
Provably Correct Derivation of Algorithms Using FermaT

Martin Ward and Hussein Zedan
Software Technology Research Lab,

De Montfort University,
Bede Island Building,

The Gateway,
Leicester LE1 9BH, UK

martin@gkc.org.uk and zedan@dmu.ac.uk

Abstract

The transformational programming method of algorithm derivation starts with a formal
specification of the result to be achieved, plus some informal ideas as to what techniques
will be used in the implementation. The formal specification is then transformed into an
implementation, by means of correctness-preserving refinement and transformation steps, guided
by the informal ideas. The transformation process will typically include the following stages:
(1) Formal specification (2) Elaboration of the specification, (3) Divide and conquer to handle
the general case (4) Recursion introduction, (5) Recursion removal, if an iterative solution is
desired, (6) Optimisation, if required. At any stage in the process, sub-specifications can be
extracted and transformed separately. The main difference between this approach and the
invariant based programming approach (and similar stepwise refinement methods) is that loops
can be introduced and manipulated while maintaining program correctness and with no need to
derive loop invariants. Another difference is that at every stage in the process we are working
with a correct program: there is never any need for a separate “verification” step. These factors
help to ensure that the method is capable of scaling up to the development of large and complex
software systems. The method is applied to the derivation of a complex linked list algorithm
and produces code which is over twice as fast as the code written by Donald Knuth to solve the
same problem.

Contents

1 Introduction 2

1.1 Our Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Outline of the Algorithm Derivation method . . . . . . . . . . . . . . . . . . . . . . . 5

2 The WSL Language 7

3 Transformations Used in Derivations 10

4 Examples of Transformational Programming 15

4.1 Greatest Common Divisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.1.1 Initial Program Derivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.1.2 Optimisation Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.1.3 Alternate Program Derivation . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

5 Knuth’s Polynomial Addition Algorithm 20

5.1 Abstract Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.2 Abstract Algorithm Derivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.3 Concrete Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1



5.4 Algorithm Derivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.5 Execution Timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.6 Polynomial Multiplication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

6 Conclusion 37

6.1 Software Evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

1 Introduction

The waterfall model of software development sees progress as flowing steadily downwards (like a
waterfall) through the following stages:

1. Requirements Elicitation: analysing the problem domain and determining from the users
what the program is required to do;

2. Design: developing the overall structure of the program;

3. Implementation: writing source code to implement the design in a particular programming
language;

4. Verification: running tests and debugging;

5. Maintenance: any modifications required after delivery to correct faults, improve perfor-
mance, or adapt the product to a modified environment [06]

In theory, one proceeds from one phase to the next in a purely sequential manner. But in practice,
at each stage in the process, information may be uncovered which affects previous stages. For
example, during implementation it may be determined that the design is unsuitable and needs
to be changed, during debugging the program implementation may have to be changed to fix the
bugs, and so on. So the process described above will also require feedback loops from each stage
to preceding stages.

It has long been recognised that while testing may increase our confidence in the correctness of
a program, no amount of testing can prove that a program is correct. As Dijkstra said: “Program
testing can be used to show the presence of bugs, but never to show their absence” [Dij70]. To
prove that a program is correct we need a precise mathematical specification which defines what the
program is supposed to do, and a mathematical proof that the program satisfies the specification.

The program verification method of developing correct code involves writing code and then
verifying its correctness. A simple loop, for example, can be verified using the method of “loop
invariants”. This takes the following steps:

1. Determine the loop termination condition;

2. Determine the loop body;

3. Determine a suitable loop invariant;

4. Prove that the loop invariant is preserved by the loop body;

5. Determine a variant function for the loop;

6. Prove that the variant function is reduced by the loop body (thereby proving termination of
the loop);

7. Prove that the combination of the invariant plus the termination condition satisfies the
specification for the loop.

2



However, loop invariants and postconditions can be difficult to determine with sufficient preci-
sion, computing verification conditions can be tedious, and proving the correctness of verification
conditions can be difficult. Even with the aid of an automated proof assistant, there may still be
several hundred remaining “proof obligations” to discharge (these are theorems which need to be
proved in order to verify the correctness of the development) [BiM99, JJL91, NHW89]. In addition,
should the implementation happen to be incorrect (i.e. the program has a bug), then the attempt
at a proof is doomed to failure.

In a paper published in 1990, Sennett [Sen90] suggested that for “real” sized programs it was
impractical to discharge more than a tiny fraction of the proof obligations. He presented a case
study of the development of a simple algorithm, for which the implementation of one function
gave rise to over one hundred theorems which required proofs. Larger programs will require many
more proofs. However, since that time, there has been considerable research on the development
of automated theorem provers (e.g. Event-B [ABH06]), which has led to a resurgence of interest in
the program verification approach in the form of a “posit and prove” style of programming. Note
that this approach still requires properties such as invariants and variants to be provided by the
developers [But06]. With improvements in automated theorem provers, a large proportion of proof
obligations (POs) can be discharged automatically: but many still require user interaction which
often requires (expensive) theorem proving experts [BGL11]. For commercial application this can
be thousands of proof obligations, requiring many man months or years of work. One industrial
case study using Event-B generated 300 POs, of which 100 required user intervention [BGL11].
However, most of these may be handled using proof strategies leaving as few as 5%–10% of proof
obligations which actually require manual proof.

An alternative to this a posteriori method, which was originally proposed by Dijkstra [Dij],
is to control the process of program generation by constructing loop invariants in parallel with
the construction of the code. Combined with stepwise refinement [Dij70, Wir71], this approach is
claimed to scale up to fairly large programs.

A further refinement of this approach, called Invariant based programming, is to develop loop
invariants before the code itself is written. The idea has been proposed from the late 70’s by
several researchers in different forms. Dijkstra’s later work on programming [Dij76] emphasises the
development of a loop invariant as an important initial step before developing the body of the loop.
Figure 1 summarises this approach. Notice that in the program verification method, Dijkstra’s

Pre/postconditions

Loop invariants

Program code

Verification

Figure 1: Invariant based programming

approach and the invariant based programming approach, the task of developing the loop invariant
is moved to earlier and earlier phases in the process. Gries [Gri81] takes up the idea that a proof of
correctness and a program should be developed hand in hand. Back [Bac09] presents a notation for

3



writing invariant based programs, a method for finding invariants before writing code and methods
for checking the correctness of invariant based programs. He points out that the natural structure
for the code may not be the same as the natural structure for the invariants and emphasises that
the program should be structured around the invariants, so that the invariants are as simple as
possible, and therefore easier to manipulate: even if this results in more complicated code.

In all the development methods we have discussed so far, verification is the final step in
development. Up until the point where verification has been completed, the programmer cannot
be sure that the program is correct. Indeed, Back [Bac09] makes it clear that the program under
development does not have to terminate or be free from deadlocks, and that the initial invariant is
usually both incomplete and partially wrong. He stresses that it is essential to carefully check the
consistency of each transition when it is introduced.

1.1 Our Approach

In this paper we present a different method of programming, called transformational programming
or algorithm derivation. The method starts with a formal specification plus some informal ideas
for implementation techniques which might be useful. The formal specification is refined into a
complete program by applying a sequence of correctness-preserving refinement steps. The choice
of which transformation to apply at each stage is guided by the implementation ideas. These
ideas do not have to be formalised to any particular extent, since they are only used to select
between different transformations. The correctness of the transformation process guarantees that
the transformed program is equivalent to the original. The method is summarised in Figure 2.

Formal

Program

Specification

Informal

Implementation

ideas

Program 1

Program n

Figure 2: Algorithm Derivation

Developing a program by stepwise transformation is an idea which dates back at least to the late
seventies, starting with Burstall and Darlington’s transformation work [BuD77, Dar78], the project
CIP (Computer-aided Intuition-guided Programming) [Bau79, BB85, BMP89, BaT87, Bro84] and
continuing with the work of Morgan et al on the Refinement Calculus [Mor94, MRG88, MoV93]
and the Laws of Programming [HHJ87]. However, the method presented here is very different from
these. In the Refinement Calculus, the transformations for introducing and manipulating loops
require that any loops introduced must be accompanied by suitable invariant conditions and variant
functions. Morgan says: “The refinement law for iteration relies on capturing the potentially
unbounded repetition in a single formula, the invariant”, ([Mor94] p. 60, our emphasis). So, in
order to refine a statement to a loop, or, more generally, to introduce any loop into the program,

4



the developer still has to carry out all the steps 1–7 listed above for verifying the correctness of a
loop.

In contrast with the refinement calculus, the method presented here does not require loop
invariants. We have transformations to introduce, manipulate and remove loops which do not
depend on the existence of loop invariants. Another key difference between Figure 2 and the other
methods is that there is no Verification step. This is because at each stage in the derivation process
we are working with a correct program. The program is always guaranteed to be equivalent to
the original specification, because it was derived from the specification via a sequence of proven
transformations and refinements.

Over the last twenty-five years we have developed a powerful wide-spectrum specification and
programming language, called WSL, together with a large catalogue of proven program trans-
formations and refinements which can be used in algorithm derivations and reverse engineering.
The method has been applied to the derivation of many complex algorithms from specifications,
including the Schorr-Waite graph marking algorithm [War96], a hybrid sorting algorithm (an
efficient combination of Quicksort and insertion sort) [War90], various tree searching algorithms
[War99a] and a program slicing transformation [WaZ10]. The latter example shows that a program
transformation can itself be defined as a formal specification which can then be refined into an
implementation of the transformation.

The transformation theory has also been used for reverse engineering and software migration
and forms the basis for the commercial FermaT software migration technology [War99b, War01,
War04, WaZ05, WZH04].

1.2 Outline of the Algorithm Derivation method

A typical algorithm derivation takes the following steps:

1. Formal Specification: Develop a formal specification of the program, in the form of a
WSL specification statement (see Section 2). This defines precisely what the program is
required to accomplish, without necessarily giving any indication as to how the task is to be
accomplished. For example, a formal specification for the Quicksort algorithm for sorting the
array A[a . . b] is the statement SORT:

A[a . . b] := A′[a . . b].(sorted(A′[a . . b]) ∧ permutation(A[a . . b], A′[a . . b]))

This states that the array is assigned a new value which is sorted and also a permutation of
the original value. The formula sorted(A) is defined:

∀1 6 i, j 6 ℓ(A). i 6 j ⇒ A[i] 6 A[j]

while permutation(A,B) is defined:

ℓ(A) = ℓ(B) ∧ ∃π : {1, . . . , ℓ(A)}→ {1, . . . , ℓ(A)}.∀1 6 i 6 ℓ(A). A[i] = B[π[i]]

where π : {1, . . . , ℓ(A)} → {1, . . . , ℓ(A)} means π is a bijection (a 1–1 and onto function)
from the set {1, . . . , ℓ(A)} to itself.

The form of the specification should mirror the real-world nature of the requirements. It is
a matter of constructing suitable abstractions such that local changes to the requirements
involve local changes to the specification.

The notation used for the specification should permit unambiguous expression of requirements
and support rigorous analysis to uncover contradictions and omissions. It should then be
straightforward to carry out a rigorous impact analysis of any changes.

The two most important characteristics of a specification notation are that it should permit
problem-oriented abstractions to be expressed, and that it should have rigorous semantics so
that specifications can be analysed for anomalies.

5



In [Dij72], Dijkstra writes:“In this connection it might be worthwhile to point out that the
purpose of abstracting is not to be vague, but to create a new semantic level in which one
can be absolutely precise.”

2. Elaboration: Elaborate the specification statement by taking out simple cases: for example,
boundary values on the input or cases where there is no input data. These are applied by
transforming the specification statement, typically using the Splitting a Tautology transfor-
mation (Transformation 1) followed by inserting assertions and then using the assertions to
refine the appropriate copy of the specification to the trivial implementation. For Quicksort,
an empty array or an array with a single element is already sorted, so SORT can be refined
as skip in these cases:

{a > b}; SORT ≈ {a > b}; skip

Elaboration will typically generate a somewhat larger program containing one or more copies
of the original specification statement.

3. Divide and Conquer: The general case is usually tackled via some form of “divide and
conquer” strategy: this is where the informal implementation ideas come into play to direct
the selection of transformations. For Quicksort the informal idea consists of two steps: (a)
Partition the array around a pivot element: so that all the elements less than the pivot go on
one side and the larger elements go on the other side. (b) Then the two sub-arrays are sorted
using copies of the original specification statement.

Divide and conquer will make the program still larger, often introducing more copies of the
specification statement.

At this point we still have a non-recursive program: so there are no induction proofs or
invariants required for the transformations. The proofs typically consist of a simple case
analysis, plus analysis of the specification under certain restricted preconditions.

4. Recursion Introduction: The next step is to apply the Recursive Implementation (Trans-
formation 5) to produce a recursive program with no remaining copies of the specification.
This may be carried out in several stages, with each stage leaving fewer copies of the
specification statement, until all have been removed.

5. Recursion Removal: We now have an executable implementation of the specification. If an
iterative implementation is required, then apply Recursion Removal (Transformation 8), or an
appropriate special case of the transformation, to produce an iterative program. Again: this
can be carried out in stages, or only partially: for example, tail recursion can be converted
to iteration, but inner recursive calls left in place.

6. Optimisation: Apply further optimising transformations as required.

The method is compositional at several levels:

1. At any stage in the development, any part of the program can be worked on in isolation and
the results “plugged back in” to the main program: this is due to the fact that refinement in
WSL satisfies the replacement property [War89];

2. Different aspects of the development can often be handled separately: for example, correctness
and efficiency. We can derive a provably correct program and then apply various optimising
transformations to improve its efficiency;

3. At any stage in the process we may use data transformations to change the data representation
using the “ghost variables” method [War94, War96, War93, War96] to convert abstract data
structures to concrete data structures.

6



These compositionality properties are important properties that any program development method
should satisfy.

It should be noted that stages 1–3 of any transformational derivation involve analysing programs
which contain no recursion or iteration. This makes the analysis particularly straightforward: for
example, induction arguments are not needed. This is fortunate, as it is these stages which require
the most input from the informal implementation ideas. Stages 4–6 involve standard transforma-
tions for recursion introduction, recursion removal and optimisation. As the derivation progresses,
the transformations involved become more generic and less domain-specific. The techniques of
calculational programming [BiM96] may be relevant to these stages: these include rules such as
fusion and tupling, generic maps, specialisations, abstract data types etc. In the later stages, the
program will typically be getting larger, but the required transformations will become simpler and
more susceptible to automation. At some point, an optimising compiler will take over and generate
executable code, or the code will be directly executed by an interpreter, as appropriate.

An important advantage of the transformational derivation approach, over the various “code and
verify” approaches is that it enables a separation of concerns between implementing the algorithm
and applying various optimisation techniques. Some of the optimisation transformations, recursion
removal for example (Transformation 8), produce code which is quite different in structure from the
original unoptimised code. This new structure is generated automatically by the transformation
sequence. Using the “posit and prove” approach, the programmer would have to work out in
advance the structure of the optimised program: so that it can be “posited” as the next version.
The programmer would also need to determine suitable loop invariants for the optimised code so
that it could be proved correct. This is not necessarily impossible, but could be difficult to carry
out correctly for a large and complex program.

2 The WSL Language

WSL is a Wide Spectrum language in that the language covers the whole spectrum from very
high-level abstract specifications to detailed, low-level programming constructs. This means that
the whole program derivation process can be carried out in a single language: we do not need
separate “specification” and “implementation” languages with the consequent difficulty of proving
the relationship between the two languages.

The WSL Language is constructed from a simple and tractable kernel language. New constructs
are added to the language in a series of layers by means of definitional transformations. The main
language layers are as follows, with each subsequent layer building on the previous layer:

• Kernel language;

• if statements, while loops;

• do . . . od loops and action systems;

• Procedures;

• Functions and expressions with side effects.

The syntax and semantics of the kernel language and higher levels of WSL have been described
in earlier papers [PrW94, War89, War04, WaZ07, YaW03] so will not be given here. In this paper
we make use of the following WSL language constructs:

• Skip: The statement skip terminates immediately without changing the value of any variable;

• Abort: The statement abort never terminates;

7



• Specification Statement: For any formula Q and list of variables x, let x′ be the corre-
sponding list of primed variables. The statement x := x′.Q assigns new values to the variables
in x such that the condition Q becomes true. Within Q, x represents the original values of
x and x′ represents the new values. For example, the statement:

〈x, y〉 := 〈x′, y′〉.(x′ = y ∧ y′ = x)

swaps the values of variables x and y. The specification:

〈x〉 := 〈x′〉.(x′ = x2 − 2x + 2)

assigns x the value x2 − 2x + 2. The specification:

〈x〉 := 〈x′〉.(x′ = x′2 − 2x′ + 2)

will assign x the value 1 or 2 (with the particular value being chosen nondeterministically),
while the specification:

〈x〉 := 〈x′〉.(x = x′2 − 2x′ + 2)

assigns x one of the two values: 1±
√

x− 1

• Simple Assignment: For any variable v and expression e, the statement v := e is defined:

〈v〉 := 〈v′〉.(v′ = e)

• Deterministic Choice: if B1 then S1 elsif B2 then S2 . . . else Sn fi

• Nondeterministic Choice: if B1 → S1 ⊓⊔ . . . ⊓⊔ Bn → Sn fi

• While Loop: while B do S od

• Nondeterministic loop: do B1 → S1 ⊓⊔ . . . ⊓⊔ Bn → Sn od

• Floop: do S od The floop is an “unbounded” loop which is terminated by the execution of
a statement of the form exit(n) where n is a positive integer (not a variable or expression).
exit(n) causes immediate termination of the n enclosing levels of nested floops. See [PrW94,
War04] for more detailed discussion of these constructs and associated transformations.

• Recursive Statement: If S is any statement which contains occurrences of the symbol X as
sub-statements, then the statement (µX.S) is the recursive procedure whose body is S with
X representing recursive calls to the procedure. For example, the while loop while B do S od

is equivalent to the recursive statement (µX.if B then S; X fi).

• Recursive procedures: A where statement contains a main body plus a collection of
(possibly mutually recursive) procedures:

begin

S

where

proc F1(x1) ≡ S1.

. . .
proc Fn(xn) ≡ Sn.

end

8



• Action System: An Action System is a set of parameterless mutually recursive procedures
together with the name of the first action to be called. There may be a special action Z
(with no body): call Z results in the immediate termination of the whole action system with
execution continuing with the next statement after the action system (if any). See [PrW94,
War04] for more detailed discussion of action systems and associated transformations.

An action system has this syntax:

actions A1 :
A1 ≡ S1.

A2 ≡ S2.

. . .
An ≡ Sn. endactions

where, in this case, A1 is the starting action: so S1 is the first statement to be executed. A
statement of the form call Ai is a call to action Ai.

If the execution of any action body must lead to an action call, then the action system
is regular. In a regular action system, no call ever returns and the system can only be
terminated by a call Z. A program written using labels and jumps translates directly into an
action system, provided all the labels appear at the top level (not inside a structure). Labels
can be promoted to the top level by introducing extra calls and actions, for example:

A : if B then L : S1 else S2 fi; S3

can be translated to the action system:

actions A :
A ≡ if B then call L else call L2 fi.

L ≡ S1; call L3.

L2 ≡ S2; call L3.

L3 ≡ S3; call Z. endactions

So, using this “promotion” method, any program written using labels and jumps can be
translated directly into an action system. Any structured program can also be translated
directly into an “unstructured” action system. For example, the while loop while B do S od

is equivalent to the regular action system:

actions A :
A ≡ if B then S; call A else call Z fi. endactions

Recursive procedures and action systems are similar in several ways, the differences are:

• There is nothing in a where statement which corresponds to the Z action: all procedures must
terminate normally (and thus a “regular” set of recursive procedures could never terminate);

• Procedure calls can occur anywhere in a program, for example in the body of a while loop:
action calls cannot occur as components of statements other than if statements and do . . . od

loops.

An action system which does not contain calls to Z can be translated to a where clause (the
converse is only true provided no procedure call is a component of a simple statement).

The nondeterministic programming constructs are based on Dijkstra’s guarded command lan-
guage [Dij76].

9



3 Transformations Used in Derivations

In this section we list some of the main transformations which are used in algorithm derivations. The
success of transformational programming is in a large part due to the development of a substantial
catalogue of proven transformations. These transformations are very widely applicable and can be
used in many different situations.

There are various methods used to prove the correctness of a transformation, these include:

• A direct proof of the equivalence of the denotational semantics for the two programs;

• A proof based on the logical equivalence, or implication, between the corresponding weakest
preconditions. Given any program and a formula which defines a condition on the final
state, the weakest precondition is the corresponding formula on the initial state such that if
the program starts executing in a state satisfying the weakest precondition it is guaranteed
to terminate in a state satisfying the given postcondition. In [War89] transformations are
proved correct by using a “generic” postcondition in an extension of the logic. In [War04] we
show that two specific postconditions are sufficient to completely capture the semantics of a
program.

• A proof based on induction over the set of truncations of the iterative or recursive constructs
in the programs: see [War04] for details of the induction rules.

• A proof based on a sequence of existing transformations.

Many proofs use a combination of these methods. Although there has been some work on formal-
ising the semantics and transformation proofs using the Coq Proof Assistant [ZMH02a, ZMH02b]
most transformation proofs are manual. However, the work involved in proving a transformation
only has to be carried out once, while the transformation can be re-used in a huge number of
program derivations.

The first four transformations can be proved directly from the weakest preconditions (see
[War89] Chapter One for the details).

Transformation 1 Splitting a Tautology
If B1 ∨ B2 is true then:

S ≈ if B1 → S ⊓⊔ B2 → S fi

For any formula B we have:
S ≈ if B then S else S fi

These can be proved directly from the corresponding weakest preconditions: see [War89] Chap-
ter One.

Transformation 2 Introduce assertions

if B then S1 else S2 fi ≈ if B then {B}; S1 else {¬B}; S2 fi

if B1 → S1 ⊓⊔ B2 → S2 fi ≈ if B1 → {B1}; S1 ⊓⊔ B2 → {B2}; S2 fi

Recall that an assertion in WSL is a statement, not an annotation of the program. Any transfor-
mation which introduces an assertion is therefore guaranteeing that the condition in the assertion
is always true at the point where the assertion is added.

Transformation 3 Append assertion
If the variables in x do not appear free in Q (i.e. the new value of x does not depend on the old
value) then:

x := x′.Q ≈ x := x′.Q; {Q[x/x′]}

10



where Q[x/x′] is the formula Q with every occurrence of a variable in x′ replaced by the corre-
sponding variable in x. In particular, if x does not appear in the expression e, then:

x := e ≈ x := e; {x = e}

Transformation 4 Assignment Merging
For any variable x and expressions e1 and e2:

x := e1; x := e2 ≈ x := e2[e1/x]

Transformation 5 Recursive Implementation
Suppose we have a statement S′ which we wish to transform into the recursive procedure (µX.S).
We claim that this is possible whenever:

1. The statement S′ is refined by S[S′/X] (which denotes S with all occurrences of X replaced by
S′). In other words, if we replace recursive calls in S by copies of S′ then we get a refinement
of S′;

2. We can find an expression t (called the variant function) whose value is reduced before each
occurrence of S′ in S[S′/X].

Note that a refinement of a program is any program which is more defined (i.e. defined on at least
as many initial states as the original) and more deterministic (i.e. for each initial state on which
the original program is defined, the refinement is also defined and has a smaller set of final states:
therefore each of the final states for the refinement is an allowed final state for the original). If two
programs are each a refinement of the other, then the programs are semantically equivalent.

The expression t need not be integer valued: any set Γ which has a well-founded order 4 is
suitable. To prove that the value of t is reduced it is sufficient to prove that if t 4 t0 initially,
then the assertion {t ≺ t0} can be inserted before each occurrence of S′ in S[S′/X]. The theorem
combines these two requirements into a single condition:

Theorem 3.1 The Recursive Implementation Theorem
If 4 is a well-founded partial order on some set Γ and t is a term giving values in Γ and t0 is a

variable which does not occur in S then if

{P ∧ t 4 t0}; S′ ≤ S[{P ∧ t ≺ t0}; S′/X]

then {P}; S′ ≤ (µX.S)

See [War89] Chapter One for the proof.

Transformation 6 Action call fold/unfold
If S is any statement in an action system, one of whose actions is Ai ≡ Si., then:

S ≈ S[Si/call Ai]

This transformation can be used in either direction: to replace an action call by a copy of the
action body, or to replace a statement by a call to a suitable action body. In particular, let S be
any statement in an action system (which is in a suitable position for a call to appear). Let An

be any new action name which is not already used in the system. Then we can add a new action
An ≡ S. to the system: this transformation is trivial since the new action is unreachable. Now
apply Transformation 6 to replace S by call An.

See [War89] Chapter Four for the proof.

Transformation 7 Action Recursion Removal
Let Ai ≡ Si. be any action in a regular action system. Then we can remove “recursive” calls
call Ai which appear in the action Ai ≡ Si. by the following process:

11



1. First enclose Si in a double-nested loop: do do Si; exit(2) od od

2. Next, replace each call Ai which appears in n nested loops by the statement exit(n + 1): so
a call in Si which is not in any loops is replaced by exit(1), and so on.

Each call is therefore replaced by an exit which terminates the inner loop surrounding Si and
re-iterates the outer loop, so that Si is executed again as required.

See [War89] Chapter Four for the proof.

The double loop is not always necessary: if all the recursive calls are in tail positions, then a
single loop is sufficient with the calls replaced by skip statements.

Transformation 8 Recursion Removal
Suppose we have a recursive procedure whose body is a regular action system in the following
form:

proc F (x) ≡
actions A1 :
A1 ≡ S1.

. . . Ai ≡ Si.

. . . Bj ≡ Sj0; F (gj1(x)); Sj1; F (gj2(x));
. . . ; F (gjnj

(x)); Sjnj
.

. . . endactions.

where Sj1, . . . ,Sjnj
preserve the value of x and no S contains a call to F (i.e. all the calls to F are

listed explicitly in the Bj actions) and the statements Sj0, Sj1, . . . ,Sjnj−1 contain no action calls.
Note that, since the action system is regular, each of the statements Sjnj

must contain one or more
action calls: in fact, they can only terminate by calling an action. There are M + N actions in
total: A1,. . . , AM , B1, . . . , BN . Note that the since the action system is regular, it can only be
terminated by executing call Z which will terminate the current invocation of the procedure.

Our aim is to remove the recursion by introducing a local stack L which records “postponed”
operations: When a recursive call to F (e) is required we “postpone” it by pushing the pair 〈0, e〉
onto L (where e is the parameter required for the recursive call). Execution of the statements Sjk

also has to be postponed (since they occur between recursive calls), we record the postponement
of Sjk and the current value of x, by pushing 〈〈j, k〉, x〉 onto L. Where the procedure body would

normally terminate (by calling Z) we instead call a new action F̂ which pops the top item off L
and carries out the postponed operation. If we call F̂ with the stack empty then all postponed
operations have been completed and the procedure terminates by calling Z.

A recursive procedure in the form given above is equivalent to the following iterative procedure
which uses a new local stack L and a new local variable m:

proc F ′(x) ≡
var 〈L := 〈〉,m := 0〉 :

actions A1 :

A1 ≡ S1[call F̂ /call Z].

. . . Ai ≡ Si[call F̂ /call Z].

. . . Bj ≡ Sj0;
L := 〈〈0, gj1(x)〉, 〈〈j, 1〉, x〉, 〈0, gj2(x)〉,

. . . , 〈0, gjnj
(x)〉, 〈〈j, nj〉, x〉〉 ++ L;

call F̂ .

. . . F̂ ≡ if L = 〈〉
then call Z

else 〈m,x〉 pop←− L;
if m = 0 → call A1

12



⊓⊔ . . . ⊓⊔ m = 〈j, k〉
→ Sjk[call F̂ /call Z]; call F̂

. . . fi fi. endactions end.

where the substitutions Si[call F̂ /call Z] are, of course, not applied to nested action systems which
are components of the Si.

See [War99a] for the proof, and some applications.

Within each Bj , at the point where F̂ is called the top of the stack L is 〈0, gj1(x)〉. So this F̂
will set x to gj1(x) and call Aj . We can therefore unfold F̂ into Bj and simplify to get:

Bj ≡ Sj0;
L := 〈〈〈j, 1〉, x〉, 〈0, gj2(x)〉,

. . . , 〈0, gjnj
(x)〉, 〈〈j, nj〉, x〉〉 ++ L;

x := gj1;
call Aj.

If nj = 1 for all j, then a value of the form 〈0, v〉 will never be pushed onto the stack, and each Bj

takes this form:

Bj ≡ Sj0;
L := 〈〈〈j, 1〉, x〉〉 ++ L;
x := gj1;
call Aj.

If, in addition, the procedure is parameterless and there is only one B type action, then the only
value pushed into the stack is 〈〈1, 1〉〉. So the stack can be replaced by a simple integer (which
records how many values were pushed onto the stack). So, for the special case of a parameterless,
linear recursion we have:

proc F ≡
actions A1 :
A1 ≡ S1.

. . . Ai ≡ Si.

B1 ≡ S0; F ; S11. endactions.

is equivalent to:

proc F ′ ≡
var 〈L := 0〉 :

actions A1 :

A1 ≡ S1[call F̂ /call Z].

. . . Ai ≡ Si[call F̂ /call Z].

. . . B1 ≡ Sj0; L := L + 1; call A1.

. . . F̂ ≡ if L = 0
then call Z
else L := L− 1;

S11[call F̂ /call Z]; call F̂ fi.

endactions end.

For example:

proc F ≡
if B then S1 else S2; F ; S3 fi.

is equivalent to the iterative program:

13



proc F ′ ≡
var 〈L := 0〉 :

actions A1 :

A1 ≡ if B then S1; call F̂ else call B1 fi.

B1 ≡ S2; L := L + 1; call A1.

F̂ ≡ if L = 0
then call Z
else L := L− 1;

S3; call F̂ fi. endactions end.

Remove the recursion in F̂ , unfold into A1, unfold B1 into A1 and remove the recursion to give:

proc F ′ ≡
var 〈L := 0〉 :

while ¬B do S2; L := L + 1 od;
S1;
while L 6= 0 do L := L− 1; S3 od.

This restructuring is carried out automatically by FermaT’s Collapse Action System transformation.

Transformation 9 Loop Unrolling

while B do S od ≈ if B then S; while B do S od fi

Selective unrolling of while loops. For any formula Q we have:

while B do S od ≈ while B do S; if B ∧ Q then S fi od

See [War89] Chapter Two for the proof.

Transformation 10 Entire Loop Unrolling. If B1 ⇒ B2 then:

while B2 do S od ≈ while B2 do S; if Q then while B1 do S od fi od

This is true for any formula Q. See [War89] Chapter Two for the proof.

Each of these transformations has a generalisation in which instead of inserting the “unrolled”
part after S it is copied after an arbitrary selection of the terminal statements in S.

Transformation 11 Loop Merging

while B do S od ≈ while B ∧ Q do S od; while B do S od

This transformation is valid for any while loop and any condition Q.
See [War89] Chapter Two for the proof.

An equivalent definition of the transformation is: for any statement S and formulae B1 and B2

such that B1 ⇒ B2:

while B1 do S od; while B2 do S od ≈ while B2 do S od

Transformation 12 Abstracting from a Program to a Specification
Let S : V → W , be any WSL statement and let x be a list of all the variables in W . Then S is
equivalent to:

x := x′.(¬WP(S,x 6= x′) ∧ WP(S, true))

14



where for any program S and formula Q, the formula WP(S,Q) is the weakest precondition of S

on postcondition Q. This is the weakest condition on the initial state such that if S is started in a
state which satisfies WP(S,Q) then it is guaranteed to terminate and the final state is guaranteed
to satisfy Q. If S has any loops or recursion, then WP(S,Q) is defined as an infinite formula,
so the specification statement will usually be infinitely large. But the transformation is still very
useful during the “elaboration” and “divide and conquer” stages in the development process, and
also for analysing fragments of larger programs. See [War04] for the proof of this transformation.

In theory, this transformation solves all reverse engineering problems: since it defines an abstract
specification for any program [War04]. In practice, it is less useful because the specifications for
programs containing loops or recursion are infinite. But there are many programs and program
fragments which do not contain loops or recursion: in one study [WZL08] over 40% of the modules
from a collection taken at random from several large assembler systems contained no loops.

Transformation 13 Refining a Specification
Generally, programmers find that a compound statement with assertions, if statements and simple
assignments to be easier to read and understand than the equivalent single specification state-
ment. So we have implemented another transformation Refine Spec which analyses a specification
statement and carries out the following operations:

1. Factor out any assertions: for example, if no variable in x′ appears free in P, then:

x := x′.(Q ∧ P) ≈ {P}; x := x′.Q

conversely, if no variable in x appears free in P then:

x := x′.(Q ∧ P) ≈ x := x′.Q; {P[x/x′]}

2. Expand into an if statement: for example, the specification x := x′.(Q ∨ (B ∧ P)) where
B does not contain any variables x′, is equivalent to

if B then x := x′.(Q′ ∨ P′) else x := x′.(Q′′) fi

where Q′ and P′ are the result of simplifying Q and P under the assumption that B is
true, and Q′′ is the result of simplifying Q under the assumption that B is false. These
sub-specifications are then recursively refined;

3. Finally, any simple assignments or parallel assignments are extracted.

These transformations are proved in [War89] Chapter One.

4 Examples of Transformational Programming

A simple example of an algorithm derivation will demonstrate how the various transformations
introduced in the previous section “fit together” to provide a complete derivation path from abstract
specification to efficient implementation. This example also shows that different informal ideas
can drive the derivation process in different directions: resulting in a substantially different final
implementation.

4.1 Greatest Common Divisor

The Greatest Common Divisor (GCD) of two numbers is the largest number which divides both
of the numbers with no remainder. A specification for a program which computes the GCD is the
following:

r := GCD(x, y)

15



where:
GCD(x, y) = max

{

n ∈ N
∣

∣ n|x ∧ n|y
}

and n|x means “n divides x”. (Note that GCD(x, y) is undefined when both x and y are zero).
It is easy to prove the following facts about GCD:

1. GCD(0, y) = y

2. GCD(x, 0) = x

3. GCD(x, y) = GCD(y, x)

4. GCD(x, y) = GCD(−x, y) = GCD(x,−y)

5. GCD(x, y) = GCD(x− y, y) = GCD(x, y − x) etc.

4.1.1 Initial Program Derivation

To refine our specification into a program, the obvious first step is to split a tautology on the
conditions x = 0 and y = 0, using Fact (1) and Fact (2) respectively:

r := GCD(x, y) ≈ if x = 0 then r := y
elsif y = 0

then r := x
else r := GCD(x, y) fi

Fact (3) does not appear to make much progress. If we restrict attention to non-negative integers,
then Fact (4) does not apply. So we are left with Fact (5). If we take as our variant function
the expression x + y, then, since we are restricted to non-negative integers, we can only transform
r := GCD(x, y) to r := GCD(x− y, y) under the condition x > y. Similarly, for the condition y > x
we can transform r := GCD(x, y) to r := GCD(x, y − x). So we have the following elaboration of
the specification:

if x = 0
then r := y

elsif y = 0
then r := x

elsif x > y then r := GCD(x− y, y)
else r := GCD(x, y − x) fi

If x > y then x−y +y < x+y (since x and y are positive at this point) and similarly, if x < y then
x + y − x < x + y, so our variant function is reduced before each copy of the specification in the
elaborated program. Applying Recursive Implementation (Transformation 5), we get the following
recursive program:

proc gcd(x, y) ≡
if x = 0

then r := y
elsif y = 0

then r := x
elsif x > y then r := gcd(x− y, y)

else r := gcd(x, y − x) fi end

This is a simple tail-recursion, so recursion removal (Transformation 8) produces this iterative
program:

16



proc gcd(x, y) ≡
while x 6= 0 ∧ y 6= 0 do

if x > y then x := x− y
else y := y − x fi od;

if x = 0 then r := y else r := x fi end

This is essentially the same algorithm as Dijkstra produces by the method of invariants: except
that we have not needed to prove any invariants.

4.1.2 Optimisation Transformations

There is a problem with the algorithm in that, although it is correct, it is very inefficient when
x and y are very different in size. For example, if x = 1 and y = 231 then the program will take
231 − 1 steps.

One solution would be to look for some other properties of GCD and generate a new, hopefully
more efficient, program which uses these properties. This requires throwing away the current
program: not a big issue in this case, since the program is so small. But in the case of a very
large program, the suggestion that we throw it away and start again from scratch in order to solve
a small efficiency problem is unlikely to be well received! Unfortunately, this is the only option
offered by the “Invariant Based Programming” approach.

With the transformational programming approach, we have another option: attempt to trans-
form the program in order to improve its efficiency. Consider the case where x is much larger than
y. Then the statement x := x − y will be executed many times in succession. This suggests that
we apply Entire Loop Unrolling (Transformation 10) to the program at the point just after this
assignment with the condition x > y. The result is:

proc gcd(x, y) ≡
while x 6= 0 ∧ y 6= 0 do

if x > y then x := x− y;
while x > y do

if x > y
then x := x− y fi od

else y := y − x fi od;
r := x end

This simplifies to:

proc gcd(x, y) ≡
while x 6= 0 ∧ y 6= 0 do

if x > y then while x > y do x := x− y od

else y := y − x fi od;
if x = 0 then r := y else r := x fi end

Consider the inner while loop. This repeatedly subtracts y from x. Suppose the loop iterates q
times (we know q > 0 since x > y initially). Then the final value of x is x = x0 − q.y where x0 was
the initial value of x. We also have 0 6 x < y. These two facts show that the final value of x is in
fact the remainder obtained when x is divided by y. In other words:

while x > y do x := x− y od ≈ x := x mod y

when x > y initially.
Similarly, entire loop unrolling can be applied after the assignment y := y − x and the same

optimisation applied to give:

17



proc gcd(x, y) ≡
while x 6= 0 ∧ y 6= 0 do

if x > y then x := x mod y
else y := y mod x fi od;

if x = 0 then r := y else r := x fi end

We have transformed a program which was O(n) in execution time into an equivalent program
which is O(log n)

4.1.3 Alternate Program Derivation

With a different informal idea and/or different constraints on the algorithm, the same derivation
process will often produce a different result. For example, suppose the target machine does not
have a native integer division instruction, but does have efficient binary shift instructions. Our
informal idea is to make use of the following additional information about the GCD function:

1. GCD(x, y) = 2.GCD(x/2, y/2) when x and y are both even;

2. GCD(x, y) = GCD(x/2, y) when x is even and y is odd;

3. GCD(x, y) = GCD(x, y/2) when x is odd and y is even;

4. GCD(x, y) = GCD((x− y)/2, y) when x and y are odd and x > y;

5. GCD(x, y) = GCD(x, (y − x)/2) when x and y are odd and y > x.

Applying Fact (1) above produces the following elaborated specification:

if x = 0 then r := y
elsif y = 0 then r := x
elsif 2|x ∧ 2|y

then r := 2.GCD(x/2, y/2)
else r := GCD(x, y) fi

Applying Recursive Implementation (Transformation 5) plus Recursion Removal (Transforma-
tion 8) to the first occurrence only of GCD produces:

if x = 0 then r := y
elsif y = 0 then r := x

else var 〈L := 0〉 :
while 2|x ∧ 2|y do

L := L + 1;
x := x/2; y := y/2 od;

r := GCD(x, y);
r := 2L.r end fi

Applying Fact (2) above, followed by Recursive Implementation (Transformation 5) and Recursion
Removal (Transformation 8) produces the following result:

if x = 0 then r := y
elsif y = 0 then r := x

else var 〈L := 0〉 :
while 2|x ∧ 2|y do

L := L + 1;
x := x/2; y := y/2 od;

while 2|x do x := x/2 od;
{x 6= 0 ∧ y 6= 0 ∧ ¬2|x};
r := GCD(x, y);
r := 2L.r end fi

18



We now focus attention on the case where x is known to be odd, and y is non-zero. Define:

GCDx(x, y) =
DF
{y 6= 0 ∧ ¬2|x}; r := GCD(x, y)

By Fact (3) we show that GCDx(x, y) is equivalent to:

while 2|y do y := y/2 od;
GCDx(x, y)

Now apply Fact (4), and also Fact (3) from the first set of facts, to ensure that x is odd in every
occurrence of GCDx:

while 2|y do y := y/2 od;
if x = y then r := x
elsif x > y then GCDx(y, (x− y)/2)

else GCDx(x, (y − x)/2) fi

Apply Recursive Implementation (Transformation 5) and Recursion Removal (Transformation 8):

do while 2|y do y := y/2 od;
if x = y then r := x; exit fi;
if x > y

then 〈x, y〉 := 〈y, x− y〉
else y := y − x fi;

y := y/2 od

The final program is therefore:

if x = 0
then r := y

elsif y = 0
then r := x
else var 〈L := 0〉 :

while 2|x ∧ 2|y do

L := L + 1;
x := x/2; y := y/2 od;

while 2|x do x := x/2 od;
do while 2|y do y := y/2 od;

if x = y then r := x; exit fi;
if x > y

then 〈x, y〉 := 〈y, x− y〉
else y := y − x fi;

y := y/2 od

r := 2L.r end fi

If the CPU has an instruction which computes the ntz function (returning the number of terminating
zeros in the binary representation of the argument), and also efficient instructions for shifting binary
numbers, then three while loops can be implemented in straight-line code. For example, the first
while loop can be implemented as:

L := min(ntz(x), ntz(y));
x := x/2L; y := y/2L;

An efficient method of computing the ntz function using de Bruijn sequences, was described in
[LPR98].

19



5 Knuth’s Polynomial Addition Algorithm

In the introduction to Chapter Two of “Fundamental Algorithms” [Knu68] Knuth writes “Although
List processing systems are useful in a large number of situations, they impose constraints on the
programmer that are often unnecessary; it is usually better to use the methods of this chapter
directly in one’s own programs, tailoring the data format and the processing algorithms to the
particular application. . . .We will see that there is nothing magic, mysterious, or difficult about
the methods for dealing with complex structures; these techniques are an important part of every
programmer’s repertoire, and he can use them easily whether he is writing a program in assembly
language or in a compiler language like FORTRAN or ALGOL.”

He goes on to describe a data structure to implement multivariate polynomials using a four-way
circular-linked list structure. Using this data structure he presents an algorithm for polynomial
addition: given two polynomials, represented by pointers P and Q, which do not share any nodes,
the algorithm adds polynomial P to polynomial Q, updating the structure for Q while leaving
P unchanged. Despite Knuth’s confident assertion that “there is nothing. . . difficult about the
methods”, the four-way linked list structure he used to implement polynomial addition turned out
to be rather difficult to work with in practice. The algorithm is very complex and difficult to get
right: there were at least three bugs in the version published in the first edition [Knu74].

We will use Knuth’s polynomial addition problem as a testbed for the transformational pro-
gramming method applied to the derivation of complex linked-list algorithms. We will not make
any use of Knuth’s code (except to compare its efficiency with our generated code): instead we show
that simply following the derivation method leads to highly efficient code. Our derived algorithm
turns out to be over twice as fast as Knuth’s in all test cases: and nearly four times faster in some
cases.

A polynomial is either a constant or has the form:

∑

06j6n

gjx
ej

where x is a variable, n > 0, 0 = e0 < e1 < · · · < ej and gj are polynomials involving only variables
alphabetically less than x. Also, g1, . . . , gn are not zero.

5.1 Abstract Polynomials

For our first implementation of polynomial addition, we decided to suffer the constraints imposed
by a list processing system by developing a WSL algorithm for polynomial addition which uses
WSL sequences to implement polynomials. The WSL is compiled into Scheme code which in turn
is compiled into C using the Hobbit Scheme compiler [Tam95].

A constant polynomial is represented as the singleton list 〈c〉 where c is an integer. Otherwise,
a polynomial is represented as the list of three or more elements:

p = 〈x, 〈g0, e0〉, 〈g1, e1〉, . . . , 〈gn, en〉〉

Here, x is a string (the variable name), n > 0, 0 = e0 < e1 < · · · < en are the integer exponents
and gi are lists representing polynomials whose variables are all lexicographically less than x. Also,
gj 6= 〈0〉 for all j > 0. The abstraction function abs(p) returns the polynomial represented by the
list p:

abs(p) =
DF

{

p[1] if ℓ(p) = 1
∑

06j6ℓ(p)−2 abs(p[j + 2][1]).p[1]p[j+2][2] otherwise

So, for example, for the list p = 〈x, 〈〈0〉, 0〉, 〈〈4〉, 1〉, 〈〈1〉, 2〉〉:

abs(p) = 0.x0 + 4.x1 + 1.x2

20



i.e.:
abs(p) = x2 + 4.x

We call polynomials implemented as lists “abstract polynomials” and polynomials implemented
as pointers “concrete polynomials”. The lists representing abstract polynomials have to satisfy the
condition I(p) where:

I(p) =
DF

(ℓ(p) = 1 ∧ p[1] ∈ Z)
∨

(

ℓ(p) > 3 ∧ p[1] ∈ Strings ∧ ∀v ∈ vars(p). (p[1] > v)
∧ ℓ(p[2]) = 2 ∧ I(p[2][1]) ∧ p[2][2] = 0
∧ ∀j : 3 6 j 6 ℓ(p). (ℓ(p[j]) = 2 ∧ I(p[j][1]) ∧ p[j][2] ∈ N

∧ p[j][2] > p[j − 1][2] ∧ p[j][1] 6= 〈0〉)
)

where Strings is the set of strings, and vars(p) is the set of variables used in the terms of polynomial
p (i.e. all variables except the base variable):

vars(p) =
DF

{

∅ if ℓ(p) = 1
⋃

26j6ℓ(p) allvars(p[j][1]) otherwise

where:

allvars(p) =
DF

{

∅ if ℓ(p) = 1

{p[1]} ∪⋃

26j6ℓ(p) allvars(p[j][1]) otherwise

With these definitions, the formal specification for a program which assigns r to the value of a
list which represents a polynomial equal to abs(p) + abs(q) is simply:

add(r, p, q) =
DF

r := r′.(I(r′) ∧ abs(r′) = abs(p) + abs(q))

5.2 Abstract Algorithm Derivation

With this data structure it is a simple task to derive a suitable recursive algorithm for adding two
polynomials. First, take out special cases: the obvious cases are when p and/or q are constant
polynomials (in which case, they are sequences of length 1):

add(r, p, q) ≈ if ℓ(p) = 1 then if ℓ(q) = 1 then r := 〈p[1] + q[1]〉
else add(r, p, q[2][1]); r := 〈q[1], 〈r, 0〉〉 ++ q[3 . .] fi

elsif ℓ(q) = 1 then add(r, p[2][1], q); r := 〈q[1], 〈r, 0〉〉 ++ p[3 . .]
else add(r, p, q) fi

Next, if p and q are polynomials in the same variable, then we add corresponding terms in the
two sequences of terms. One slight complication is that if all the non-constant terms cancel, we
must make sure that we return the constant term rather than returning a constant polynomial (this
ensures that the condition I(r′) is satisfied). Similarly, when adding two lists of terms, we must
take care not to generate a zero term when the exponent is non-zero.

After taking out all these cases, Recursive Implementation (Transformation 5) can be repeatedly
applied to produce a set of mutually recursive procedures. These can be transformed into recursive
functions using the definitional transformation for WSL functions:

funct Abs Add Poly(p, q) ≡
(if ℓ(p) = 1

then if ℓ(q) = 1
then 〈p[1] + q[1]〉
else 〈q[1], 〈Abs Add Poly(p, q[2][1]), 0〉〉 ++ q[3 . .] fi

else if ℓ(q) = 1
then 〈p[1], 〈Abs Add Poly(p[2][1], q), 0〉〉 ++ p[3 . .]

21



else if p[1] = q[1]
then Abs Simplify(〈p[1]〉 ++ Abs Add Terms(p[2 . .], q[2 . .]))
else if String Less?(p[1], q[1])

then 〈q[1], 〈Abs Add Poly(p, q[2][1]), 0〉〉 ++ q[3 . .]
else 〈p[1], 〈Abs Add Poly(q, p[2][1]), 0〉〉 ++ p[3 . .] fi fi fi fi).;

The function Abs Add Terms takes two lists of terms (which are assumed to be in the same variable)
and returns the result of adding the terms together:

funct Abs Add Terms(p, q) ≡
(if p = 〈〉

then q
else if q = 〈〉

then p
else if p[1][2] = q[1][2]

then Abs Simplify Term(〈Abs Add Poly(p[1][1], q[1][1]), q[1][2]〉)
++ Abs Add Terms(p[2 . .], q[2 . .])

else if p[1][2] < q[1][2]
then 〈p[1]〉 ++ Abs Add Terms(p[2 . .], q)
else 〈q[1]〉 ++ Abs Add Terms(p, q[2 . .]) fi fi fi fi).;

The function Abs Simplify simplifies a polynomial which has no terms apart from the constant term
by returning the value in the constant term:

funct Abs Simplify(p) ≡
(if ℓ(p) = 2

then p[2][1]
else p fi).;

The function Abs Simplify Term returns an empty list if the term is zero, and otherwise returns a
singleton list containing the term:

funct Abs Simplify Term(term) ≡
(if term[2] > 0 ∧ term[1] = 〈0〉

then 〈〉
else 〈term〉 fi).;

The code listed above was generated directly from the ASCII WSL code. After fixing a few typos,
this code worked first time: this is in contrast to Knuth’s polynomial addition algorithm which had
at least three bugs in the published version [Knu74]. The abstract program was tested as follows:

1. First a few sample polynomials were used as test data and the results examined;

2. Then a small number of random polynomials were generated and used as test data and the
results examined;

3. Finally a huge number of polynomials were generated and tested by evaluating the polynomi-
als with random values for the variables. The sum of the values for the two input polynomials
was compared with the value of the output polynomial.

5.3 Concrete Polynomials

Knuth’s algorithm for polynomial addition represents a polynomial using a complex linked structure
of nodes or records. Each record has six fields:

1. UP is a pointer to the parent node in the tree (or the null pointer value Λ if this node is the
root of the whole polynomial);

22



• •
•

• •
•

Poly = g0 + g1x
e1 + ... + gnx

en

• •
•

...

g0 g1 gn

...

e1 en0

x •

Fields Poly = c (constant)

c Λ

UP

LEFT

EXP

CV DOWN

RIGHT

Figure 3: Representation of polynomials using four-directional links

2. DOWN is Λ for a constant polynomial, and otherwise a pointer to the first node in the list of
terms for this polynomial: this will be the term with a zero exponent;

3. LEFT and RIGHT are the pointers which form a doubly-linked circular list of terms. The
terms are linked in order of exponent, there is always a term with a zero exponent, and the
term with the highest exponent links back to the zero exponent term via its RIGHT pointer.
Each list contains at least two terms (otherwise we would have a constant polynomial: and
this variable would be redundant);

4. CV is either the constant value for a constant polynomial (which has DOWN set to Λ) or the
name of the variable for a non-constant polynomial (in which case DOWN points to the term
with a zero exponent in the list of terms);

5. EXP is the exponent value for this term. Note that the variable which has this exponent
is given by the CV value of the node pointed at by UP: the CV value for this node is the
constant value or variable name for this term’s coefficient.

Figure 3 illustrates how the data structure is used to represent both a constant and a non-constant
polynomial. The crossed-out values are irrelevant.

We have implemented Knuth’s algorithm in WSL, using a set of arrays U,D,L,R,C and E
to implement the fields UP, DOWN, LEFT, RIGHT, CV and EXP respectively in the records, with
pointers represented as indices in these arrays. The special value Λ represents a “null pointer”, as
in Knuth’s code. For a constant polynomial (where D[P ] = Λ) C[P ] contains the integer value and
the other array values are irrelevant. Otherwise, C[P ] contains the variable name, and D[P ] points
to the head of a circular-linked list of terms. The first term D[P ] has E[D[P ]] = 0 and C[D[P ]]
is the constant polynomial, R[D[P ]] points to the next term (which has an E value greater than
zero), and so on. The L fields point back to the previous term in the list, creating a doubly-linked
list, and the U fields point to the parent polynomial, also creating a doubly-linked list. The R field

23



in the last term points to the first term, while the L field in the first term points to the last term,
so the lists of terms are also circular-linked.

The abstraction function Abs(P ) maps the concrete polynomial P (an index into the arrays) to
the corresponding abstract polynomial and is defined as follows:

Abs(P ) =
DF

{

〈C[P ]〉 if D[P ] = Λ

〈C[P ]〉 ++ Abs Terms(D[P ]) otherwise

where Abs Terms returns the appropriate list of abstract polynomial terms:

Abs Terms(P ) =
DF

{

〈〈C[P ], E[P ]〉〉 if E[R[P ]] = 0

〈〈C[P ], E[P ]〉〉 ++ Abs Terms(R[P ]) otherwise

We define an invariant J(P ) which captures the constraints on the array values for all nodes
reachable from P by following D and L links: for example that the L and R links are the inverse of
each other and form a doubly-linked circular list of terms, and that U [D[P ]] = P for each reachable
node in which D[P ] is defined, and similarly U [L[. . . L[D[P ]] . . . ]] = P and U [R[. . . R[D[P ]] . . . ]] =
P and so on. The definition is somewhat lengthy and not very informative, so has been omitted.
Essentially, Figure 3 describes these constraints informally.

When P 6= Q, the conditions I(Abs(P )), I(Abs(Q)), J(P ) and J(Q) together imply that the
set of nodes reachable from P does not intersect with the set of nodes reachable from Q.

The WSL code for Knuth’s algorithm, using these data structures, is as follows:

proc Knuth Add(P,Q) ≡
actions ADD :
ADD ≡ [Test type of poynomial.]

if D[P ] = Λ
then while D[Q] 6= Λ do Q := D[Q] od; call A3

else if D[Q] = Λ ∨ String Less?(C[Q], C[P ])
then call A2

elsif C[Q] = C[P ]
then 〈P := D[P ], Q := D[Q]〉; call ADD

else Q := D[Q]; call ADD fi fi.

A2 ≡ [Downward insertion.]

R1
pop←− Avail;

S := D[Q];
if S 6= Λ

then do U [S] := R1; S := R[S];
if E[S] = 0 then exit(1) fi od fi;

〈U [R1] := Q,D[R1] := D[Q], L[R1] := R1, R[R1] := R1, C[R1] := C[Q], E[R1] := 0〉;
〈C[Q] := C[P ],D[Q] := R1〉;
call ADD.

A3 ≡ [Match found.]
C[Q] := C[Q] + C[P ];
if C[Q] = 0 ∧ E[Q] 6= 0

then call A8 fi;
if E[Q] = 0 then call A7 fi;
call A4.

A4 ≡ [Advance to left.]
P := L[P ];
if E[P ] = 0 then call A6

else do Q := L[Q];
if E[Q] 6 E[P ]

24



then exit(1) fi od;
if E[P ] = E[Q] then call ADD fi fi;

call A5.

A5 ≡ [Insert to right.]

R1
pop←− Avail;

〈U [R1] := U [Q],D[R1] := Λ, L[R1] := Q,R[R1] := R[Q]〉;
L[R[R1]] := R1; R[Q] := R1;
〈E[R1] := E[P ], C[R1] := 0〉; Q := R1;
call ADD.

A6 ≡ [Return upward.]
P := U [P ]; call A7.

A7 ≡ [Move Q up to right level.]
if U [P ] = Λ

then call A11

else while C[U [Q]] 6= C[U [P ]] do Q := U [Q] od;
call A4 fi.

A8 ≡ [Delete zero term.]
R1 := Q; Q := R[R1]; S := L[R1]; R[S] := Q; L[Q] := S;

Avail
push←− R1;

if E[L[P ]] = 0 ∧ Q = S
then call A9 else call A4 fi.

A9 ≡ [Delete constant polynomial.]
R1 := Q;
Q := U [Q];
〈D[Q] := D[R1], C[Q] := C[R1]〉;
Avail

push←− R1;
S := D[Q];
if S 6= Λ then do U [S] := Q; S := R[S];

if E[S] = 0 then exit(1) fi od fi;
call A10.

A10 ≡ [Zero detected?]
if D[Q] = Λ ∧ C[Q] = 0 ∧ E[Q] 6= 0

then P := U [P ]; call A8 else call A6 fi.

A11 ≡ [Terminate.]
while U [Q] 6= Λ do Q := U [Q] od; call Z. endactions.;

Here, Avail is the list of free nodes, R1
pop←− Avail takes a free node from the list and returns its

pointer in R1, and Avail
push←− R1 returns the node pointed at by R1 to the free list.

Later, in [Knu74] Knuth wrote: “I also know of places where I have myself used a complicated
structure with excessively unrestrained goto statements, especially the notorious Algorithm 2.3.3A
for multivariate polynomial addition [Knu68]. The original program had at least three bugs;
exercise 2.3.3–14, ‘Give a formal proof (or disproof) of the validity of Algorithm A,’ was therefore
unexpectedly easy. Now, in the second edition, I believe that the revised algorithm is correct, but I
still don’t know any good way to prove it; I’ve had to raise the difficulty rating of exercise 2.3.3–14,
and I hope someday to see the algorithm cleaned up without loss of its efficiency.”

In a previous paper [War94] we proved the correctness of the above algorithm by transforming
it into a suitable recursive procedure, applying our recursion removal theorem in reverse (in order
to introduce recursion) and then changing the data representation from concrete polynomials to
the corresponding abstract polynomials. So we were not surprised to find that the above program
is indeed correct!

We were hopeful that the abstract algorithm would not be too inefficient, compared to Knuth’s
algorithm: in fact we suspected that the abstract algorithm might even be more efficient in some

25



cases. Extensive testing with various sizes of random polynomials demonstrated that the abstract
algorithm was in reality more efficient than Knuth’s algorithm for every case tested!

With small polynomials (up to two variables and up to four terms at each level), the abstract
algorithm was only 14% faster than Knuth’s algorithm. As the polynomial size increased, the
abstract algorithm became increasingly more efficient: with up to seven variables and up to four
terms at each level the abstract algorithm was three times faster. For very large polynomials (up to
seven variables and up to 20 terms at each level) the abstract algorithm is about 750 times faster!
See Section 5.5 for detailed timing results.

The dramatic speed advantage of the abstract algorithm on large polynomials is due to the
fact that the abstract algorithm can “share” data structures, or parts of data structures. Knuth’s
algorithm, although it apparently saves space by updating Q in place, cannot allow the result Q
to share any nodes with polynomial P , due to the various “reverse pointers” (the “up” and “left”
pointers in the linked lists). So, for example, adding a large polynomial P to a constant polynomial
Q results in the creation of a complete copy of P : while the result for the abstract algorithm can
share sub-structures with the parameters. Knuth’s algorithm destroys the original polynomial in
Q, while for the abstract algorithm, the original data structure is available via the original pointer.
If it is not needed then any unshared nodes will be garbage-collected.

With regard to memory consumption: the abstract algorithm requires additional memory to
store the recursion stack. In the worst case, the stack length is proportional to the size of the
polynomial. However, each node in the abstract polynomial contains only two pointers, while the
nodes in Knuth’s polynomials contain four pointers. So the abstract algorithm will actually use less
memory in most, if not all, cases: especially in cases where sub-trees can be shared. For example,
in the abstract representation of the polynomial:

(x2 + 2x + 3)z2 + (x2 + 2x + 3)z + 4

the pointers to the coefficients for z2 and z could point to the same location: which contains a
single copy of the representation of x2 + 2x + 3.

To be fair to Knuth, he does not claim that his algorithm is the best: “No claim is being made
here that the representation shown in Fig. 28 is the “best” for polynomials in several variables; . . .
Our main interest in Algorithm A is the way it typifies manipulations on trees with many links.”
[Knu68]. On the other hand, if this algorithm really “typifies manipulations on trees with many
links”, perhaps the conclusion to be drawn from these empirical results is that trees with many
links (in particular: doubly-linked circular lists) should be avoided wherever possible! By using
standard list structures in a language with garbage collection, many link manipulations can be
avoided and components of larger data structures can be shared. This sharing of data structures
would be especially valuable in programs which manipulate a large number of polynomials.

5.4 Algorithm Derivation

In the rest of this section we will apply the transformational programming method to derive an
implementation of polynomial addition which uses Knuth’s data structures. Our specification is
therefore:

ADD(P,Q) =
DF
〈U,D,L,R,E,C〉 := 〈U ′,D′, L′, R′, E′, C ′〉.

Abs′(P ) = Abs(P ) ∧ abs(Abs′(Q)) = abs(Abs(P )) + abs(Abs(Q))
∧ I(Abs(P )) ∧ I(Abs(Q)) ∧ I(Abs′(Q))
∧ J(P ) ∧ J(Q) ∧ J ′(Q)

where Abs′ is the analogue of the Abs function defined on U ′, D′, . . . etc., and J ′ is the corresponding
analogue of J .

26



With this specification, we start the derivation process in the usual way by taking out the
special cases. If D[P ] = Λ then Abs(P ) is a constant polynomial:

ADD(P,Q) ≈ if D[P ] = Λ then ADD CONST(C[P ], Q) else ADD(P,Q) fi

where: ADD CONST adds a constant to a polynomial. The specification for ADD CONST can be
elaborated as:

ADD CONST(c,Q) ≈ if D[Q] = Λ
then C[Q] := C[Q] + c
else Q := D[Q]; ADD CONST(c,Q); Q := U [Q] fi

This can be converted to a recursive procedure: but will need a stack, or at least a recursion depth
counter, to remove the recursion, since the inner copy of ADD CONST is not in a tail position, due
to the need to restore the original value of Q. However, if we make c and Q parameters, then we
do not need to restore their values. Applying the recursion introduction theorem to ADD CONST

gives a tail-recursive procedure which can be converted to a loop:

proc add const(c,Q) ≡
while D[Q] 6= Λ do Q := D[Q] od;
C[Q] := C[Q] + c.

We can therefore refine ADD as follows:

ADD(P,Q) ≤ if D[P ] = Λ then add const(C[P ], Q)
else ADD(P,Q) fi

If D[P ] 6= Λ but D[Q] = Λ then we need to create a copy of the entire polynomial P , and then add
the original constant value of Q to the copy of P . The specification for this copy operation is:

COPY(P,Q) =
DF
〈U,D,L,R,E,C〉 := 〈U ′,D′, L′, R′, E′, C ′〉.

Abs′(P ) = Abs(P ) ∧ Abs′(Q)) = Abs(P ))
∧ I(Abs(P )) ∧ I(Abs(Q)) ∧ I(Abs′(Q))
∧ J(P ) ∧ J(Q) ∧ J ′(Q)

We will now elaborate on this specification.
If P is a constant polynomial, then we just copy the constant and exponent to Q. Otherwise, we

create a suitable doubly-linked list of nodes and copy each of the children of P into these nodes:

COPY(P,Q) ≤ C[Q] := C[P ]; E[Q] := E[P ];
if D[P ] = Λ

then D[Q] := Λ

else P := D[P ]; R1
pop←− Avail; D[Q] := R1; U [R1] := Q; Q := R1;

do COPY(P,Q);
if E[R[P ]] = 0 then S := D[U [Q]]; R[Q] := S; L[S] := Q; exit fi;
P := R[P ];

R1
pop←− Avail; U [R1] := U [Q]; L[R1] := Q; R[Q] := R1; Q := R1 od;

Q := U [Q]; P := U [P ] fi

At the copy of the specification in the elaborated version (on the right), the size of P has been
reduced. So we can apply Recursive Implementation (Transformation 5) to get a recursive proce-
dure. To remove the recursion using Recursion Removal (Transformation 8), first restructure the
body of the recursive procedure as a regular action system:

27



proc copy(P,Q) ≡
actions A :
A ≡ C[Q] := C[P ]; E[Q] := E[P ];

if D[P ] = Λ
then D[Q] := Λ; call Z

else P := D[P ]; R1
pop←− Avail; D[Q] := R1; U [R1] := Q; Q := R1; call B1 fi.

B1 ≡ copy(P,Q); call A1.

A1 ≡ if E[R[P ]] = 0
then var 〈S := D[U [Q]]〉 : R[Q] := S; L[S] := Q end; Q := U [Q]; P := U [P ]; call Z
else P := R[P ];

R1
pop←− Avail; U [R1] := U [Q]; L[R1] := Q; R[Q] := R1; Q := R1;

call B1 fi. endactions.

For the recursion removal, we can avoid using a stack by noting that:

• The values of P and Q are preserved over the body of COPY(P,Q); and

• On returning from a call to COPY, if P has its original value, then this is the initial call,
otherwise it is a recursive call.

Using these facts, and Recursion Removal (Transformation 8) we derive the following iterative
procedure:

proc copy(P,Q) ≡
var 〈P0 := P 〉 :

actions A :
A ≡ C[Q] := C[P ]; E[Q] := E[P ];

if D[P ] = Λ

then D[Q] := Λ; call Â

else P := D[P ]; R1
pop←− Avail; D[Q] := R1; U [R1] := Q; Q := R1; call B1 fi.

B1 ≡ call A.

Â ≡ if P = P0 then call Z
else call A1 fi.

A1 ≡ if E[R[P ]] = 0

then var 〈S := D[U [Q]]〉 : R[Q] := S; L[S] := Q end; Q := U [Q]; P := U [P ]; call Â
else P := R[P ];

R1
pop←− Avail; U [R1] := U [Q]; L[R1] := Q; R[Q] := R1; Q := R1;

call B1 fi. endactions end.

The iterative algorithm was restructured automatically, using the FermaT Maintenance Environ-
ment (see Section 6) to produce the following structured code:

proc copy(P,Q) ≡
var 〈P0 := P 〉 :

do do C[Q] := C[P ]; E[Q] := E[P ];
if D[P ] = Λ then exit(1) fi;

P := D[P ]; R1
pop←− Avail; D[Q] := R1; U [R1] := Q; Q := R1 od;

D[Q] := Λ;
do if P = P0 then exit(2) fi;

if E[R[P ]] 6= 0 then exit(1) fi;
var 〈S := D[U [Q]]〉 : R[Q] := S; L[S] := Q end;
Q := U [Q]; P := U [P ] od;

P := R[P ]; R1
pop←− Avail; U [R1] := U [Q]; L[R1] := Q; R[Q] := R1; Q := R1 od end end

28



This code worked first time when it was tested.
We therefore have the following refinement of ADD:

ADD(P,Q) ≤ if D[P ] = Λ then add const(C[P ], Q)
elsif D[Q] = Λ then var 〈c := C[Q]〉 : COPY(P,Q); add const(c,Q) end

elsif C[Q] > C[P ] then ADD(P,Q)
elsif C[Q] < C[P ] then ADD(P,Q)

else ADD(P,Q) fi

For the case where C[Q] > C[P ] we simply need to add Q to the constant element of P :

{C[Q] > C[P ]}; ADD(P,Q) ≤ {C[Q] > C[P ]}; Q := D[Q]; ADD(P,Q); Q := U [Q]

For the case where C[Q] = C[P ], we simply need to add the two lists of terms together as follows:

P := D[P ]; Q := D[Q]; ADD TERMS(P,Q); P := U [P ]; Q := U [Q]

where ADD TERMS adds the corresponding terms in the two polynomials, given that P and Q
point to the first term in the list. Its implementation will be discussed below.

If C[Q] < C[P ] we need to convert Q to a constant polynomial with the same variable as P
by inserting a new parent node, after which we can add the terms of P to the terms of this new
polynomial:

R1
pop←− Avail; C[R1] := C[P ]; D[R1] := Q; U [R1] := U [Q];

E[R1] := E[Q]; E[Q] := 0; L[R1] := L[Q]; R[R1] := R[Q];
U [Q] := R1; L[Q] := Q; R[Q] := Q;
P := D[P ]; ADD TERMS(P,Q); P := U [P ]; Q := U [Q]

We can implement ADD TERMS as a simple loop which uses ADD to add each term. After adding
two terms, we need to check if the result has a zero coefficient with non-zero exponent. These
terms are not allowed by the assertion I on the abstract version of the polynomial. Similarly, after
adding all the terms, we need to check if the result is a constant polynomial (i.e. all the terms with
non-zero exponent ended up with a zero coefficient and therefore were deleted). In this case, we
need to replace the polynomial by the constant (its first term). The specification ADD TERMS can
assume that P and Q have the same exponent:

ADD TERMS(P,Q) ≈ ADD(P,Q);
C : Check for a zero term with non-zero exponent;
if E[Q] 6= 0 ∧ D[Q] = Λ ∧ C[Q] = 0

then var 〈R1 := Q,S := R[Q]〉 :
Q := L[Q]; L[S] := Q; R[Q] := S;

Avail
push←− R1 end fi;

ADD REST(P,Q)

The statement ADD REST(P,Q) will move Q to the appropriate term, and then continue adding
terms. If there is no appropriate term (a term with the same exponent as E[P ]) then we need
to insert a node in the list of terms and copy P over this node. We can then add the rest of the
terms:

ADD REST(P,Q) ≈ P := R[P ];
if E[P ] 6= 0

then Q := R[Q];
while E[Q] > 0 ∧ E[Q] < E[P ] do Q := R[Q] od;
if E[Q] = E[P ]

then ADD TERMS(P,Q)

29



else C : Insert a copy of P to the left of Q;
var 〈R1 := 0〉 :

R1
pop←− Avail;

L[R1] := L[Q]; R[R1] := Q; U [R1] := U [Q]; E[R1] := E[P ];
R[L[Q]] := R1; L[Q] := R1; Q := R1 end;

copy(P,Q);
ADD REST(P,Q) fi

This specification for ADD REST is tail-recursive, so it can be converted to a loop. Unfolding this
loop into the specification for ADD TERMS results in another tail-recursive specification, which
again can be converted to a loop:

proc add terms(P,Q) ≡
do ADD(P,Q);

C : Check for a zero term with non-zero exponent;
if E[Q] 6= 0 ∧ D[Q] = Λ ∧ C[Q] = 0

then var 〈R1 := Q,S := R[Q]〉 :
Q := L[Q]; L[S] := Q; R[Q] := S;

Avail
push←− R1 end fi;

do P := R[P ];
if E[P ] = 0 then exit(2) fi;
Q := R[Q];
while E[Q] > 0 ∧ E[Q] < E[P ] do Q := R[Q] od;
if E[Q] = E[P ] then exit(1) fi;
C : Insert a copy of P to the left of Q;
var 〈R1 := 0〉 :

R1
pop←− Avail;

L[R1] := L[Q]; R[R1] := Q; U [R1] := U [Q]; E[R1] := E[P ];
R[L[Q]] := R1; L[Q] := R1; Q := R1 end;

copy(P,Q) od od.

Putting all these implementations together, and applying Recursive Implementation (Transfor-
mation 5), we derive the following recursive implementation of ADD:

proc add(P,Q) ≡
if D[P ] = Λ

then add const(C[P ], Q)
elsif D[Q] = Λ

then var 〈c := C[Q]〉 : copy(P,Q); add const(c,Q) end

elsif C[Q] > C[P ]
then Q := D[Q]; add(P,Q)
else insert below Q;

P := D[P ]; Q := D[Q];
do add(P,Q);

check for zero term;
do P := R[P ];

if E[P ] = 0 then exit(2) fi;
Q := R[Q];
while E[Q] > 0 ∧ E[Q] < E[P ] do Q := R[Q] od;
if E[Q] = E[P ] then exit fi;
insert copy od od;

P := U [P ];
check for const poly fi.

30



proc add const(c,Q) ≡
while D[Q] 6= Λ do Q := D[Q] od;
C[Q] := C[Q] + c.

proc insert below Q ≡
if C[Q] < C[P ]

then C : Insert a node below Q and convert Q to a constant poly;
var 〈R1 := 0, S := D[Q]〉 :

R1
pop←− Avail; ;

do U [S] := R1; S := R[S];
if E[S] = 0 then exit(1) fi od;

U [R1] := Q; D[R1] := S; L[R1] := R1; R[R1] := R1;
C[R1] := C[Q]; E[R1] := 0; C[Q] := C[P ]; D[Q] := R1 end fi.

proc check for zero term ≡
C : Check for a zero term with non-zero exponent;
if E[Q] 6= 0 ∧ D[Q] = Λ ∧ C[Q] = 0

then var 〈R1 := Q,S := R[Q]〉 :
Q := L[Q]; L[S] := Q; R[Q] := S;

Avail
push←− R1 end fi.

proc insert copy ≡
C : Insert a copy of P to the left of Q;
var 〈R1 := 0〉 :

R1
pop←− Avail;

L[R1] := L[Q]; R[R1] := Q; U [R1] := U [Q]; E[R1] := E[P ];
R[L[Q]] := R1; L[Q] := R1; Q := R1 end;

copy(P,Q).
proc check for const poly ≡

C : Check for a constant poly;
if R[Q] = Q

then var 〈R1 := Q,S := 0〉 :
Q := U [Q]; D[Q] := D[R1]; C[Q] := C[R1];

Avail
push←− R1;

S := D[Q];
if S 6= Λ

then do U [S] := Q; S := R[S];
if E[S] = 0 then exit fi od fi end fi.

This recursive program was tested, and worked first time.
In order to apply the recursion removal theorem, the first step is to restructure the body of the

procedure as a regular action system. The first recursive call to add is in a tail position, so it can
be replaced by an action call. At the point of the call, we know that D[P ] = Λ so we can unfold
and simplify the action. The resulting action system contains a single recursive call in action B1:

proc add(P,Q) ≡
actions A :
A ≡ if D[P ] = Λ

then add const; call Z
else call A1 fi.

A1 ≡ if D[Q] = Λ
then copy and add; call Z

elsif C[Q] > C[P ]
then Q := D[Q]; call A1

else insert below Q;

31



P := D[P ]; Q := D[Q];
call B1 fi.

B1 ≡ add(P,Q); check for zero term; call A3.

A3 ≡ P := R[P ];
if E[P ] = 0

then P := U [P ]; check for const poly; call Z
else Q := R[Q];

while E[Q] > 0 ∧ E[Q] < E[P ] do Q := R[Q] od;
if E[Q] = E[P ] then call B1 fi;
insert copy;
call A3 fi. endactions.

In order to derive an equivalent efficient iterative program, we first wish to eliminate the parameters.
The operations on parameter P restore its original value at the end of the procedure body: so the
parameter can be converted to a global variable. For Q, the various operations will leave Q pointing
at some element of the tree under the required final value: so Q can be restored by moving up
a certain number of nodes in the tree. For the external call to add we can restore Q by moving
up until U [Q] = Λ. For the recursive call, we can restore Q after the call by moving up until
C[U [Q]] = C[U [P ]]. So, both parameters can be replaced by global variables.

The recursive call to add is not in a tail position, so recursion removal would normally require a
stack. However, we know that for any external call U [P ] = Λ while for any internal call U [P ] 6= Λ,
so we can use these conditions to eliminate the stack (since the stack is empty if and only if
U [P ] = Λ). The recursion removal theorem thus produces the following iterative algorithm:

proc add ≡
actions A :
A ≡ if D[P ] = Λ

then add const; call Â
else call A1 fi.

A1 ≡ if D[Q] = Λ

then copy and add; call Â
elsif C[Q] > C[P ]

then Q := D[Q]; call A1

else insert below Q;
P := D[P ]; Q := D[Q];
call B1 fi.

B1 ≡ call A.

A3 ≡ P := R[P ];
if E[P ] = 0

then P := U [P ]; check for const poly; call Â
else Q := R[Q];

while E[Q] > 0 ∧ E[Q] < E[P ] do Q := R[Q] od;
if E[Q] = E[P ] then call B1 fi;
insert copy;
call A3 fi.

Â ≡ if U [P ] = Λ
then call Z
else while C[U [Q]] 6= C[U [P ]] do Q := U [Q] od;

check for zero term; call A3 fi. endactions.

The iterative algorithm was restructured automatically, using the FermaT Maintenance Environ-
ment (see Section 6) to produce the following structured code:

32



proc add( var ) ≡
do do if D[P ] = Λ then add const; exit(1) fi;

do if D[Q] = Λ
then copy and add; exit(2)

elsif C[P ] < C[Q]
then Q := D[Q]
else exit(1) fi od;

insert below Q;
P := D[P ];
Q := D[Q] od;

do if U [P ] = Λ then exit(2) fi;
while C[U [Q]] 6= C[U [P ]] do Q := U [Q] od;
check for zero term;
do P := R[P ];

if E[P ] = 0 then exit(1) fi;
Q := R[Q];
while E[Q] > 0 ∧ E[Q] < E[P ] do Q := R[Q] od;
if E[Q] = E[P ] then exit(2) fi;
insert copy od;

P := U [P ];
check for const poly od od end

The iterative program was tested and after fixing a few typos, it worked first time. The program
was tested against the abstract algorithm by generating a huge number of random polynomials and
checking that the abstract version of the output of the algorithm was the same as the abstract sum
of the abstract versions of the input polynomials.

It would be a very challenging task to verify the correctness of the iterative algorithm using
loop invariants: the loops are nested four deep, with exits which terminate up to two enclosing
nested loops. It would be difficult to give meaningful loop invariants for these loops.

The method of “Invariant Based Programming” [Bac09] requires one to derive the invariants
and then use them to develop the code. I challenge any proponents of these methods to apply them
successfully to this programming task!

5.5 Execution Timings

Vars Terms Count Abstract Concrete Knuth K/A K/C

7 4 1,000,000 7.68s 10.77s 22.64s 2.95 2.10
7 4 10,000,000 78.02s 109.14s 229.57s 2.94 2.10
2 4 100,000,000 112.64s 34.46s 130.76s 1.16 3.79
2 20 10,000,000 24.48s 14.38s 31.66s 1.29 2.20
7 10 10,00,000 11.02s 158.68s 332.80s 30 2.10
7 20 400,000 4.47s 1,271.43s 3,129.33s 700 2.46

Table 1: Execution times for the algorithms

Table 1 shows the timings for the various algorithms applied to different sizes of polynomials.
“Vars” is the maximum number of variables in the polynomial (and hence the maximum depth of
nesting of the tree structure). “Terms” is the maximum number of terms in the polynomials at each
level. “K/A” is the Knuth algorithm time divided by the abstract algorithm time, while “K/C”
is the Knuth algorithm time divided by the concrete algorithm time: these are the two algorithms
which use Knuth’s four-way linked data structure.

33



“Count” is the total number of executions: the program generated Count/100 different random
polynomials for each run and executed the algorithms 100 times for each polynomial. This gave
more accurate timings since the overhead for generating a random polynomial is quite large. The
whole set of test runs were repeated several times to check the accuracy of the timings: using
the same random number seed for each run, to ensure that the same sequence of polynomials was
generated.

As we can see from this table, the abstract algorithm is always faster than Knuth’s algorithm
(though not always faster than our algorithm using Knuth’s data structures). For large polynomials,
the abstract algorithm is considerably faster: with the speed ration increasing as the polynomials
get larger. This is due to the fact that the abstract algorithm can “share” large sub-polynomials
by setting up pointers to the same data structure.

The experimental setup did not allow us to measure the memory usage with any accuracy. In
general, memory requirements for the two algorithms will differ depending on the size and type of
data being processed. As discussed above, the abstract algorithm requires additional memory to
store the recursion stack, but less memory for the nodes, so may be expected to use less memory
than the concrete algorithm. In cases where sub-trees can be shared, the abstract algorithm will
have considerably smaller memory requirements along with much smaller processing time.

Our algorithm is consistently at least 2.1 times faster than Knuth’s algorithm. For very small
polynomials (up to two variables and up to four terms per polynomial), our algorithm is nearly
four times faster. Memory requirements for our concrete algorithm are identical to Knuth’s.

We had assumed that Knuth’s algorithm was probably close to optimal, for the data structures
he used, since Knuth is a very experienced and knowledgeable programmer, and the code had been
subjected to a number of reviews by other programmers. We had hoped that the code produced by
our transformational programming method would be at least comparable to Knuth’s in efficiency
and that any minor inefficiencies would be compensated for by the greater transparency between
the specification and the code. The results (a speed improvement by a factor of at least 2.1)
were a pleasant surprise which demanded some explanation: especially given that various other
applications of transformational programming also produced highly efficient code. Naturally, the
efficiency of the code produced by this method is subject to the limitations inherent in the ideas
used to guide the transformation process: but even when these ideas produce inefficient code, there
are cases where optimising transformations can be applied to improve the result (see Section 4.1
for an example).

One possible explanation for these efficiency results is that in the specification elaboration
and divide and conquer stages, executable code is only inserted when it is necessary to achieve
a particular object. All code, therefore, makes a useful contribution to the final result. In
contrast, the invariant based programming method (in common with any “write and verify”
programming method) does not prevent the programmer from computing superfluous results, or
inserting superfluous tests. As long as the required invariants can be proved from the introduced
code, the verification proof will go through and the resulting program will be accepted: there is
nothing to guide the programmer to the most efficient solution. For example, if it is possible to
write a single while loop which maintains the invariants and reduces the variant function, then this
is likely to be selected for verification even when a more efficient solution using multiply-nested
loops with exits from the middle of the loops is possible.

With the transformational programming method, the biggest impact on the efficiency of the
derived algorithm is, of course, the quality of the informal implementation ideas which are brought
into the process. However, given a good initial idea, an efficient implementation will be produced
without unnecessary extra computation. This is because at each stage in the derivation process
we are working with a complete and correct program which only computes the required output.
Multiply-nested loops with exits from the middle “fall out” of the derivation process in a natural
way when such loops are the most efficient implementation method.

34



5.6 Polynomial Multiplication

Exercise 2.3.3–15 of [Knu68] asks: “Design an algorithm to compute the product of two polynomials
represented as in Fig. 28.”.

The specification uses the same abstraction functions and invariants as the specification for
polynomial addition:

MULT(P,Q,R1) =
DF
〈U,D,L,R,E,C〉 := 〈U ′,D′, L′, R′, E′, C ′〉.

Abs′(P ) = Abs(P ) ∧ Abs′(Q) = Abs(Q)
∧ abs(Abs′(R1)) = abs(Abs(P )) ∗ abs(Abs(Q))
∧ I(Abs(P )) ∧ I(Abs(Q)) ∧ I(Abs′(R1))
∧ J(P ) ∧ J(Q) ∧ J ′(R1)

The only differences are that the addition operation (+) has been replaced by the multiplication
operation (∗), and instead of updating Q with the result, we return the result in R1. A node pointer
is provided in parameter R1 and this node is used as the root of the result. (Since each term of
P has to be multiplied by each term of Q it would needlessly complicate matters to attempt to
update Q in place.)

The informal ideas which drive the derivation process are as follows:

1. Multiplying a constant by a polynomial is a special case which is treated separately (as we
did with polynomial addition);

2. To multiply two polynomials which are in the same variable: Initialise the result to zero, then
for each term of p:

(a) Multiply this term by each term of q to create a list of terms;

(b) Convert this list of terms to a polynomial;

(c) Add this polynomial to the total;

3. If the variable for p is larger than the variable for q then multiply each term of p by q

4. Otherwise, multiply each term of q by p

The derivation follows broadly the same stages as for polynomial addition:

1. Take out multiplication by a constant as a special case: this is implemented as Mult Const

below;

2. Otherwise, split into cases depending on the variables for the two polynomials;

3. Use Recursive Implementation (Transformation 5) to derive an abstract polynomial multipli-
cation algorithm;

4. Convert this recursive algorithm to a recursive algorithm which operates on concrete polyno-
mials;

5. Convert parameters and local variables to global variables;

6. Remove the recursion: this step uses the fact that we can determine the return point by
examining the nodes at P , Q and R1 to avoid the need for a control stack.

The details are omitted for brevity, but should be straightforward to anyone familiar with the
method. The resulting implementation worked first time when tested:

35



proc Mult(P,Q,R1) ≡
var 〈L1 := 0, L2 := 0, S := 0, c := 0〉 :

do do if D[P ] = Λ
then if C[P ] = 0

then C[R1] := 0; D[R1] := Λ
else Mult Const(C[P ], Q,R1) fi;

exit(1)
elsif D[Q] = Λ

then if C[Q] = 0
then C[R1] := 0; D[R1] := Λ
else Mult Const(C[Q], P,R1) fi;

exit(1)
elsif C[P ] = C[Q]

then C[R1] := 0; D[R1] := Λ;
Pop Avail( var L1); U [L1] := S; S := L1;
L[S] := R1; P := D[P ]; Pop Avail( var R1);
L[R1] := R1; R[R1] := R1; Q := D[Q]

elsif String Less?(C[P ], C[Q])
then C[R1] := C[Q]; Q := D[Q]; Pop Avail( var L1);

D[R1] := L1; U [L1] := R1; L[L1] := L1; R[L1] := L1; R1 := L1

else C[R1] := C[P ]; P := D[P ]; Pop Avail( var L1);
D[R1] := L1; U [L1] := R1; L[L1] := L1; R[L1] := L1; R1 := L1 fi od;

do if U [P ] = Λ
then if U [Q] = Λ

then c := 0
elsif C[U [Q]] = C[U [R1]]

then c := 2
else c := 3 fi

elsif U [Q] = Λ
then if C[U [P ]] = C[U [R1]] then c := 3 else c := 2 fi

elsif C[U [P ]] = C[U [Q]]
then c := 1

elsif C[U [Q]] = C[U [R1]]
then c := 2
else c := 3 fi;

if c = 0 then exit(2)
elsif c = 1

then E[R1] := E[P ] + E[Q]; Q := R[Q];
if E[Q] = 0

then Q := U [Q]; R1 := R[R1];
if E[R1] 6= 0

then Pop Avail( var L2);
R[L2] := R1; R[L[R1]] := L2; L[L2] := L[R1]; L[R1] := L2;
D[L2] := Λ; E[L2] := 0; C[L2] := 0; R1 := L2 fi;

Pop Avail( var L2);
U [R1] := L2; D[L2] := R1; U [L2] := Λ;
L[L2] := L2; R[L2] := L2; C[L2] := C[Q]; E[L2] := 0; R1 := R[R1];
while E[R1] 6= 0 do

U [R1] := L2; R1 := R[R1] od;
add(L2, L[S]);
Free Poly(L2); P := R[P ];
if E[P ] = 0

36



then R1 := L[S]; Avail
push←− S; S := U [S]; P := U [P ]

else Pop Avail( var R1);
L[R1] := R1; R[R1] := R1; Q := D[Q]; exit(1) fi

else Pop Avail( var L2);
L[L2] := R1; L[R[R1]] := L2; R[L2] := R[R1]; R[R1] := L2;
D[L2] := Λ; R1 := L2; exit(1) fi

elsif c = 2
then E[R1] := E[Q]; Q := R[Q];

if E[Q] = 0
then R1 := U [R1]; Q := U [Q]
else Pop Avail( var L2); U [L2] := U [R1]; L[L2] := R1; L[R[R1]] := L2;

R[L2] := R[R1]; R[R1] := L2; D[L2] := Λ; R1 := L2; exit(1) fi

else E[R1] := E[P ]; P := R[P ];
if E[P ] = 0

then R1 := U [R1]; P := U [P ]
else Pop Avail( var L2);

U [L2] := U [R1]; L[L2] := R1; L[R[R1]] := L2; R[L2] := R[R1];
R[R1] := L2; D[L2] := Λ; R1 := L2; exit(1) fi fi od od.;

proc Free Poly(P ) ≡
U [P ] := Λ;

do do Avail
push←− P ;

if D[P ] = Λ then exit(1) fi;
P := D[P ] od;

do P := R[P ];
if E[P ] = 0 then P := U [P ]; if U [P ] = Λ then exit(2) fi

else exit(1) fi od od.;

proc Mult Const(c, P,R1) ≡
var 〈P0 := P,R2 := 0, S := 0〉 :

do do E[R1] := E[P ];
if D[P ] = Λ

then D[R1] := Λ; C[R1] := c ∗ C[P ]; exit(1)
else C[R1] := C[P ]; Pop Avail( var R2); D[R1] := R2;

U [R2] := R1; R1 := R2; P := D[P ] fi od;
do if P = P0 then exit(2) fi;

if E[R[P ]] 6= 0 then exit(1) fi;
S := D[U [R1]]; R[R1] := S; L[S] := R1; P := U [P ]; R1 := U [R1] od;

P := R[P ]; Pop Avail( var R2); U [R2] := U [R1]; L[R2] := R1;
R[R1] := R2; R1 := R2 od end.

6 Conclusion

In this paper we have outlined the transformational programming method for program development
and compared it with some popular formal methods for program development which have been
proposed. In this section we will reiterate the main advantages of transformational programming.

With transformational programming we are working with a correct program at every stage in
the development process. This is in contrast to the invariant-based program development methods,
which all require a verification stage in which the correctness of the proposed implementation is
checked against the proposed invariants and, ultimately, against the original specification. If there
happens to be an error in the proposed code, then the only indication of this error is an inability

37



to carry through one or more proof obligations. This may not be a problem for a small, “toy”
program, but for a large program with perhaps thousands of lines of code in the body of the loop,
it may prove extremely difficult to track down the source of the error.

Transformational programming also allows the developer to treat correctness and efficiency sep-
arately: correctness is guaranteed by the derivation process, so the selection of transformations can
be dominated by efficiency considerations. This is especially useful when a single data structure in
the final program is used for two separate purposes. For example, all the “verification” style proofs
of the Schorr-Waite graph marking algorithm need to prove that the graph is correctly marked,
and that the pointers are restored to their original values, in a single proof. The transformational
derivation of this algorithm [War96] first produces a recursive algorithm, then applies the “pointer
switching” strategy to eliminate the need for a stack, then removes the recursion.

A problem with any “write and verify” programming method is that the method does not pre-
vent the programmer from computing superfluous results. As long as the required result is available
somewhere among all the computed data, the verification proof will go through and the resulting
program will be accepted. Our experience is that, given a good initial idea, transformational
programming will usually produce an efficient implementation of that idea, without unnecessary
extra computation. This may be because at each stage in the derivation process we are working
with a complete and correct program which only computes the required output.

This point is illustrated by the derivation of the polynomial addition algorithm: our derived
algorithm is twice as fast as the one presented by Knuth, even though it is a structured program
which operates on the same data structures and produces the same result. Knuth’s wish (“I hope
someday to see the algorithm cleaned up without loss of its efficiency” [Knu74]) has therefore been
granted. The hypothesis that the authors are simply better programmers than Donald Knuth
and his colleagues cannot be seriously entertained, therefore the efficiency improvement must be
attributed to the methodology.

The most important advantage of transformational programming is that it is capable of scaling
up to large programs: any method which requires loop invariants will encounter difficulties when
the body of the loop extends to hundreds, or perhaps thousands, of lines of code.

The source code for all the polynomial addition algorithms is available as part of the FermaT
Transformation System, and the FermaT Maintenance Environment and can be downloaded from
the following web sites:

http://www.gkc.org.uk/fermat.html
http://www.cse.dmu.ac.uk/∼mward/fermat.html

6.1 Software Evolution

In [Tho03] Martyn Thomas writes:

Software change is the most important step in the software lifecycle: most software costs
far more after delivery than before (and most current “software maintenance” destroys
more value than it preserves in your software assets).

When requirements change, it is important to be able to make controlled changes to
the specification. (In these circumstances, modifying software by going directly to the
detailed design or code is vandalism). The specification therefore needs to be expressed
in such a way that the nature, scope and impact of any change can be assessed and
accommodated.

None of the “code and verify” development methods are particularly adept at handling changes
to the specification. If the original specification is changed, then it is possible that many invariants
will change. It is certain that all the proofs will have to be re-done (or at least checked): and given
that many proofs require human intervention, this could be a lot of work.

38



With the transformational programming approach, it is likely that many of the informal ideas
are still valid for the new specification, and therefore that much of the basic transformation sequence
generated by these ideas can still be applied to the new specification (generating modified code at
each stage).

One example, which actually involves a small but significant change to the specification, is
the development of the polynomial multiplication algorithm. The change in the specification
simply involves replacing “+” with “∗”, and adding a new variable for the result — but this
is quite a significant change! However, many of the implementation ideas and transformation
sub-sequences used in the derivation of the addition program could also be used in the derivation
of the multiplication program: so that, even though the final multiplication algorithm is much more
complex than the addition algorithm, it took significantly less time to develop.

It would appear that with a properly-written specification (see Section 1.2), a small change to the
requirements is likely to result in a small change to the specification. Any informal implementation
ideas may still be valid: in which case, the derivation process can repeat many of the steps from
the original derivation. This is because the implementation ideas are used to select the sequence of
transformations to be applied: if the ideas are still valid then it is likely that the sequence is still
valid and can be applied to the modified specification with only minimal changes. This process can
be streamlined even further with the aid of suitable tool support, such as the FermaT Maintenance
Environment.

In order to accommodate future changes to the specification or implementation environment
(and to support software evolution in general) it is recommended that the original formal specifi-
cation and development history be recorded and maintained: not just the final code. With proper
tools, there is no need to keep a copy of the final code: since it can be reconstructed automatically
from the specification and development history.

This idea is a natural extension of the current practice with high level language compilers: no-
body would dream of compiling a program and then throwing away the source code and maintaining
the generated object code!

References

[06] ISO JTC 1/SC 7, “Software Engineering – Software Life Cycle Processes – Maintenance,”
ISO/IEC 14764:2006, 2006.

[ABH06] Jean-raymond Abrial, Michael Butler, Stefan Hallerstede & Laurent Voisin, “An open
extensible tool environment for Event-B,” ICFEM , New York–Heidelberg–Berlin (2006).

[Bac09] Ralph-Johan Back, “Invariant Based Programming: Basic Approach and Teaching
Experiences,” Formal Aspects of Computing 21#3 (May, 2009), 227–244.

[Bau79] F. L. Bauer, “Program Development By Stepwise Transformations—the Project CIP,” in
Program Construction, G. Goos & H. Hartmanis, eds., Lect. Notes in Comp. Sci. #69,
Springer-Verlag, New York–Heidelberg–Berlin, 1979, 237–266.

[BB85] F. L. Bauer, R. Berghammer, et. al. & The CIP Language Group, The Munich Project CIP,
Volume I: The Wide Spectrum Language CIP-L, Lect. Notes in Comp. Sci. #183,
Springer-Verlag, New York–Heidelberg–Berlin, 1985.

[BMP89] F. L. Bauer, B. Moller, H. Partsch & P. Pepper, “Formal Construction by
Transformation—Computer Aided Intuition Guided Programming,” IEEE Trans. Software
Eng. 15#2 (Feb., 1989).

[BaT87] F. L. Bauer & The CIP System Group, The Munich Project CIP, Volume II: The Program
Transformation System CIP-S, Lect. Notes in Comp. Sci. #292, Springer-Verlag, New
York–Heidelberg–Berlin, 1987.

[BiM99] Juan C. Bicarregui & Brian M. Matthews, “Proof and Refutation in Formal Software
Development ,” In 3rd Irish Workshop on Formal Software Development (July, 1999).

[BiM96] Richard Bird & Oege de Moor, The Algebra of Programming , Prentice-Hall, Englewood Cliffs,
NJ, 1996.

39



[Bro84] M. Broy, “Algebraic Methods for Program Construction: the Project CIP,” in Program
Transformation and Programming Environments Report on a Workshop directed by F. L.
Bauer and H. Remus, P. Pepper, ed., Springer-Verlag, New York–Heidelberg–Berlin, 1984,
199–222.

[BGL11] Alan Bundy, Gudmund Grov & Yuhui Lin, “Productive use of failure in top-down formal
methods,” Automated Reasoning Workshop (2011).

[BuD77] R. M. Burstall & J. A. Darlington, “A Transformation System for Developing Recursive
Programs,” J. Assoc. Comput. Mach. 24#1 (Jan., 1977), 44–67.

[But06] Michael Butler, “On the Verified-by-Construction Approach,” BCS FACS, Electronics &
Computer Science EPrints Service, 2006, oai:eprints.soton.ac.uk:265110.

[Dar78] J. Darlington, “A Synthesis of Several Sort Programs,” Acta Informatica 11#1 (1978), 1–30.

[Dij] E. W. Dijkstra, “A Constructive Approach to the Problem of Program Correctness.,”
Technische Hogeschool Eindhoven, EWD209, 〈 http://www.cs.utexas.edu/users/EWD/
ewd02xx/EWD209.PDF〉.

[Dij76] E. W. Dijkstra, A Discipline of Programming , Prentice-Hall, Englewood Cliffs, NJ, 1976.

[Dij70] E. W. Dijkstra, “Notes On Structured Programming,” Technische Hogeschool Eindhoven,
EWD249, Apr., 1970, 〈http://www.cs.utexas.edu/users/EWD/ewd02xx/EWD249.PDF〉.

[Dij72] E. W. Dijkstra, “The Humble Programmer,” Comm. ACM 15#10 (Oct., 1972), 859–866.

[Gri81] David Gries, The Science of Programming , Springer-Verlag, New York–Heidelberg–Berlin,
1981.

[HHJ87] C. A. R. Hoare, I. J. Hayes, H. E. Jifeng, C. C. Morgan, A. W. Roscoe, J. W. Sanders, I. H.
Sørensen, J. M. Spivey & B. A. Sufrin, “Laws of Programming,” Comm. ACM 30#8 (Aug.,
1987), 672–686.

[JJL91] C. B. Jones, K. D. Jones, P. A. Lindsay & R. Moore, mural: A Formal Development Support
System, Springer-Verlag, New York–Heidelberg–Berlin, 1991.

[Knu74] D. E. Knuth, “Structured Programming with the GOTO Statement,” Comput. Surveys 6#4
(1974), 261–301.

[Knu68] D. K. Knuth, Fundamental Algorithms, The Art of Computer Programming#1, Addison
Wesley, Reading, MA, 1968.

[LPR98] Charles E. Leiserson, Harald Prokop & Keith H. Randall, “Using de Bruijn Sequences to
Index a 1 in a Computer Word,” CiteSeer, 1998, 〈http://citeseerx.ist.psu.edu/viewdoc/
summary?doi=10.1.1.37.8562〉.

[Mor94] C. C. Morgan, Programming from Specifications, Prentice-Hall, Englewood Cliffs, NJ, 1994,
Second Edition.

[MRG88] C. C. Morgan, K. Robinson & Paul Gardiner, “On the Refinement Calculus,” Oxford
University, Technical Monograph PRG-70, Oct., 1988.

[MoV93] C. C. Morgan & T. Vickers, On the Refinement Calculus, Springer-Verlag, New
York–Heidelberg–Berlin, 1993.

[NHW89] M. Neilson, K. Havelund, K. R. Wagner & E. Saaman, “The RAISE Language, Method and
Tools,” Formal Aspects of Computing 1 (1989), 85–114 .

[PrW94] H. A. Priestley & M. Ward, “A Multipurpose Backtracking Algorithm,” J. Symb. Comput. 18
(1994), 1–40, 〈http://www.cse.dmu.ac.uk/∼mward/martin/papers/backtr-t.ps.gz〉
doi:10.1006/jsco.1994.1035.

[Sen90] C. T. Sennett, “Using Refinement to Convince: Lessons Learned from a Case Study,”
Refinement Workshop, 8th–11th January, Hursley Park, Winchester (Jan., 1990).

[Tam95] T. Tammet, “Lambda lifting as an optimization for compiling Scheme to C,” Chalmers
University of Technology, Department of Computer Sciences, Goteborg, Sweden, 1995, 〈ftp://
ftp.cs.chalmers.se/pub/users/tammet/hobbit.ps〉.

[Tho03] Martyn Thomas, “The Modest Software Engineer,” The Sixth International Symposium on
Autonomous Decentralized Systems, ISADS (2003).

[War89] M. Ward, “Proving Program Refinements and Transformations,” Oxford University, DPhil
Thesis, 1989, 〈http://www.cse.dmu.ac.uk/∼mward/martin/thesis〉.

40



[War90] M. Ward, “Derivation of a Sorting Algorithm,” Durham University, Technical Report, 1990,
〈http://www.cse.dmu.ac.uk/∼mward/martin/papers/sorting-t.ps.gz〉.

[War94] M. Ward, “Reverse Engineering through Formal Transformation Knuths “Polynomial
Addition” Algorithm,” Comput. J. 37#9 (1994), 795–813, 〈http://www.cse.dmu.ac.uk/
∼mward/martin/papers/poly-t.ps.gz〉 doi:10.1093/comjnl/37.9.795.

[War96] M. Ward, “Program Analysis by Formal Transformation,” Comput. J. 39#7 (1996), 〈http://
www.cse.dmu.ac.uk/∼mward/martin/papers/topsort-t.ps.gz〉 doi:10.1093/comjnl/39.7.598.

[War99a] M. Ward, “Recursion Removal/Introduction by Formal Transformation: An Aid to Program
Development and Program Comprehension,” Comput. J. 42#8 (1999), 650–673, 〈http://www.
cse.dmu.ac.uk/∼mward/martin/papers/recursion-t.ps.gz〉 doi:10.1093/comjnl/42.8.650.

[War99b] M. Ward, “Assembler to C Migration using the FermaT Transformation System,” International
Conference on Software Maintenance, 30th Aug–3rd Sept 1999, Oxford, England (1999).

[War93] M. Ward, “Abstracting a Specification from Code,” J. Software Maintenance: Research and
Practice 5#2 (June, 1993), 101–122, 〈http://www.cse.dmu.ac.uk/∼mward/martin/papers/
prog-spec.ps.gz〉.

[War96] M. Ward, “Derivation of Data Intensive Algorithms by Formal Transformation,” IEEE Trans.
Software Eng. 22#9 (Sept., 1996), 665–686, 〈http://www.cse.dmu.ac.uk/∼mward/martin/
papers/sw-alg.ps.gz〉 doi:doi.ieeecomputersociety.org/10.1109/32.541437.

[War01] Martin Ward, “The FermaT Assembler Re-engineering Workbench,” International Conference
on Software Maintenance (ICSM), 6th–9th November 2001, Florence, Italy (2001).

[War04] Martin Ward, “Pigs from Sausages? Reengineering from Assembler to C via FermaT
Transformations,” Science of Computer Programming, Special Issue on Program
Transformation52#1–3 (2004), 213–255, 〈http://www.cse.dmu.ac.uk/∼mward/martin/
papers/migration-t.ps.gz〉 doi:dx.doi.org/10.1016/j.scico.2004.03.007.

[WaZ05] Martin Ward & Hussein Zedan, “MetaWSL and Meta-Transformations in the FermaT
Transformation System,” 29th Annual International Computer Software and Applications
Conference, Edinburgh, UK, November 2005 (2005).

[WaZ07] Martin Ward & Hussein Zedan, “Slicing as a Program Transformation,” Trans. Programming
Lang. and Syst. 29#2 (Apr., 2007), 1–52, 〈http://www.cse.dmu.ac.uk/∼mward/martin/
papers/slicing-t.ps.gz〉 doi:doi.acm.org/10.1145/1216374.1216375.

[WaZ10] Martin Ward & Hussein Zedan, “Deriving a Slicing Algorithm via FermaT Transformations,”
IEEE Trans. Software Eng., IEEE computer Society Digital Library (Jan., 2010), 〈http://
www.cse.dmu.ac.uk/∼mward/martin/papers/derivation2-a4-t.pdf〉
doi:doi.ieeecomputersociety.org/10.1109/TSE.2010.13.

[WZH04] Martin Ward, Hussein Zedan & Tim Hardcastle, “Legacy Assembler Reengineering and
Migration,” 20th IEEE International Conference on Software Maintenance, 11th-17th Sept
Chicago Illinois, USA. (2004).

[WZL08] Martin Ward, Hussein Zedan, Matthias Ladkau & Stefan Natelberg, “Conditioned Semantic
Slicing for Abstraction; Industrial Experiment,” Software Practice and Experience 38#12
(Oct., 2008), 1273–1304, 〈http://www.cse.dmu.ac.uk/∼mward/martin/papers/
slicing-paper-final.pdf〉 doi:doi.wiley.com/10.1002/spe.869.

[Wir71] N. Wirth, “Program Development by Stepwise Refinement,” Comm. ACM 14#4 (1971),
221–227.

[YaW03] H. Yang & M. Ward, Successful Evolution of Software Systems, Artech House, Boston,
London, 2003, ISBN-10 1-58053-349-3 ISBN-13 978-1580533492.

[ZMH02a] Xingyuan Zhang, Malcolm Munro, Mark Harman & Lin Hu, “Mechanized Operational
Semantics of WSL,” IEEE International Workshop on Source Code Analysis and Manipulation
(SCAM), Los Alamitos, California, USA (2002).

[ZMH02b] Xingyuan Zhang, Malcolm Munro, Mark Harman & Lin Hu, Weakest Precondition for General
Recursive Programs Formalized in Coq, Lect. Notes in Comp. Sci., Springer-Verlag, New
York–Heidelberg–Berlin, 2002, Proceedings of the 15th International Conference on Theorem
Proving in Higher Order Logics (TPHOLs).

41


