirements of the theorem)
by collecting two or more recursive calls into “B-type”
actions. These different recursive forms will lead to
very different iterative versions of the program. See
(Ward 1991; Ward 1992) for some examples and further
applications of the theorem.

The proof of Theorem A.4 is rather involved and
too long to include here. It relies on applying various
transformations which have been proved using weakest
preconditions, together with multiple applications of
the general induction rule (Theorem A.2).

Corollary A.5 By unfolding some calls to F̂ in Bj and
pruning, we get a slightly more efficient version:

Bj ≡
Sj0;
K := 〈〈〈j, 1〉, x〉, 〈0, gj2(x)〉, . . . ,

〈0, gjnj
(x)〉, 〈〈j, nj〉, x〉〉 ++ K;

x := gj1(x); call A1.

In the case where nj = 1 for all j, this version will
never push a 〈0, x〉 pair onto the stack. This fact can be
significant for a parameterless procedure with a small
number of j values, since it enables us to reduce the
amount of storage required by the stack. For example,
if there are two j values, the stack can be represented
as a binary number.

A particularly simple case is a parameterless pro-
cedure with only one B action which contains only one
recursive call. In this case, all the elements pushed on
the stack will be equal, in fact they will all be 〈1, 1〉, so
we only need to record the length of the stack, ignoring
its actual contents. Technically, we prove the following
corollary by introducing a new local variable k which
records the length of K, and then replacing the test
K = 〈〉 by k = 0.

Corollary A.6 The parameterless procedure:

proc F () ≡
actions A1 :
A1 ≡

S1.
. . .
AM ≡

SM .
B1 ≡

S1 0; F (); S1 1. endactions.

(where the only recursive call is the single call in B1)
is equivalent to the non-recursive procedure:

proc F () ≡
var 〈k := 0〉 :
actions A1 :
A1 ≡

S1[call F̂ /call Z].
. . .
AM ≡

SM [call F̂ /call Z].
B1 ≡

S1 0; k := k + 1; call A1.

F̂ ≡
if k = 0 then call Z

else k := k − 1; S1 1; call F̂ fi.
endactions end.

Proof: This is a simple application of Theorem A.4
and Corollary A.5. Since there is but a single B-type
action and no parameters, the stack K consists of a list
of identical elements. Such a stack can be more effi-
ciently implemented as an integer k, where k = `(K),
and K = 〈〈1, 1〉, 〈1, 1〉, . . . 〉.

A.4 Recursion Removal Examples

Consider the simple recursive procedure:

proc F (x) ≡
if x = 0 then G(x)

else F (x− 1); H(x); F (x− 1) fi.

There are two ways to convert the body of the proced-
ure into an action system appropriate for Theorem A.4.
The first method is to put both recursive calls into the
same B-type action:

proc F (x) ≡
actions A1 :
A1 ≡
if x = 0 then G(x); call Z else call B1 fi.

B1 ≡
F (x− 1); H(x); F (x− 1); call Z. endactions.

So for Theorem A.4, S1 is the statement

if x = 0 then G(x); call Z else call B1 fi

S11 is the statement H(x) and S12 is the statement
call Z. Applying the theorem gives:

proc F ′(x) ≡
var 〈K := 〈〉; m := 0〉 :
actions A1 :
A1 ≡

if x = 0 then G(x); call F̂ else call B1 fi.
B1 ≡

K := 〈〈0, x− 1〉, 〈〈1, 1〉, x〉, 〈0, x− 1〉,

〈〈1, 2〉, x〉〉 ++ K; call F̂ .

F̂ ≡
if K = 〈〉
then call Z

else 〈m,x〉
pop

←− K;
if m = 0 → call A1

ut m = 〈1, 1〉 → H(x); call F̂
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ut m = 〈1, 2〉 → call F̂ ; call F̂ fi fi.
endactions.

We can represent the values 〈1, 1〉 and 〈1, 2〉 on the
stack and in m by 1 and 2 respectively. Then, unfold
everything into F̂ , replace the initial call to A1 by
K := 〈〈0, x〉〉, remove the recursion in F̂ and then
remove the action system:

proc F ′(x) ≡
var 〈K := 〈〈0, x〉〉; m := 0〉 :
while K 6= 〈〉 do

〈m,x〉
pop

←− K;
if m = 0 → if x = 0

then G(x)
else K := 〈〈0, x− 1〉, 〈1, x〉,

〈0, x− 1〉, 〈2, x〉〉 ++ K fi

ut m = 1 → H(x); call F̂
ut m = 2 → skip fi od end.

The other way to restructure the recursive program
is to put the two recursive calls into separate B-type
actions:

proc F (x) ≡
actions A1 :
A1 ≡
if x = 0 then G(x); call Z else call B1 fi.

B1 ≡
F (x− 1); H(x); call B2.

B2 ≡
F (x− 1); call Z. endactions.

So for Theorem A.4, S1 is the statement

if x = 0 then G(x); call Z else call B1 fi

S11 is the statement H(x); call B2 and S21 is the
statement call Z. Applying the theorem gives:

proc F ′(x) ≡
var 〈K := 〈〉; m := 0〉 :
actions A1 :
A1 ≡

if x = 0 then G(x); call F̂ else call B1 fi.
B1 ≡

K := 〈〈0, x− 1〉, 〈〈1, 1〉, x〉〉 ++ K; call F̂ .
B2 ≡

K := 〈〈0, x− 1〉, 〈〈2, 1〉, x〉〉 ++ K; call F̂ .

F̂ ≡
if K = 〈〉
then call Z

else 〈m,x〉
pop

←− K;
if m = 0 → call A1

ut m = 〈1, 1〉 → H(x); call B2

ut m = 〈2, 1〉 → call F̂ ; call F̂ fi fi.
endactions.

Note that 〈〈0, x − 1〉〉 ++ K; call F̂ is equivalent to
x := x− 1; call A1. Then we never need to push 〈0, x〉
onto K. Also we can represent the values 〈1, 1〉 and
〈2, 1〉 on the stack and in m by 1 and 2 respectively.
Then, unfold B1 into A1, unfold B2 into F̂ , remove the

recursion in F̂ , unfold everything into A1, remove the
recursion and the action system:

proc F ′(x) ≡
var 〈K := 〈〉; m := 0〉 :
do do if x = 0

then G(x); exit
else K := 〈〈1, x〉〉 ++ K;

x := x− 1 fi od;
do if K = 〈〉 then exit(2) fi;

〈m,x〉
pop

←− K;
if m = 1 → H(x); K := 〈〈2, x〉〉 ++ K;

x := x− 1; exit
ut m = 2 → skip fi od od end.

Notice how the two different restructurings of the
initial recursive procedure led to very different (but
equivalent) interative procedures.

The power and generality of the recursion removal
transformations comes from the fact that the body of
the procedure is expressed as an action system, with
the recursive calls collected into a number of actions.
Because of this, a wide variety of recursive programs
can be easily restructured into one or more forms, where
the theorem can be applied. We can also apply the
theorem in reverse to produce a recursive program from
an iterative one.
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