
) CHAPTER TWO

) Basic Transformation

roduction

This chapter uses the proof rules developed in the previous chapter to derive a set of basic
transformations of the extended language. These include transformations for adding and removing
assertions, which can be used to verify properties of programs, together with simple manipulations
and simplifications. These basic transformations will be used extensively in later chapters in the
course of deriving the more complex (and less intuitively obvious) transformations. The ultimate aim
is to develop a “toolkit” of transformation rules and techniques which will enable the derivation of
algorithms from specifications and the analysis of programs in order to derive their specification, or
to verify thatCa program meets its specification. This means that, for practical purposes, there will be
no need to work directly with the weakest precondition formulae.

ASSERTIONS

Assertions give information about the context in which they occur and thus make it easier
to give a correct refinement for a component of a program. In this section we will introduce some
rules to enable us to introduce assertions into programs and thus “migrate” information about the
program to its various components. They will also enable us to establish “global invariants” -
assertions which are preserved throughout the execution of the program.

The transformations for introducing and removing assertions can be used to prove all of
the results from Hoare’s axiomatic basis for programming. The equivalent of proving {P};S;{Q}
(which means “if P holds before the execution of S and S terminates then Q will hold on
termination”) would be to prove {P};S 6 {P};S;{Q} in our system. We can do much more that this
with our system, we can prove that two programs are equivalent, prove that a program is guaranteed
to terminate as well as proving that a program implements its specification. The first set of examples
are taken from [Back 80]:

Lemma: Induction Rule for Loops:
Let ∆ be a countable set of sentences for L.
If ∆ ⊢{P};do B1 → S1 ⊓⊔ ... ⊓⊔ Bm → Sm odn 6 S for n< ω
then ∆ ⊢{P};do B1 → S1 ⊓⊔ ... ⊓⊔ Bm → Sm od 6 S
Proof: From the inference rule for recursion and the inference rule for infinite disjunction.

1

Example 1 Assertion Weakening:
If ∆ ⊢P⇒P′ then ∆ ⊢{P}6{P′} follows by computing the weakest preconditions.
∆ ⊢P⇒true so we have ∆ ⊢{P}6skip, since {true}=skip so we can always remove an assertion.

Example 2 Inserting Assertions:
If ∆ ⊢P⇒WP(S,Q) then ∆ ⊢{P};S6{P};S;{Q}.
∆ ⊢ x:=t ≈ x:=t; {x=t}
These follow directly from the weakest preconditions.

Example 3:
∆ ⊢ {P};if B1 → S1 ⊓⊔ ... ⊓⊔ Bn → Sn fi ≈ {P};if B1 → {P∧B1};S1 ⊓⊔ ... ⊓⊔ Bn → {P∧Bn};Sn

fi
and ∆ ⊢ if B1 → S1 ⊓⊔ ... ⊓⊔ Bn → Sn fi;{Q} ≈ if B1 → S1;{Q} ⊓⊔ ... ⊓⊔ Bn → Sn;{Q} fi
These can be used to carry an invariant through an if statement.
Cor: ∆ ⊢ {P}; if B then S1 else S2 fi ≈ {P}; if B then {B∧P}; S1 else {¬B∧P}; S2 fi

Example 4:
∆ ⊢ while B do S od ≈ while B do S od; {¬B}

Proof: Prove for the nth truncation by induction on n and use the induction rule for iteration.

Example 5:
If ∆ ⊢ {P∧Bi};Si ≈ {P∧Bi};Si;{P} then:

∆ ⊢ {P};do B1 → S1 ⊓⊔ ... ⊓⊔ Bn → Sn od ≈ {P};do B1 → {P∧B1};S1 ⊓⊔ ... ⊓⊔ Bn → {P∧Bn};Sn

od
Proof: Prove for each case do-odm by induction and use the induction rule for loops.

Example 6: If x∩var(P)= ∅ then
∆ ⊢{P};begin x:S end;{Q} ≈ {P};begin x:{P};S;{Q} end;{Q}

Example 7:
∆ ⊢ do B1 → S1 ⊓⊔ ... ⊓⊔ Bn → Sn od ≈ do B1 → S1 ⊓⊔ ... ⊓⊔ Bn → Sn od; {¬B1 ∧ ¬B2 ∧ ...∧ ¬Bn}

Proof: Follows from Example 5.

Example 8:
If {P∧Bi};Si ≈ {P∧Bi};Si;{P} then:
∆ ⊢ {P};do B1 → S1 ⊓⊔ ... ⊓⊔ Bn → Sn od ≈ {P};do B1 → S1 ⊓⊔ ... ⊓⊔ Bn → Sn od;{P}

Proof: By example 5 and Example 3.

2

Example 9:
From the Deduction Theorem we can prove:

∆ ∪ {P} ⊢ S1 6S2 iff ∆ ⊢ {P};S1 6S2

since ∆ ∪ {P} ⊢ WP(S1,G(w)) ⇒ WP(S2,G(w))
iff ∆ ⊢ P ⇒

(

WP(S1,G(w)) ⇒ WP(S2,G(w))
)

(by the Deduction Theorem)

iff ∆ ⊢
(

P ∧ WP(S1,G(w))
)

⇒ WP(S2,G(w))
iff ∆ ⊢ WP({P};S1,G(w)) ⇒ WP(S2,G(w))
iff ∆ ⊢ {P};S1 6S2.
Hence as a corollary:
∆ ∪ {P} ⊢ S1 ≈ S2 iff ∆ ⊢ {P};S1 ≈ {P};S2.

Abstract Data Types

Often in the development of a program it is important to be able to change the data
representation used, an obvious example is where an abstract data type has been used which needs to
be represented by data types which have already been implemented. For example we may use a
“stack” variable in the higher-level representations of a program which we wish to implement using
an array or a linked list. There are also many cases where the right choice of date representation can
make a program much more efficient, we will give some examples later. The general technique
involves the following stages:

(i) Add “ghost variables” to the program (these will become the concrete variables which will
replace the abstract variables). These variables are assigned to at each point where the abstract
variables are assigned, but as yet their values are not tested. The assignments to the ghost variables are
made in such a way that the relationship between the abstract and concrete variables is maintained.

(ii) Add assertions before each assignment to the abstract variables which describe the
relationship between the abstract and concrete variables.

(iii) Replace all references to the abstract variables by references to the concrete variables. Note
that this includes the references to the abstract variables which occur in the assignments to concrete
variables.

(iv) Now the abstract variables are assigned to but never tested; they have become ghost variables.
So remove the abstract variables to give a program expressed entirely in terms of the concrete
variables.

We take a different approach than that of Back in [Back 80]. His approach requires that
each individual abstract assignment is replaced by a set of statements involving only the concrete
variables. We believe that our approach allows more flexibility in the way data types are represented
(see chapters 8 and 9 for examples of our technique in action).

3

SIMPLIFICATIONS

The following basic transformations are used extensively in the proofs of the more
complex transformation. They are also used in restructuring a program, and in putting a program in
the right form for applying more complex transformations.

Prune Conditional:
∆ ⊢ {B};if B then S1 else S2 fi ≈ {B};S1

∆ ⊢ {¬B};if B then S1 else S2 fi ≈ {¬B};S2

∆ ⊢ if B then S else S fi ≈ S (also called “Splitting a Tautology”)
Proof: The proofs follow directly from the weakest precondition for if eg:
WP(if B then S else S fi, G(w)) ⇐⇒

(

B⇒WP(S,G(w))
)

∧
(

¬B⇒WP(S,G(w))
)

⇐⇒ WP(S,G(w)).
Since skip={true} we also have:

∆ ⊢ if true then S1 else S2 fi ≈ S1

∆ ⊢ if false then S1 else S2 fi ≈ S2

A generalisation of this is:
∆ ⊢ {¬Bn}; if B1 → S1 ⊓⊔ ... ⊓⊔ Bn → Sn fi ≈ {¬Bn}; if B1 → S1 ⊓⊔ ... ⊓⊔ Bn−1 → Sn−1 fi

where we use the convention if fi ≈ abort.
Proof: WP({¬Bn}; if B1 → S1 ⊓⊔ ... ⊓⊔ Bn → Sn fi, G(w))

⇐⇒ ¬Bn ∧
(

B1 ∨ ...∨Bn

)

∧
(

B1 ⇒WP(S1,G(w))
)

∧ ... ∧
(

Bn ⇒WP(Sn,G(w))
)

⇐⇒ ¬Bn ∧
(

B1 ∨ ...∨Bn−1

)

∧
(

B1 ⇒WP(S1,G(w))
)

∧ ... ∧
(

¬Bn ∨ WP(Sn,G(w))
)

⇐⇒ ¬Bn ∧
(

B1 ∨ ...∨Bn−1

)

∧
(

B1 ⇒WP(S1,G(w))
)

∧ ... ∧
(

Bn−1 ⇒WP(Sn−1,G(w))
)

since a∧
(

a∨b
)

⇐⇒ a
⇐⇒ WP({¬Bn}; if B1 → S1 ⊓⊔ ... ⊓⊔ Bn−1 → Sn−1 fi, G(w)).

Lemma: Proof by case analysis:
We have the result
∆ ⊢ {P};S ≈ {P}; if Q then {P∧Q};S else {P∧ ¬Q};S fi
so if we can prove:
{P,Q} ∪ ∆ ⊢ S ≈ S′ and {P,¬Q} ∪ ∆ ⊢ S ≈ S′ then we can prove
∆ ⊢{P};S ≈ {P}; if Q then S′ else S′ fi (by above and replacement) ≈ {P};S′.

This easily generalises to division into more cases.

4

Reorder Conditional:
∆ ⊢ if B then S1 else S2 fi ≈ if ¬B then S2 else S1 fi
Proof: Follows from the weakest precondition for if.
A corrollary is: ∆ ⊢ if B then skip else S fi ≈ if ¬B then S fi

Split Conditional:
∆ ⊢ if B1 ∨B2 then S1 else S2 fi ≈ if B1 then S1 else if B2 then S1 else S2 fi fi
∆ ⊢ if B1 ∧B2 then S1 else S2 fi ≈ if B1 then if B2 then S1 else S2 fi else S2 fi
Proof: By case analysis on B1 and B2 and pruning the conditional.

Assignment Elimination/Insertion:
For any variable x and term t:
∆ ⊢ {x=t};x:=t ≈ {x=t}
Proof: WP({x=t};x:=t, R)

⇐⇒ x=t ∧ WP(x:=t,R) ⇐⇒ x=t ∧ R[t/x]
⇐⇒ x=t ∧ R (by an Axiom of equality) ⇐⇒ WP({x=t}, R)

Assignment Merging/Splitting:
For any variable x and terms t1 and t2:

∆ ⊢ x:=t1; x:=t2 ≈ x:=t2[t1/x]
For example: x:=x+1; x:=x−1 ≈ x:=

(

x−1
)

[x+1/x] ≈ x:=
(

x+1
)

−1
≈ x:=x ≈ {x=x}; x:=x ≈ skip. (by the previous example)

Proof: WP(x:=t1; x:=t2, R)
⇐⇒ WP(x:=t1, WP(x:=t2, R)) ⇐⇒ WP(x:=t1, R[t2/x])
⇐⇒ R[t2/x][t1/x] ⇐⇒ R[t2[t1/x]/x] since the only free x’s in R[t2/x] are those in t2.
⇐⇒ WP(x:=t2[t1/x],R)

Lemma: If the variable m is constant i S (ie is not assigned to) and all the variables of the term t
are constant in S then WP(S,R)[t/m] ⇐⇒ WP(S[t/m],Rt/m])
Proof: By induction on the structure of S, using the order relation on structure given above.

Subsumption:
If the variable m is constant in S:V → W and all the variables of the term t are constant in

S and m/∈var(t) then:
∆ ⊢ begin m:=t: S end ≈ S[t/m]

ie one can replace m by t in S and remove the variable m from the program. This is especially

5

valuable when the term is a single variable or if there is only one use of m (in the case where t is a
constant this is called scalar propagation).
Proof: Let S′ = begin m:=t: S end and let w be a list of the variables in W.
Note that m/∈W.
WP(S′, G(w)) ⇐⇒ ∀m.WP(m:=t; S, G(w))
For the assignment m:=t we have : WP(m:=t,R) ⇐⇒ R[t/m]

So WP(S′,G(w)) ⇐⇒ ∀m.WP(m:=t; S; 〈〉/〈m〉.true, G(w))
⇐⇒ ∀m.WP(S; 〈〉/〈m〉.true, G(w))[t/m] ⇐⇒ WP(S;〈〉/〈m〉.true, G(w))[t/m]

since m/∈var(t) so m does not occur free.
⇐⇒ WP(S,G(w))[t/m] ⇐⇒ WP(S[t/m],G(w)[t/m]) by Lemma above
⇐⇒ WP(S[t/m],G(w)) since m does not occur in R.

MANIPULATION

Exportation of Independent Conditions:
This transformation provides one way in which a complex atomic description can be

analysed into an if statement and two (or more) simpler atomic description. This it is a kind of
“factoring” operation.
If no variable in x occurs in the formulae P and Q (ie x∩

(

var(P)∪var(Q)
)

= ∅) then:

∆ ∪ {P∧Q ⇒
(

∃x.P′ ⇐⇒ ∃x.Q′
)

} ⊢

x/y.
((

P∧P′) ∨
(

Q∧Q′
))

≈ if P → x/y.P′ ⊓⊔ Q → x/y.Q′ fi
Proof: This relies on the following Lemma:

Lemma: If x∩var(B)= ∅ then ∆ ⊢ {B}; x/y.Q ≈ x/y.
(

Q∧B
)

.
Proof: WP({B}; x/y.Q, G(w))

⇐⇒ B ∧ (∃x.Q ∧ ∀x.
(

Q⇒G(w)
))

⇐⇒ ∃x.Q ∧ ∀x.
(

B ∧
(

Q⇒G(w)
))

⇐⇒ ∃x.Q ∧ ∀x.
(

B ∧
(

¬Q ∨ G(w)
))

⇐⇒ ∃x.Q ∧ ∀x.
(

B ∧
(

¬Q ∨ ¬B ∨ G(w)
))

⇐⇒ ∃x.Q ∧ ∀x.
(

B ∧
(

Q ∧ B
)

⇒G(w)
))

⇐⇒ ∃x.Q ∧ B ∧ ∀x.
((

Q ∧ B
)

⇒G(w)
))

⇐⇒ ∃x.
(

Q ∧ B
)

∧ ∀x.
((

Q ∧ B
)

⇒G(w)
))

⇐⇒ WP(x/y.
(

Q∧B
)

, G(w)) as required.

6

Proof of Theorem: By case analysis:
Case (i): ¬Q:
x/y.

((

P∧P′) ∨
(

Q∧Q′
))

≈ x/y.
(

¬Q ∧
(((

P∧P′) ∨
(

Q∧Q′
)))

by Lemma.

≈ x/y.
(

¬Q ∧ P ∧ P′
)

≈ {¬Q ∧ P}; x/y.P′ by Lemma.
if P → x/y.P′ ⊓⊔ Q → x/y.Q′ fi

≈ if P → x/y.P′ fi by if pruning.
≈ {P}; x/y.P′

≈ {¬Q ∧ P}; x/y.P′.

Case (ii): ¬P: This is similar to Case (i).

Case (iii): P∧Q:
WP(x/y.

((

P∧P′) ∨
(

Q∧Q′
))

, G(w))

⇐⇒
((

P ∧ ∃x.P′
)

∨
(

Q ∧ ∃x.Q′
))

∧ ∀x.
(

P∧P′ ⇒G(w)
)

∧ ∀x.
(

Q∧Q′ ⇒G(w)
)

⇐⇒
((

P ∧ ∃x.P′
)

∨
(

Q ∧ ∃x.Q′
))

∧ P⇒ ∀x.
(

P′ ⇒G(w)
)

∧ Q⇒ ∀x.
(

Q′ ⇒G(w)
)

⇐⇒
(

∃x.P′ ∨ ∃x.Q′
)

∧ ∀x.
(

P′ ⇒G(w)
)

∧ ∀x.
(

Q′ ⇒G(w)
)

WP(if P → x/y.P′ ⊓⊔ Q → x/y.Q′ fi, G(w))
⇐⇒ P⇒

(

∃x.P′ ∧ ∀x.
(

P′ ⇒G(w)
))

∧ Q⇒
(

∃x.Q′ ∧ ∀x.
(

Q′ ⇒G(w)
))

⇐⇒
(

∃x.P′ ∧ ∃x.Q′
)

∧ ∀x.
(

P′ ⇒G(w)
)

∧ ∀x.
(

Q′ ⇒G(w)
)

Now P∧Q ⇒
(

∃x.P′ ⇐⇒ ∃x.Q′
)

By premise.

⇒
(

∃x.P′ ∧ ∃x.Q′
)

⇐⇒
(

∃x.P′ ∨ ∃x.Q′
)

so the sides are equivalent.

Case (iv): ¬P ∧ ¬Q: Both sides are abort.

Note: The only place we used the premise was in Case (iii) where we used the fact that
(

∃x.P′ ⇐⇒ ∃x.Q′
)

⇒
(

∃x.P′ ∨ ∃x.Q′
)

⇒
(

∃x.P′ ∧ ∃x.Q′
)

.

The RHS of this is in fact equivalent to our premise since a∨b⇒a∧b ⇐⇒ ¬
(

a∨b
)

∨
(

a∧b
)

⇐⇒
(

¬a ∨ b
)

∧
(

¬b ∨ a
)

⇐⇒
(

a⇒b
)

∧
(

b⇒a
)

⇐⇒
(

a ⇐⇒ b
)

.

Dead Variable Elimination:
If the only assignments in T are to the variables in the list a then:
(a) ∆ ⊢ begin a: S;T end 6 begin a: S end
(b) {WP(T,true)} ∪ ∆ ⊢ begin a: S;T end ≈ begin a: S end
This is frequently used for adding and removing “ghost variables”.

7

Proof: First we prove ∆ ⊢ {B};T ≈ T;{B} if x∩var(B)= ∅.
Proof is by induction on the structure of T, we need to prove:

WP({B};T,R) ⇐⇒ WP(T;{B},R)
ie WP(T,R∧B) ⇐⇒ WP(T,R)∧B

(i) WP(x/y.Q,R∧B) ⇐⇒ ∃x.Q ∧ ∀x.
(

Q⇒
(

R∧B
))

All the variables of x must be in a since T only assigns to variables in a. So none of the variables in x
are free in B.
∃x.Q ∧ ∀x.

(

Q⇒
(

R∧B
))

⇐⇒ ∃x.Q ∧ ∀x.
(

¬Q∨
(

R∧B
))

⇐⇒ ∃x.Q ∧ ∀x.
(

Q⇒R
)

∧ B since x∩var(B)= ∅

⇐⇒ WP(T,R) ∧ B as required.
(ii) -(iv) WP(S1;S2, R), WP(oneof S1 ∨ S2 foeno, R) and WP(if Q then S1 else S2fi, R)

These are trivial applications of the induction hypothesis.
(v) WP(proc X ≡ S1.,R∧B) ⇐⇒

∨

n<ωWP(proc X ≡ S1.
n ,R∧B)

⇐⇒
∨

n<ω

(

WP(proc X ≡ S1.
n ,R)∧B

)

⇐⇒
∨

n<ωWP(proc X ≡ S1.
n ,R) ∧ B

⇐⇒ WP(proc X ≡ S1., R) ∧ B
which proves the result.

To prove (a) we see that if x∩var(R)= ∅ then
WP(T,R) ⇐⇒ WP(T,R∧R) ⇐⇒ R∧WP(T,R) ⇒ R
so T;〈〉/〈a〉.true 6 〈〉/〈a〉.true
so begin a: S;T end 6 begin a: S end as required.

To prove (b), we need to prove R ⇐⇒ WP(T,R). We have WP(T,true) so
R ⇐⇒ WP(T,true)∧R ⇐⇒ WP({R};T,true) ⇐⇒ WP(T;{R},true) ⇐⇒ WP(T,R∧ true)
⇐⇒ WP(T,R)

so T;〈〉/〈a〉.true ≈ 〈〉/〈a〉.true
so begin a: S;T end ≈ begin a: S end as required.

Dead Assignment Elimination

If the variable x is only assigned to and never accessed in S then:
∆ ⊢ begin x:S end 6 S′ where S′ is S with all assignments to x replaced by skip.

This is a consequence of the equivalence:
∆ ⊢ begin x:S end ≈ begin x:S[{∃x.Q};〈〉/y.true / x/y.Q] end

8

Here we have replaced each assignment x/y.Q to x by an assertion: {∃x.Q} and an atomic
description: 〈〉/y.true.
The proof is by induction on the structure of S with the base step: S=x/y.Q
WP(x/y.Q; 〈〉/x.true, R)
⇐⇒ WP(x/y.Q, R)
⇐⇒ ∃x.Q ∧ ∀x.

(

Q⇒R
)

⇐⇒ ∃x.Q ∧
(

∀x.
(

¬Q
)

∨ R
)

since x/∈vars(R)
⇐⇒ ∃x.Q ∧ R
⇐⇒ WP({Ex.Q}, R)

Induction steps oneof S1 ∨S2 foeno and if B then S1 else S2 fi are trivial.

WP(S1;S2, R) ⇐⇒ WP(S1, WP(S2, R))
⇐⇒ WP(S1, WP(S2[{∃x.Q};〈〉/y.true / x/y.Q], R))

x is never accessed and does nor occur in R so the formula WP(S2[{∃x.Q};〈〉/y.true / x/y.Q], R)
will contain no free occurrences of x. So we can use the induction hypothesis again to get:

⇐⇒ WP(S1[{∃x.Q};〈〉/y.true / x/y.Q], WP(S2[{∃x.Q};〈〉/y.true / x/y.Q], R))
⇐⇒ WP(S1[{∃x.Q};〈〉/y.true / x/y.Q]; S2[{∃x.Q};〈〉/y.true / x/y.Q], R)
⇐⇒ WP((S1;S2)[{∃x.Q};〈〉/y.true / x/y.Q], R) as required.

The other cases (B∗S1) and (µX.S1) are trivial.

This transformation will be used extensively in adding and removing variables which
change the data representation of a program. See for example our derivation of the Schorr-Waite
graph-marking algorithm.

Lemma: The Invariance Lemma.
Let invar(B,S) =DF

(

B∧WP(S,true) ⇒ WP(S,B)
)

∧
(

¬B∧WP(S,true) ⇒ WP(S,¬B)
)

Then {invar(B,S)} ∪ ∆ ⊢ S;{B} ≈ {B};S and {invar(B,S)} ∪ ∆ ⊢ S;{¬B} ≈ {¬B};S.
The statement invar(B,S) says that B is invariant over S and the result states that we can

assume B holds before S if it holds afterwards and conversely (and similarly for ¬B). This Lemma
shows that if we can insert a condition into the postcondition of a WP without weakening it then we
can insert the same condition as an assertion after the statement.
Proof: WP(S;{B},R) ⇐⇒ WP(S,WP({B},R)) ⇐⇒ WP(S,B∧R)

⇐⇒ WP(S,B) ∧ WP(S,R)
R⇒true so WP(S,R)⇒WP(S,true) So from WP(S,B) ∧ WP(S,R) we can deduce B since if ¬B
holds then the second term of invar(B,S) gives WP(S,¬B) which contradicts WP(S,B) since
WP(S,¬B)∧WP(S,B) ⇐⇒ WP(S,¬B∧B) ⇐⇒ WP(S,false) ⇐⇒ false.

9

So WP(S;{B},R) ⇒ B ∧ WP(S,R)
⇐⇒ WP({B};S,R).

Conversely WP({B};S,R) ⇐⇒ B ∧ WP(S,R) ⇒ WP(S,B) ∧ WP(S,R) ⇐⇒ WP(S;{B},R)
since WP(S,R) ⇒ WP(S,true) and the first term of invar(B,S) then gives WP(S,B).

Back Expansion of a Conditional:
If formula B is invariant over statement S then:

∆ ⊢ S; if B then TC else FC fi ≈ if B then S; TC else S; FC fi
Proof: S; if B then TC else FC fi
≈ if B then {B}; S; if B then TC else FC fi
else {¬B}; S; if B then TC else FC fi fi by splitting a tautology.

≈ if B then S; {B}; if B then TC else FC fi
else S; {¬B}; if B then TC else FC fi fi by Invariance Lemma.

≈ if B then S; TC else S; FC fi. by Prune Conditional.

Forward Expansion:
∆ ⊢ if B then TC else FC fi; S ≈ if B then TC; S else FC; S fi
Proof: WP(if B then TC else FC fi; S, R)

⇐⇒ WP(if B then TC else FC fi, WP(S,R))
⇐⇒

(

B⇒WP(TC, WP(S,R))
)

∧
(

¬B⇒WP(FC, WP(S,R))
)

⇐⇒
(

B⇒WP(TC;S, R)
)

∧
(

¬B⇒WP(FC;S, R)
)

⇐⇒ WP(if B then TC; S else FC; S fi, R).
These two transformations are often used to replace two copies of a statement by a single copy. More
generally they are used to move components of a program through the structure of the program. See
the “absorption” transformations for examples.

Often the first or last iteration of a loop may be a special case and so the loop can be
simplified if one iteration is taken out of the loop:

Loop Unrolling:
∆ ⊢ while B do S od ≈ if B then S; while B do S od fi

Proof: Let DO=while B do S od, DOn =while B do S odn.
For any n< ω, DOn+1 ≈ if B then S;DOn fi

6 if B then S;DO fi by induction rule for iteration.
So DO 6 if B then S;DO fi by induction rule for iteration.

10

Conversely WP(if B then S;DO fi, R) ⇐⇒
(

B⇒WP(S;DO,R)
)

∧
(

¬B⇒WP(skip,R)
)

⇐⇒
(

B⇒WP(S,WP(DO,R))
)

∧
(

¬B⇒R
)

⇐⇒
(

B⇒WP(S,
∨

n<ωWP(DOn,R))
)

∧
(

¬B⇒R
)

DOn 6DOn+1 so WP(DOn,R)⇒WP(DOn+1,R) for all n< ω.
So by continuity of WP: WP(S,

∨

n<ωWP(DOn,R)) ⇒
∨

n<ωWP(S,WP(DOn,R))

So WP(if B then S;DO fi, R) ⇒
(

B⇒
∨

n<ωWP(S,WP(DOn,R))
)

∧
(

¬B⇒R
)

⇐⇒
∨

n<ω

((

B⇒WP(S,WP(DOn,R))
)

∧
(

¬B⇒R
))

⇐⇒
∨

n<ωWP(if B then S;DOn fi, R)
⇐⇒

∨

n<ωWP(DOn+1,R)
⇐⇒ WP(DO,R)

Hence if B then S;DO fi 6 DO and the result is proved.

Recursion Unfolding:
∆ ⊢ proc X ≡ S. ≈ S[proc X ≡ S./X]

Proof: The proof uses the induction rule for recursion. For any n< ω:
proc X ≡ S.n+1 = S[proc X ≡ S.n/X] 6 S[proc X ≡ S./X] by induction rule for recursion.
So proc X ≡ S. 6 S[proc X ≡ S./X].
Conversely WP(S[proc X ≡ S./X], R)

⇐⇒ WP(S,R)[WP(proc X ≡ S.,R)/X] (since WP(X,R)=X)
⇐⇒ WP(S,R)[

∨

n<ωWP(proc X ≡ S.n,R)/X]
By induction on the structure of S and using the continuity of WP we can prove
WP(S,R)[

∨

n<ωPn/X] ⇒
∨

n<ωWP(S,R)[Pn/X] provided Pn 6Pn+1 for all n< ω. (see below).
proc X ≡ S.n 6 proc X ≡ S.n+1 for all n< ω so
WP(S[proc X ≡ S./X], R) ⇒

∨

n<ωWP(S,R)[WP(proc X ≡ S.n,R)/X]
⇐⇒

∨

n<ωWP(proc X ≡ S.n+1,R)
⇐⇒ WP(proc X ≡ S.,R)

Hence S[proc X ≡ S./X] 6 proc X ≡ S. and the result is proved.

In this transformation we replace every recursive call in the body of the procedure by a
copy of the recursive procedure. Later we will prove a transformation (“selective unfolding”) which
allows us to select a subset of the recursive calls which are unfolded if a given condition is satisfied.

Cor: Loop Unrolling:
∆ ⊢ while B do S od ≈ if B then S; while B do S od fi

11

Lemma: If Pn ⇒Pn+1 for all n< ω then WP(S,R)[
∨

n<ωPn/X] ⇒
∨

n<ωWP(S,R)[Pn/X].
Proof: By induction on the structure of S, using a lexical order of:
(i) Depth of recursion nesting.
(ii) Length of program text.

Case(i): X does not appear in S.
WP(S,R)[

∨

n<ωPn/X] ⇐⇒ WP(S,R) ⇐⇒
∨

n<ωWP(S,R) ⇐⇒
∨

n<ωWP(S,R)[Pn/X].

Case (ii): S=X
WP(X,R)[

∨

n<ωPn,/X] ⇐⇒ X[
∨

n<ωPn/X] ⇐⇒
∨

n<ωPn ⇐⇒
∨

n<ωWP(X,R)[Pn/X].

Case (iii): S=S1;S2

WP(S1;S2,R)[
∨

n<ωPn/X] ⇐⇒ WP(S1, WP(S2,R)[
∨

m<ωPm/X])[
∨

n<ωPn/X]
⇐⇒

∨

n<ωWP(S1,
∨

m<ωWP(S2,R)[Pm/X])[Pn/X]
⇐⇒

∨

n,m<ωWP(S1, WP(S2,R)[Pm/X])[Pn/X] (by continuity of WP)
⇐⇒

∨

n<ωWP(S1, WP(S2,R)[Pn/X])[Pn/X]
To prove

∨

n,m<ωWP(S1, WP(S2,R)[Pm/X])[Pn/X] ⇒
∨

n<ωWP(S1, WP(S2,R)[Pn/X])[Pn/X]

we use the fact that
(

P⇒Q
)

⇒
(

WP(S,P)⇒WP(S,Q)
)

hence if k>max(n,m) then

WP(S1, WP(S2,R)[Pm/X])[Pn/X] ⇒ WP(S1, WP(S2,R)[Pk/X])[Pk/X] So
WP(S1, WP(S2,R)[Pm/X])[Pn/X] ⇒

∨

k<ωWP(S1, WP(S2,R)[Pk/X])[Pk/X] for n,m< ω.
The other implication is trivial.

Hence WP(S1;S2,R)[
∨

n<ωPn/X]
⇐⇒

∨

n<ωWP(S1, WP(S2,R))[Pn/X] ⇐⇒
∨

n<ωWP(S1;S2,R)[Pn/X].

Case (iv): S= oneof S1 ⊓⊔ S2 foeno and

Case (v): S= if B then S1 else S2 fi follow directly from the induction hypothesis.

Case (vi): S= proc X ≡ S1.
WP(proc X ≡ S1. ,R)[

∨

n<ωPn/X] ⇐⇒
∨

m<ωWP(proc X ≡ S1.
m ,R)[

∨

n<ωPn/X]
⇐⇒

∨

m<ω

∨

n<ωWP(proc X ≡ S1.
m ,R)[Pn/X] by induction hypothesis

⇐⇒
∨

n<ω

∨

m<ωWP(proc X ≡ S1.
m ,R)[Pn/X]

⇐⇒
∨

n<ωWP(proc X ≡ S1. ,R)[Pn/X] as required.

12

This proves the result.

Loop first case:
∆ ⊢ for i:=b to f step s do S od

≈ if b6f then S[b/i]; for i:=b+s to f step s do S od fi
Proof: for i:=b to f step s do S od ≈ begin i:=b: while i6f do S;i:=i+s od end
≈ begin i:=b: if i6f then S; i:=i+s; while i6f do S;i:=i+s od fi end (by Loop Unrolling)

Use Subsumption in reverse on i:=i+s; while i6f do S;i:=i+s od to get
≈ begin i:=b: if i6f then S; begin i′:=i: i′:=i′+s;

while i′ 6f do S[i′/i]; i′:=i′+s od end fi end
≈ if b6f then S[b/i]; begin i′:=b: i′:=i′+s; (by subsumption)

while i′ 6f do S[i′/i]; i′:=i′+s od end fi
since S does not assign to i or any variable of b by definition of a for loop.
≈ if b6f then S[b/i]; begin i′:=b+s; (by assignment merging)

while i′ 6f do S[i′/i]; i′:=i′+s od end fi
Replacing i′ by i throughout (since i no longer occurs) and writing as a for statement gives:
≈ if b6f then S[b/i]; for i:=b+s to f step s do S od fi.

Loop Last Case:
If in addition to the “+” function we have a “−” function with the property that

(

x+y
)

−y=y then
we can use this in the following transformation which unrolls the last step of a for loop:
∆ ⊢ for i:=b to f step s do S od

≈ if b6f then begin i:=b: while i6f−s do S; i:=i+s od; S end fi
Proof: Let FOR=for i:=b to f step s do S od

FOR ≈ if b6f then {b6f};FOR else {b>f};FOR fi (by splitting a tautology)
Case(a): Assume b>f. Then:
FOR ≈ begin i:=b: {i=b ∧ b>f}; while i6f do S;i:=i+s od end

≈ begin i:=b: {i>f}; while i6f do S;i:=i+s od end
≈ begin i:=b: skip end
≈ skip.

Case(b): Assume b6f. Then:
FOR ≈ begin i:=b: {i=b ∧ b6f}; while i6f do S;i:=i+s od end

≈ begin i:=b: {i6f}; while i6f do S;i:=i+s od end
WP({i6f}; while i6f do S; i:=i+s od, R)

⇐⇒ i6f ∧
∨

n<ωWP(while i6f do S;i:=i+s odn, R)

13

⇐⇒
∨

n<ω

(

i6f ∧ WP(while i6f do S;i:=i+s odn, R)
)

Claim:
(

i6f
)

∧WP(while i6f do S;i:=i+s odn, R)

⇐⇒
(

i6f
)

∧WP(while i6f−s do S;i:=i+s odn−1; S;i:=i+s, R)
ie ∆ ⊢ {i6f};while i6f do S;i:=i+s odn ≈ {i6f};while i6f−s do S;i:=i+s odn−1; S;i:=i+s

Proof of claim: Let DOn =while i6f do S; i:=i+s odn. Use induction on n.
For n=1: {i6f};DO1 ≈ {i6f}; if i6f then S; abort fi ≈ abort ≈ abort;S;i:=i+s
Induction step: suppose result holds for n.
Let DO′n =while i6f−s do S; i:=i+s odn−1; S;i:=i+s
{i6f};DOn+1 ≈ {i6f}; if i6f then S;i:=i+s; DOn fi

≈ {i6f}; S;i:=i+s; DOn

Case (i): i+s6f initially. Then we have:
{i6f};DOn+1 ≈ {i6f};S;i:=i+s; {i6f}; DOn

since S does not assign to i (the control variable of a for loop).
≈ {i6f};S;i:=i+s; {i6f}; while i6f−s do S;i:=i+s odn−1; S;i:=i+s

by induction hypothesis.
≈ {i6f};if i6f−s then S;i:=i+s;

while i6f−s do S;i:=i+s odn−1 fi; S;i:=i+s
since i6f−s initially.

≈ {i6f};while i6f−s do S;i:=i+s odn; S;i:=i+s as required.

Case (ii): i+s>f initially ie f−s<i initially. Then we have:
{i6f};DOn+1 ≈ {i6f}; S;i:=i+s; {i>f}; DOn

≈ {i6f}; S;i:=i+s; {i>f}; skip
≈ {i6f}; while i6f−s do S;i:=i+s odn; S;i:=i+s

which proves the claim.

So
∨

n<ω

(

i6f ∧ WP(while i6f−s do S;i:=i+s odn, R)
)

⇐⇒
∨

n<ω

(

i6f ∧ WP(while i6f−s do S;i:=i+s odn−1; S;i:=i+s, R)
)

⇐⇒ i6f ∧
∨

n<ωWP(while i6f−s do S;i:=i+s odn−1, WP(S;i:=i+s, R))
⇐⇒ i6f ∧ WP(while i6f−s do S;i:=i+s od, WP(S;i:=i+s, R))
⇐⇒ i6f ∧ WP(while i6f−s do S;i:=i+s od; S;i:=i+s, R)

14

Hence {b>f};FOR ≈ begin i:=b: {i6f−s}; while i6f−s do S;i:=i+s od; S;i:=i+s end
Putting the two cases (a) and (b) together gives
FOR ≈ if b6f then begin i:=b: while i6f−s do S;i:=i+s od S;i:=i+s end fi

Now WP(i:=i+s,R) ⇐⇒ R[i+s/i] ⇐⇒ R
if R is a condition on the final state, since the final state space does not include i so i/∈var(R).
Hence FOR ≈ if b6f then begin i:=b: while i6f−s do S;i:=i+s od S end fi as required,
where the final assignment to i has been removed by dead variable elimination.

Loop middle case:
If m is a term and S does not assign to any variables of m then:
{m6f} ∪ ∆ ⊢ for i:=b to f step s do S od

≈ begin i:=b: while i6m do {i6m}; S;i:=i+s od;
while i6f do {i>m}; S;i:=i+s od end

Proof: for i:=b to f step s do S od ≈ begin i:=b: while i6f do S;i:=i+s od end
Let S′ = S;i:=i+s. We need to prove

∆ ⊢ while i6f do S′ od ≈ while i6m do S′ od; while i6f do S′ od.
In fact this is a special case of the more general result:

Lemma: Loop Merging: If B1 ⇒B2 then:
∆ ⊢ while B2 do S′ od ≈ while B1 do S′ od; while B2 do S′ od.

In our case we have B1 ⇐⇒ i6m and B2 ⇐⇒ i6f from which i6m ⇒ i6f follows from m6f.
Proof: (of Lemma) WP(while B1 do S′ od; while B2 do S′ od, R)

⇐⇒ WP(while B1 do S′ od, WP(while B2 do S′ od, R))
⇐⇒

∨

n<ωWP(while B1 do S′ odn,
∨

k<ωWP(while B2 do S′ odk, R))

⇐⇒
∨

n,k<ωWP(while B1 do S′ odn, WP(while B2 do S′ odk, R))

⇐⇒
∨

n,k<ωWP(while B1 do S′ odn; while B2 do S′ odk, R)

Claim: for n< ω there exists k< ω such that
∆ ⊢ DOn 6 while B1 do S′ odk; while B2 do S′ odk

Proof of claim: use induction on n, result is trivial for n=0.
DOn+1 ≈ if B1 then S′; DOn fi

6 if B1 then S′; while B1 do S′ odk; while B2 do S′ odk fi
for some k (by induction hypothesis).

15

Now consider cases on B1 and B2 to show:
DOn+1 6 while B1 do S′ odk+1; while B2 do S′ odk+1

and the claim is proved.

Hence: DOn+1 6 while B1 do S′ od; while B2 do S′ od by induction rule for iteration
DO 6 while B1 do S′ od; while B2 do S′ od (*) by induction rule again

Claim: for n,k< ω there exists l< ω such that
while B1 do S′ odn; while B2 do S′ odk 6 DOl.

Proof of claim: by induction on n:
while B1 do S′ odn+1; while B2 do S′ odk

≈ if B1 then S′; while B1 do S′ odn fi; DOk

Consider cases on B1.

So while B1 do S′ odn; while B2 do S′ odk 6 DO for all n,k< ω.
So while B1 do S′ od; while B2 do S′ od 6 DO by the general induction rule for loops.

Combining this with (*) above proves the Lemma.

Loop elimination:
If S does not assign to any variables of a term m and

∨

n<ωm=sn (with sn as above) then:

{b6m6f ∧
(

B ⇐⇒ i=m
)

} ∪ ∆ ⊢ for i:=b by s to f do if B then S fi od 6 S[m/i]

Proof: Let FOR=for i:=b step s to f do S od.
From the last transformation we get:
FOR ≈ begin i:=b: while i6m do if i=m then S fi; i:=i+s od; {i>m};

while i6f do if i=m then S fi; i:=i+s od end

From the last transformation again: (since m−s<m)
FOR ≈ begin i:=b: while i6m−s do {i<m}; if i=m then S fi; i:=i+s od;

while i6m do if i=m then S fi; i:=i+s od; {i>m};
while i6f do if i=m then S fi; i:=i+s od end

16

≈ begin i:=b: while i6m−s do i:=i+s; {i6m} od; {m−s<i6m};
while i6m do if i=m then S fi; i:=i+s od; {i>m};
while i6f do if i=m then S fi; i:=i+s od end

The first loop must terminate since FOR terminates. The invariant
∨

k<ωi=sk is set up
and maintained over the first loop so after the first loop we have:

sn−1 < sk 6 sn

So sn−1 < sk 6 sn so
(

n−1
)

< k 6 n so k=n ie i=m.
Also the condition i>m is true at the beginning of the third loop and is maintained by it so

we can move it inside. We get:
≈ begin i:=m: while i6m do if i=m then S fi; i:=i+s od;

while i6f do {i>m}; if i=m then S fi; i:=i+s od end
≈ begin i:=m: if i6m then if i=m then S fi; i:=i+s; {i>m};

while i6m do if i=m then S fi; i:=i+s od; (by loop unrolling)
while i6f do {i>m}; i:=i+s od end

≈ begin i:=m: S;i:=i+s
while i6f do i:=i+s od end

≈ begin i:=m: S end by dead variable elimination (the loop must terminate).
≈ S[m/i] by subsumption.

17

