
) CHAPTER FOUR

) Actio Systems

Introduction

This section will introduce the concept of an Action System as a set of parameterless
mutually recursive procedures. A program written using labels and jumps translates directly into an
action system. Note however that if the end of the body of an action is reached, then control is passed
to the action which called it (or to the statement following the action system) rather than “falling
through” to the next label. The exception to this is a special action called the terminating action,
usually denoted Z, which when called results in the immediate termination of the whole action
system.
First e prove some useful results about loop unrolling and recursion unfolding.

Defn: If T occurs in S and replacing any occurrence of T in S by exit(0) gives a terminal statement
of S then we say that the occurrence of T is in a terminal position in S.

Lemma: If each exit statement of S is in a terminal position then:
{depth=n}; guardn(S) ≈ {depth=n}; S[depth:=depth−p / exit(p)]

Proof: Note that S cannot contain any do-loops since such a loop can only be terminated by an exit
statement which is within the loop and therefore not in a terminal position. Any loop will not
terminate so can be replaced by abort.

The proof is by induction on the structure of S, ignoring the do... od case as noted above.
The only non-trivial case is S=S1;S2: S1 cannot contain any exit statement since such a statement is
not in a terminal position in S.
So guardn(S1) ≈ if depth=n then S1 fi which preserves depth. So
{depth=n}; guardn(S) ≈ {depth=n}; S1; {depth=n}; guardn(S2)

≈ {depth=n}; S1; {depth=n}; S2[depth:=depth−p / exit(p)]
≈ {depth=n}; S1; S2[depth:=depth−p / exit(p)]
≈ {depth=n};

(

S1;S2

)

[depth:=depth−p / exit(p)]
since S1 has no exits

which proves the result.

Selective unrolling is useful when there is a much more efficient version of the loop body
which can be used under certain conditions. Selective unrolling is also frequently used as a part of the
proof of other transformations.

1

Lemma: Selective unrolling of while loops:
∆ ⊢ while B do S od ≈ while B do S; if B∧Q then S fi od

Proof: We will prove by induction on n that:
while B do S; if B∧Q then S fi odn 6 while B do S od.
while B do S; if B∧Q then S fi odn+1

≈ if B then S; if B∧Q then S fi; while B do S; if B∧Q then S fi odn fi
6 if B then S; if B∧Q then S fi; while B do S od fi by ind hyp
≈ if B then S; if B∧Q then S; while B do S od

else while B do S od fi fi by forward expansion of if.
≈ if B then S; if B∧Q then if B then S; while B do S od fi

else while B do S od fi fi
≈ if B then S; if B∧Q then while B do S od

else while B do S od fi fi loop rolling.
≈ if B then S; while B do S od fi eliminate conditional.
≈ while B do S od loop rolling.

Hence while B do S; if B∧Q then S fi od 6 while B do S od.

The converse is similar.

The next theorem uses this result to prove a more general form of selective unrolling where
a copy of the body of a loop (with an if guard) is inserted after certain of its terminal statements.
Note that different copies of the body may have different guards.

Theorem: Suppose S is such that each terminal statement is of the form exit(k) for some k>0.
(Remember any S can be converted to such a form by replacing each non-exit primitive terminal
statement T by the equivalent T;exit(0)). Suppose also Ψ(n,T) is a condition for each integer n and
each exit statement T and Q(n,T) is a formula for each integer n and each exit statement T. Then:
∆ ⊢ while B do S od ≈
while B do
S[if B ∧ Q(n,T) then S fi+|T|/ (n,T)|Ψ(n,T) ∧ ts(n,T,S) ∧ τ(n,T,S)=0] od

Here we substitute if B ∧ Q(n,T) then S fi +|T| for the nth occurrence of T in S if this is
an exit statement with terminal value zero. Note | exit(k)| =k; also, the condition τ(n,T,S)=0 is
not strictly necessary here since a terminal statement in the body of a while loop may not have
terminal value greater than zero–it will be important for the next theorem though.

This substitution (“Selective Substitution of Terminal Statements”) will be useful in other
theorems so we will abbreviate it to:
while B do S[if B ∧ Q then S+|T| else T fi / T|Ψ ∧ τ =0] od

2

Examples: Ψ can be any condition on integers and exit statements for example:
Ψ(n,T) ≡ false

means that no substitution takes place: the theorem is trivial in this case.
Ψ(n,T) ≡ true

means that every allowed substitution takes place: if Q(n,T) gives the same formula for each n and T
then this is equivalent to the result of the last theorem with simple absorption applied.

Ψ(n,T) ≡ (n=1 ∨ n=3) ∧ T=T0

means that the first and third occurrences of T0 are substituted provided the other conditions hold.

Proof: Let x be a new variable which does not occur on S, B or Q. Then
while B do S od

≈ beg x: while B do S od end since x does not occur in S.
≈ beg x: while B do x:=0; S [if Q(n,T) then x:=1 else x:=0 fi; T / (n,T)

|Ψ(n,T) ∧ ts(n,T,S) ∧ τ(n,T,S)=0]
[x:=0;T / T|¬Ψ ∧ τ =0]
[x:=0;T / T|τ >0] od end

since the local variable x can be freely assigned to.
Note that if the nth occurrence of T is a terminal statement then: if Ψ(n,T) is satisfied

and τ(n,T,S)=0 the value 1 is assigned to x, while the value 0 is assigned to x if ¬Ψ(n,T) or
τ(n,T,S)>0. This covers all the terminal statements of S.

≈ beg x: while B do S [if Q(n,T) then x:=1 else x:=0 fi; T / T|Ψ ∧ τ =0]
[x:=0;T / T|¬Ψ ∧ τ =0]
[x:=0;T / T|τ >0];
if B ∧ x=1 then S[...] fi od end

by selective unrolling (where [...] represents the substitutions).
≈ beg x: while B do S[if Q(n,T) then x:=1 else x:=0 fi;

if B ∧ Q ∧ x=1 then S[...] fi +|T| / T|Ψ ∧ τ =0]
[x:=0; if B ∧ Q ∧ x=1 then S[...] fi +|T| / T|¬Ψ ∧ τ =0]
[x:=0;T / T|τ >0] od end

by simple absorption.
≈ beg x: while B do S[if Q(n,T)

then x:=1; if B ∧ x=1 then S[...] fi
else x:=0; if B ∧ x=1 then S[...] fi fi +|T|
/ T|Ψ ∧ τ =0]
[x:=0;T / T|¬Ψ ∧ τ =0][x:=0;T / T|τ >0] od end

3

≈ beg x: while B do S[if Q(n,T) then x:=1; if B then S[...] fi
else x:=0 fi +|T| / T|Ψ ∧ τ =0]

[x:=0;T / T|¬Ψ ∧ τ =0][x:=0;T / T|τ >0] od end
by pruning the if statements. Now x is no longer accessed.

≈ while B do S[if B ∧ Q(n,T) then S fi +|T| / T|Ψ ∧ τ =0]
[T / T|¬Ψ ∧ τ =0][T / T|τ >0] od

by removing the ghost variable x.
≈ while B do S [if B∧ Q(n,T) then S fi +|T| / T|Ψ ∧ τ =0] od

as required.

The technique used in this proof is to add a “ghost variable” (x in the proof) which is set to
one value for some of the terminal statements and some of the conditions and to another value for the
others and which can then be tested in a following if statement so that the branch of the if taken
depends on which terminal statement was executed. This technique is made use of in several forms of
selective unrolling and unfolding.

Theorem: Selective unrolling for unbounded loops. (ie do...od loops):
If Ψ, Q and S are as above :

∆ ⊢ do S od ≈ do S[if Q(n,T) then S fi+|T|/ T|Ψ ∧ τ =0] od
Proof: Similar to the previous theorem.

Example:
P ≡ while n>2 do

if even(n) then n:=n/2
else n:=n+1 fi od.

To prove the termination of this directly we need to find a term φ(n) which is decreased on every
step of the loop–which is not particularly easy!

One possibility is: φ(n)= n+1−2.((n+1) mod 2)
which gives: φ(n) = n−1 if n is even

= n+1 if n is odd.
If n is odd then φ(n)=n+1 and φ(n+1)=n < φ(n) since n+1 is even.
If n is even then φ(n)=n−1, φ(n/2) =n/2−1 if n/2 is even

=n/2+1 if n/2 is odd.
n/2−1 < n−1 for all integers n>0.
n/2+1 < n−1 ⇐⇒ n−n/2 > 2 ⇐⇒ n>4

which is true for all even integers n>2 such that n/2 is odd.
So if n is even and n>2:

4

φ(n/2) = n/2−1 < n−1 = φ(n) if n/2 is even.
= n/2+1 < n−1 = φ(n) if n/2 is odd.

So φ(n) is decreased on every step and the program terminates.

As is frequently the case with such proofs of termination, finding a function φ(n) which is
decreased on every iteration required some ingenuity. However if we note that n+1 is even when n is
odd then we see that the next iteration of the loop will select the assignment n:=n/2 and

(

n+1
)

/2 is
always <n for odd n>1. To prove termination therefore we use selective unrolling to insert a copy of
the body of the loop after the else part of the second if statement:
P ≈ while n>2 do

if even(n) then n:=n/2
else n:=n+1;
if n>2

then if even(n) then n:=n/2
else n:=n+1 fi fi od.

After the first if in the body we must have n>2, hence after n:=n+1 we must have n>3.
Also n was odd before 1 was added so n must be even:
P ≈ while n62 do

if even(n) then n:=n/2
else n:=n+1; {n>3 ∧ even(n)};
if n62

then if even(n) then n:=n/2
else n:=n+1 fi fi od.

Prune the ifs after the assertion and merge the two assignments:
P ≈ while n62 do

if even(n) then n:=n/2
else n:=(n+1)/2 fi od.

Now (n+1)/2 < n ⇐⇒ n+1 < 2.n ⇐⇒ 1<n
which is true within the loop. Hence n is decreased on every step and the loop terminates. So, by
carrying out some transformations, we have turned a difficult termination proof into a trivial one
(and incidentally made the program more efficient).

We now prove a type of “selective unfolding” for recursive statements:

Theorem: Selective Unfolding: ∆ ⊢ proc X ≡ S. ≈ proc X ≡ S[if Q then S else X fi / X].
Proof: We prove by induction on n:

proc X ≡ S[if Q then S else X fi / X].n 6 proc X ≡ S.

5

The induction step is:
proc X ≡ S[if Q then S else X fi / X].n+1

≈ S[if Q then S else X fi / X][proc X ≡ S[if Q then S else X fi / X].n / X]
6 S[if Q then S else X fi / X][proc X ≡ S. / X] by induction hypothesis.
≈ S[if Q then S[proc X ≡ S. / X] else X[proc X ≡ S. / X] fi / X]
≈ S[if Q then proc X ≡ S. else proc X ≡ S. fi / X] by folding.
≈ S[proc X ≡ S. / X] redundant test.
≈ proc X ≡ S. folding.

Hence proc X ≡ S[if Q then S else X fi / X]. 6 proc X ≡ S. by induction rule for recursion.

Conversely we prove proc X ≡ S.n 6 proc X ≡ S[if Q then S else X fi / X]. by induction.
Let S′ = proc X ≡ S[if Q then S else X fi / X].
n=0 trivial
n=1: proc X ≡ S.1 ≈ S[abort/X] 6 S[if Q then S else X fi / X][S′/ X]

≈ S′ by folding.
For n>1:
proc X ≡ S.n+1 ≈ S[proc X ≡ S.n / X] ≈ S[if Q then proc X ≡ S.n else proc X ≡ S.n fi / X]

≈ S[if Q then S[proc X ≡ S.n−1/X] else proc X ≡ S.n fi / X] since n>1.
6 S[if Q then S[S′/X] else S′ fi / X] by induction hyp
≈ S[if Q then S else X fi / X][S′/X]
≈ S′ by folding.

As before, we can generalise this selective unfolding so that, for each n, the nth X in S
may be replaced by if Q(n,X) then S else X fi where Q may vary depending on which X is
substituted.

The following Lemma will be used in several theorems concerned with the transformation
of recursive action systems to iterative form:

Lemma: Unroll Last Step of Loop:
If B′ ⇒ ¬B and ∆ ⊢ {B′}; S′ ≈ {B′}; S′; {¬B} then:

∆ ⊢ {B}; while B do S; if B′ then S′ fi od ≈ {B}; while B do S od; if B′ then S′ fi
Proof: Use induction on n to prove:
{B}; while B do S; if B′ then S′ fi odn+1 ≈ {B}; while B do S odn; if B′ then S′ fi
Then use the generalised induction rule for loops.

6

The reasoning behind normal loop unfolding is that under certain conditions the body of a
loop may simplify drastically and hence may be replaced by a much more efficient version. However,
in some cases it may be that the condition which allowed us to simplify the loop body is likely still to
hold after execution of the simplified body and it makes sense to try and insert a whole loop rather
than just the body of the loop. We wish to prove the following theorem:

Theorem: (Entire Loop Unfolding): If B′ ⇒B then
∆ ⊢ while B do S od ≈ while B do S; if Q then while B′ do S od fi od.

Proof: We use the induction rule for loops:
Let DO= while B do S od
Let DO′ = while B′ do S od

Claim(i): For n< ω: while B do S; if Q then DO′ fi odn 6 DO.
Proof of Claim(i): n=0 is trivial. Suppose result holds for n:
while B do S; if Q then DO′ fi odn+1

≈ if B then S; if Q then DO′ fi; while B do S; if Q then DO′ fi odn fi
6 if B then S; if Q then DO′ fi; DO fi by induction hypothesis.
≈ if B then S; if Q then DO′; DO

else DO fi forward expansion of if
Now B′ ⇒B gives DO′; DO ≈ DO by loop merging, so this is:

≈ if B then S; if Q then DO else DO fi
≈ if B then S; DO prune conditional.
≈ DO by first step unrolling.

Hence by the induction rule for loops:
while B do S; if Q then DO′ fi odn 6 DO for all n< ω.

Claim(ii): For n< ω: DOn 6 while B do S; if Q then DO′ fi od.
Proof of Claim(ii): n=0 is trivial. Suppose result holds for n:
DOn+1 ≈ if B then S; DOn fi

≈ if B then S; if Q then DOn else DOn fi by splitting a tautology.
From the proof of loop merging we have DOn 6 DO′ n; DOn, we also have DO′ n 6DO′ so
DOn 6 DO′; DOn. So we get:

6 if B then S; if Q then DO′; DOn else DOn fi
6 if B then S; if Q then DO′; while B do S; if Q then DO′ fi od

else while B do S; if Q then DO′ fi od fi
by induction hypothesis.

≈ if B then S; if Q then DO′ fi; while B do S; if Q then DO′ fi od fi

7

by forward expansion of if.
≈ while B do S; if Q then DO′ fi od by first step unrolling.

As was the case for selective unrolling we can use this result to prove a more general
version where the unfolded loop is inserted after certain selected terminal statements of the loop:

Theorem: For each n and T where the nth occurrence of T is a terminal statement of S, if the
formula B′(n,T)⇒B holds then:
∆ ⊢ while B do S od
≈ while B do

S[
(

if Q(n,T) then while B′(n,T) do S od fi
)

+ δ(T) / (n,T) |τ =0 ∧ Ψ] od

Note that while B do S od+k ≈ while B do S od; exit(k) since a while loop is a terminal
statement.
For unbounded loops we have the theorem:
∆ ⊢ do S od ≈
do S[

(

if Q(n,T) then
(

do if Q(n,T) then S else exit fi od
)

+1 fi
)

+ δ(T) / (n,T) |τ =0 ∧ Ψ]
od

For double-nested loops we can replace terminal statements with terminal value 0 or 1 by
copies of the whole loop:
∆ ⊢ do do S od od ≈
do do S[

(

if Q(n,T)

then do do if Q(n,T) then S+(2,2) else exit(2) fi od od fi
)

+ δ(T) / (n,T)

|
(

τ =0 ∨ τ =1
)

∧ Ψ] od od

This important general transformation is used in the transformation from recursion to iteration in a
regular action system (see Theorem A below). The proof is more complex than the other forms of
selective unrolling but follows the same pattern:

(i) Add assignments to a new variable at each terminal position, assigning 1 if the unrolling is to
occur and 0 if the unrolling is not to occur.

(ii) Unroll the loop, including a test of this variable.
(iii) Absorb the unrolled loop into the terminal positions.
(iv) Simplify the result, removing the variable x.

Example: This is a generalisation of an example in [Dij kstra 76].

8

Let DO= while B do
while B′ ∧B do S′ od;
S od

Let DO′′ = while B do
if B′ then S′

else S fi od
Then DO ≈ DO′′.

Proof: By entire loop unrolling after S′ in DO′′.

Cor: If {B ∧ B′}; S′ 6 {B ∧ B′}; S′; {B} then:
while B do ≈ while B do
while B′ do S′ od; if B′ then S
S od else S′ fi od

Proof: Show that B is invariant over the inner loop.

Theorem: Elimination of Tail-Recursion:
If A does not occur in S or S1 then:
∆ ⊢ {B}; proc A ≡ S; if B then A else S1 fi.

≈ {B}; while B do S od; S1

Proof: By the definition of the while loop we have:
{B}; while B do S od; S1

≈ {B}; proc A ≡ if B then S; A fi. ; S1

For each n< ω use absorption to prove:
{B}; proc A ≡ if B then S; A fi.n ; S1 ≈ {B}; proc A ≡ if B then S; A else S1 fi.n

Then by unfolding we get:
≈ {B}; S; proc A ≡ if B then S; A else S1 fi.n−1

≈ {B}; proc A ≡ S; if B then A else S1 fi.n by induction on n.
This completes the proof.

Theorem: Tail-Recursion (general form):
∆ ⊢ proc A ≡ if B then S; A else S1 fi. ≈ proc A ≡ while B do S od; S1.

Note that in this case S or S1 may contain further calls to A. Ths transformation is an
example of “replacing a terminal procedure call by a jump” as described in [Knuth 74].
Proof: By induction. The induction step is:
proc A ≡ if B then S; A else S1 fi.n+1

9

≈ if B then S[proc A ≡ if B then S; A else S1 fi.n/A]; proc A ≡ if B then S; A fi.n

else S1[proc A ≡ if B then S; A else S1 fi.n/A] fi
6 if B then S[proc A ≡ while B do S od; S1. /A]; proc A ≡ while B do S od; S1.

else S1[proc A ≡ while B do S od; S1. /A] fi by induction hypothesis.
Let DO= while B do S od; S1.
Now proc A ≡ DO. ≈ while B do S[proc A ≡ DO./A] od; S1[proc A ≡ DO./A] by unfolding

≈ if B then S[proc A ≡ DO./A]; while B do S[proc A ≡ DO./A] od fi;
S1[proc A ≡ DO./A] by unrolling
≈ if B then S[proc A ≡ DO./A]; proc A ≡ DO. fi by folding

Hence proc A ≡ if B then S; A else S1 fi.n+1 6 proc A ≡ DO.
Hence by induction proc A ≡ if B then S; A fi. 6 proc A ≡ DO.

For the converse we first show:
while B do S[proc A ≡ if B then S; A else S1 fi./A] odm;
S1[proc A ≡ if B then S; A else S1 fi./A]
6 proc A ≡ if B then S; A else S1 fi.

for all m< ω by induction on m. Induction step is:
while B do S[proc A ≡ if B then S; A else S1 fi./A] odm+1; S1[...]
≈ if B then S[proc A ≡ if B then S; A else S1 fi./A]; while B do... odm fi; S1[...]

6 if B then S[proc A ≡ if B then S; A else S1 fi./A];
proc A ≡ if B then S; A else S1 fi. fi by induction hypothesis.
≈ if B then S; A else S1 fi [proc A ≡ if B then S; A fi. /A]
≈ proc A ≡ if B then S; A else S1 fi. by folding.

Hence while B do S[proc A ≡ if B then S; A else S1 fi./A] od; S1[...]
6 proc A ≡ if B then S; A else S1 fi..

Now we prove by induction on n:
proc A ≡ while B do S od; S1.

n 6 proc A ≡ if B then S; A else S1 fi..
Induction step:
proc A ≡ while B do S od; S1.

n+1

≈ while B do S[proc A ≡ while B do S od.n/A] od; S1[...]
6 while B do S[proc A ≡ if B then S; A fi./A] od; S1[...]
6 proc A ≡ if B then S; A else S1 fi. from above.

Hence by induction proc A ≡ DO. 6 proc A ≡ if B then S; A else S1 fi.

Hence proc A ≡ while B do S od; SS1. ≈ proc A ≡ if B then S; A else S1 fi..

10

ACTIONS

Our recursive statement does not directly allow the definition of mutually recursive
procedures (since all calls to a procedure must occur within the procedure body). However we can
define a set of mutually recursive procedures by putting them all within a single procedure. For
example suppose we have two statements, S1 and S2 both containing statement variables X1 and X2

(where X1 refers to S1 and X2 refers to S2). We can represent these by a single recursive program:
x:=1; proc A ≡ if x=1 → S1[x:=1;A/X1][x:=2;A/X2]

⊓⊔ x=2 → S2[x:=1;A/X1][x:=2;A/X2] fi.

Here the additional variable x records which is the next procedure which is actually being
called when the composite procedure A is called. This method of representing mutually recursive
procedures will be used to develop techniques for reasoning about action systems. Two action systems
are defied to be equivalent if they have equivalent representations. This type of transformation to a
different representation is an example of a definitional transformation; by defining the new
construct in terms of constructs already introduced we can make full use of the results already proved
to prove things about the new construct.

Arsac [Arsac 79] and [Arsac 82] uses a restricted definition of actions together with
deterministic assignments, the binary if statement and do loops with exits so there is no place for
nondeterminism in his results. He distinguishes between what he calls “syntactic equivalence” (for
programs which perform the same sequence of operations and thus have the same operational
semantics) and “semantic equivalence” (for programs which give the same final state, if any, for each
initial state and so have the same denotational semantics). He uses mainly syntactic transformations
together with a few semantic transformations.

We shall give a more general definition of actions in terms of our recursive statement. This
will allow us to use all our other control structures, including the nondeterministic ones and general
specifications, within our actions.

Defn: An action is a parameterless procedure acting on global variables (cf [Arsac 79], [Arsac 82]).
It is written in the form A ≡ S where A is a statement variable (the name of the action) and S is a
statement (the action body). A set of (mutually recursive) actions is called an action system. There
may sometimes be a special action (usually denoted Z), execution of which causes termination of the
whole action system even if there are unfinished recursive calls.

The action system: AS = 〈A1 ≡ S1,A2 ≡ S2,. . . ,An ≡ Sn〉 (where S1,. . . ,Sn have no terminal
statement with terminal value >0) which may be written:

A1 ≡ S1.
A2 ≡ S2.
. . .
An ≡ Sn.

11

is defined (by a definitional transformation) as follows:

AS ≈ beg action:=‘A1’: (µA.S) end
where S= if action=‘A1’ → action:=‘O’; guardZ(S1)[action:=‘Ai’;A/Ai]

⊓⊔ action=‘A2’ → action:=‘O’; guardZ(S2)[action:=‘Ai’;A/Ai]
.
.
⊓⊔ action=‘An’ → action:=‘O’; guardZ(Sn)[action:=‘Ai’;A/Ai] fi.

Here action is a new variable which contains the name of the current action and
guardZ(S) is defined in a similar way to guardn(S) so that:
guardZ(Z) =DF action:=‘Z’
guardZ(v:=e) =DF if action=‘O’ then v:=e fi etc.
and as soon as action is set to ‘Z’ no further statements will be executed. This ensures the correct
operation of the “halting” action. Note that ‘A1’, . . . , ‘An’, ‘O’ and ‘Z’ represent a suitable set of n+2
distinct constant values.

Note that A is never called with action=‘Z’ (or anything other than ‘A1’,. . . ,‘An’). The
assignment action:=‘O’ is not really needed because the variable action will be assigned again before
its value is tested; it is added so that we can distinguish the following three cases depending on the
value of action:
1/ Currently executing an action: action=‘O’.
2/ About to call another (or the same) action (other than the terminating action):

action= one of ‘A1’,. . . ,‘An’.
3/ Have called the terminating action, all outstanding recursive calls are terminated without any

statements being executed: action=‘Z’.

Defn: An action is regular if every execution of the action leads to an action call. (This is similar to
a
regular rule in a Post production system [Post 43]).

Defn: An action system is regular if every action in the system is regular. Any algorithm defined by
a
flowchart or a program which contains labels and gotos but no procedure calls in non-terminal
positions can be expressed as a regular action system.

TRANSFORMATIONS INVOLVING ACTIONS

We will now prove some basic properties of action systems which are frequently used in
program manipulation. “Substitution” is a form of procedure call unfolding, “Identification” is used
in [Arsac 82], we are able to prove this and many other transformations using our “Induction rule for

12

Action Systems”.

Substitution:
We can always replace any occurrence of an action call by the body of the action.

Conversely any statement can be replaced by a new action which has that statement as definition.
More formally:

(a) 〈A1 ≡ S1 ,..., Ai ≡ Si ,..., An ≡ Sn〉 ≈ 〈A1 ≡ S1 ,..., Ai ≡ Si[Sj/(m,Aj)] ,..., An ≡ Sn〉
Where Si[Sj/(m,Aj)] means Si with the mth occurrence of Aj replaced by Sj .

(b) 〈A1 ≡ S1 ,..., Ai ≡ Si ,..., An ≡ Sn〉 ≈ 〈A1 ≡ S1 ,..., Ai ≡ Si[An+1/(m,Sn+1)] ,..., An ≡ Sn

, An+1 ≡ Sn+1〉
Where Sn+1 is any statement and An+1 is a new action name.

Proof: (a) LHS is equivalent (by the definitional transformation) to:
beg action:=‘A1’: (µA.S) end
where S= if action=‘A1’ → action:=‘O’; guardZ(S1)[action:=‘Ak’;A/Ak]

⊓⊔ action=‘A2’ → action:=‘O’; guardZ(S2)[action:=‘Ak’;A/Ak]
. . .
⊓⊔ action=‘Ai’ → action:=‘O’; guardZ(Si)[action:=‘Ak’;A/Ak]
. . .
⊓⊔ action=‘An’ → action:=‘O’; guardZ(Sn)[action:=‘Ak’;A/Ak] fi.

where the substitution [action:=‘Ak’;A/Ak] is short for:
[action:=‘A1’;A, action:=‘A2’;A, . . . , action:=‘An’;A / A1,A2,...,An]

RHS is similarly equivalent to:
beg action:=‘A1’: (µA.S′) end
where S′ = if action=‘A1’ → action:=‘O’; guardZ(S1)[action:=‘Ak’;A/Ak]

⊓⊔ action=‘A2’ → action:=‘O’; guardZ(S2)[action:=‘Ak’;A/Ak]
. . .
⊓⊔ action=‘Ai’ → action:=‘O’; guardZ(Si[Sj/(m,Aj)])[action:=‘Ak’;A/Ak]
. . .
⊓⊔ action=‘An’ → action:=‘O’; guardZ(Sn)[action:=‘Ak’;A/Ak] fi.

By selective unrolling of the recursive statement we can replace the mth occurrence of
action:=‘Aj’;A in guardZ(Si)[action:=‘Ak’;A/Ak] in LHS by action:=‘Aj’;S. Then, by pruning the
inner if, we get:
beg action:=‘A1’: (µA.S) end
where S= if...

13

⊓⊔ action=‘Ai’ →
action:=‘O’;
guardZ(Si)[action:=‘Ak’;A/Ak]

[action:=‘Aj’; action:=‘O’;
guardZ(Sj)[action:=‘Ak’;A/Ak] / (m,action:=‘Aj’;A)]

... fi.

Here the mth occurrence of Aj is first replaced by action:=‘Aj’;A which is then replaced by
action:=‘O’; Sj[action:=‘Ak’;A/Ak]. The guardZ outside means that the assignment action:=‘O’
can be removed. Thus the mth occurrence of Aj is replaced by guardZ(Sj)[action:=‘Ak’;A/Ak].

The same result is achieved by replacing the mth occurrence of Aj by guardZ(Sj) and then
carrying out the substitution [action:=‘Ak’;A/Ak]. Thus we get:
beg action:=‘A1’: (µA.S) end
where S= if...

⊓⊔ action=‘Ai’ → guardZ(Si)[guardZ(Sj)/(m,Aj)][action:=‘Ak’;A/Ak]
... fi.

This is equivalent (by the definition of guardZ) to the RHS.

(b) Add an extra component to the if statement of the form:
⊓⊔ action=‘An+1’ → action:=‘O’; guardZ(Sn+1)[action:=‘Ak’;A/Ak]

which is never executed since action 6=‘An+1’ is invariant. By part (a) we can replace an occurrence of
Sn+1 in Si by An+1 which gives the result.

Induction Rule for Action Systems:

Defn: If AS = 〈A1 ≡ S1,A2 ≡ S2,. . . ,Ap ≡ Sp〉 is an action system and 16i6p then we define
AS0(i) =DF abort
ASn(i) =DF action:=‘O’; guardZ(Si)[ASn−1(j)/Aj |16j6p] for 0<n< ω.

This is a generalised version of proc X ≡ S.n with provision for the terminating action.
ASn(i) is the “nth truncation” of the ith action in the system.

Theorem: Induction rule for action systems:
If AS = 〈A1 ≡ S1,A2 ≡ S2,. . . ,Ap ≡ Sp〉 is an action system and S′ a statement such that

ASn(1) 6 S′ for all n< ω

Then AS6S′, ie A1 6S′ (where we are using the name of the first action to denote the
whole action system).

14

Proof: AS ≈ beg action:=‘A1’: (µA.S) end
where S = if action=‘A1’ → action:=‘O’; guardZ(S1)[action:=‘Ak’;A/Ak]

⊓⊔ ...
⊓⊔ action=‘An’ → action:=‘O’; guardZ(Sn)[action:=‘Ak’;A/Ak] fi

action:=‘Ai’; (µA.S)n ≈ abort if n=0
≈ action:=‘Ai’; S[(µA.S)n−1/A] if n>0
≈ action:=‘Ai’; action:=‘O’; guardZ(Si)[action:=‘Ak’;A/Ak][(µA.S)n−1/A]

by pruning conditional
≈ action:=‘O’; guardZ(Si)[action:=‘Ak’; (µA.S)n−1/Ak]

Claim: ASn(i) ≈ action:=‘Ai’; (µA.S)n for 16i6p.
Proof: by induction on n, trivial for n=0.
Suppose the result holds for n,
ASn+1(i) ≈ action:=‘O’; guardZ(Si)[ASn(j)/Aj |16j6p] by definition

≈ action:=‘O’; guardZ(Si)[action:=‘Aj’; (µA.S)n/Aj |16j6p] by induction hyp
≈ action:=‘Ai’; action:=‘O’; guardZ(Si)[action:=‘Aj’; (µA.S)n/Aj |16j6p]

by adding a redundant assignment.
≈ action:=‘Ai’; (µA.S)n+1

which proves the claim by induction.

From the premise we have ASn(1) 6 S′ for all n< ω

Thus action:=‘A1’; (µA.S)n 6 S′

So by the general induction rule for recursion we have
action:=‘A1’; (µA.S) 6 S′ ie AS6S′ as required.

Identification:
If two actions X and Y differ only in that replacing Y by X in both definitions gives the

same result then we can identify them and replace Y by X everywhere and remove Y from the system.
Adding unnecessary statements to actions which are similar may enable them to be

identified: this may make the system less efficient but with a simplified structure. In our development
of the Schorr-Waite algorithm we add a single test which enables us to identify all four actions in a
system which collapses to a single tail-recursive procedure and thence to an iterative equivalent.

Proof: By re-ordering the actions we may assume X=Ap and Y=Am where there are m actions in the
original system.
Let L= 〈A1 ≡ S1,...,Ap ≡ Sp,...,Am ≡ Sm〉 where 16p<m

15

and R= 〈A1 ≡ SJ[Ap/Am],...,Ap ≡ Sp[Ap/Am],...,Am−1 ≡ Sm−1[Ap/Am]〉
be action systems where Sp[Ap/Am] ≈ Sm[Ap/Am]. We want to prove L ≈ R.
Use the induction rule for action systems:
Claim: Ln(k) ≈ Rn(k), 16k6m−1 and Ln(m) ≈ Rn(p) for n< ω,
L0(k) ≈ R0(k) trivially, suppose the result holds for n:
Ln+1(k) ≈ Sk[L

n(j)/Aj |16j6m] for 16k6m.
By induction hypothesis Ln(m) ≈ Rn(p) ≈ Ln(p). So:
Ln+1(k) ≈ Sk[L

n(j)/Aj |16j6m][Ln(p)/Ln(m)]
Ln+1(k) ≈ Sk[Ap/Am][Ln(j)/Aj |16j6m]

≈ Sk[Ap/Am][Ln(j)/Aj |16j6m−1] since there are no Ams for the second substitution.
≈ Sk[Ap/Am][Rn(j)/Aj |16j6m−1] by induction hypothesis
≈ Rn+1(k) for 16k6m−1

Ln+1(m) ≈ Sm[Ap/Am][Rn(j)/Aj |16j6m−1]
≈ Sp[Ap/Am][Rn(j)/Aj |16j6m−1] by premise
≈ Rn+1(p)

which proves the claim.
Hence beg action:=‘A1’: Ln(1) end ≈ beg action:=‘A1’: Rn(1) end 6 R
and L6R by induction rule for action systems.
Similarly beg action:=‘A1’: Rn(1) end ≈ beg action:=‘A1’: Ln(1) end 6 L
and R6L. Hence L ≈ R as required.

Recursion Removal:
Let X ≡ S be an action which depends only on X and Y (ie the only action calls in S are to

X or to Y). We want to remove the recursion in X by enclosing S in a loop, replacing X by a statement
which causes re-execuion of the loop, replacing Y by a statement which causes termination of the
loop and putting a single Y after the loop. Thus for example:

X ≡ S ≈ X ≡ do S[skip, exit / X,Y] od; Y

Arsac [Arsac 82], describes this transformation for the case when the action system is
regular and all the calls to X are in terminal positions. For our action systems we are able to prove two
generalisations of this recursion removal:

Theorem(A): If the action system AS containing X (as above) is regular then:
X ≡ S ≈ X ≡ do do S[exit, exit(2) / X,Y] od od; Y

Cor: If X is tail-recursive (ie all the calls to X in S are in terminal positions) then:
X ≡ S ≈ X ≡ do S[skip, exit / X,Y] od; Y

16

Proof of Cor:
If all calls to X are terminal then S[exit, exit(2) / X,Y] is reducible since the only terminal
statements with terminal value one are the exits which replace the calls of X and which are in
terminal positions. (S cannot have a terminal statement with terminal value >0 since it is the body of
an action).

S[exit, exit(2) / X,Y]−1 = S[skip, exit / X,Y]
so by double iteration:

do do S[exit, exit(2) / X,Y] od od ≈ do S[skip, exit / X,Y] od.

Theorem(B): If all calls (to X and Y) in S are in terminal positions and all terminal statements of
S
are action calls (to X or Y) then:

X ≡ S ≈ X ≡ do S[skip, exit / X,Y] od; Y

Note: A more general version of Theorem(B) which allows non-terminal calls to X or Y in S will fail
since if S contains X;S1 or Y;S1 then on termination of the call to X or Y we should execute S1 but if
we replace X or Y by exits then any statement after them (ie S1) will never be executed. This does not
matter in Theorem(A) because the fact that the system is regular means that an action call can only
ever be terminated by a call to Z (the terminating action) and this causes immediate termination of
the whole system. Thus any statements following an action call in a regular action system will never be
executed.

Proof of Theorem B:
Let Aq represent X, Ar represent Y, Sq represent S. We wish to prove the following

action systems to be equivalent:
AS= 〈A1 ≡ S1 ,..., Aq ≡ Sq ,..., Ap ≡ Sp〉
AS′ = 〈A1 ≡ S1 ,..., Aq ≡ do Sq[skip,exit/Aq,Ar] od; Ar ,..., Ap ≡ Sp〉

where 16q6p and 16r6p and q6=r.
Claim: ASn 6 AS′.
Proof: By induction on n:
For i 6=q this is easy since:
ASn+1(i) ≈ action:=‘O’; Si[ASn(j)/Aj] 6 action:=‘O’; Si[AS′(j)/Aj] ≈ AS′(i) by folding.
Let S′ =do Sq[skip,exit/Aq,Ar] od; Ar.
AS′ ≈ action:=‘A1’; A where

proc A ≡
if action=‘A1’ → action:=‘O’; guardZ(S1)[action:=‘Ai’;A/Ai|16i6p]
. . .
⊓⊔ action=‘Aq’ → action:=‘O’; guardZ(S′)[action:=‘Ai’;A/Ai|16i6p]
. . .

17

⊓⊔ action=‘Ap’ → action:=‘O’; guardZ(Sp)[action:=‘Ai’;A/Ai|16i6p] fi.

All action calls in Sq are in terminal positions so all the if statements introduced by guardZ can be
pruned away.
guardZ(S′)[action:=‘Ai’;A/Ai|16i6p]

≈ depth:=1; while depth=1 do
guard1(Sq[skip,exit/Aq,Ar]) od; Ar[action:=‘Ai’;A/Ai|16i6p]

≈ depth:=1; while depth=1 do guard1(Sq[skip,exit/Aq,Ar]) od; action:=‘Ar’;A

Claim(i):
{depth=1}; while depth=1 do guard1(Sq[skip,exit/Aq,Ar]) odn; action:=‘Ar’;A

6 {depth=1}; depth:=0; Sq[action:=‘Aq’;A, action:=‘Ar’;A / Aq,Ar].
Proof: of Claim(i) by induction on n. Trivial for n=0. Assume true for n:
{depth=1}; while depth=1 do guard1(Sq[skip,exit/Aq,Ar]) odn+1; action:=‘Ar’;A

≈ {depth=1}; guard1(Sq[skip,exit/Aq,Ar]);
if depth=1 then while depth=1 do guard1(Sq[skip,exit/Aq,Ar]) odn fi;
action:=‘Ar’;A
≈ {depth=1}; guard1(Sq[skip,exit/Aq,Ar]);
if depth=1
then {depth=1}; while depth=1 do guard1(Sq[skip,exit/Aq,Ar]) odn;

action:=‘Ar’;A
else action:=‘Ar’;A fi (forward expansion of conditional).
≈ {depth=1}; Sq[skip,depth:=depth−1/Aq,Ar]);
if depth=1
then {depth=1}; while depth=1 do guard1(Sq[skip,exit/Aq,Ar]) odn;

action:=‘Ar’;A
else action:=‘Ar’;A fi (by removing the guard on Sq).
≈ {depth=1}; Sq[if...fi, depth:=depth−1; if...fi/Aq,Ar]

by simple absorption since Sq is regular and Aq,Ar are the only terminal statements with terminal
value zero.

≈ {depth=1}; Sq[{depth=1};
while depth=1 do guard1(Sq[skip,exit/Aq,Ar]) odn;
action:=‘Ar’;A,
depth:=depth−1; action:=‘Ar’;A /Aq,Ar] by pruning the ifs.

≈ {depth=1}; Sq[{depth=1}; depth:=0;
Sq[action:=‘Aq’;A, action:=‘Ar’;A / Aq,Ar],
depth:=depth−1; action:=‘Ar’;A /Aq,Ar] by ind hyp.

18

≈ {depth=1}; depth:=0; Sq[Sq[action:=‘Aq’;A, action:=‘Ar’;A / Aq,Ar],
action:=‘Ar’;A /Aq,Ar]

since these are the only occurrences of depth.
≈ {depth=1}; depth:=0; Sq[action:=‘Aq’;A, action:=‘Ar’;A / Aq,Ar] by action folding.

Which proves Claim(i) by induction.
Hence by the induction rule for loops:
S′[action:=‘Aq’;A, action:=‘Ar’;A / Aq,Ar]

6 depth:=1; depth:=0; Sq[action:=‘Aq’;A, action:=‘Ar’;A / Aq,Ar]
≈ Sq[action:=‘Aq’;A, action:=‘Ar’;A / Aq,Ar]

since depth=0 always holds at the beginning of an action.
Hence AS′ 6AS.
Conversely:

Claim(ii): ASn(i) 6 AS′ n(i) for 16i6p.
By induction on n:
ASn+1(q) 6 depth:=1; while depth=1 do Sq[skip,depth:=0/Aq,Ar] odn+1; AS′ n(r).
Since
ASn+1(q) 6 Sq[ASn(q),ASn(r)/Aq,Ar]

6 Sq[depth:=1; while depth=1 do Sq[skip, depth:=0/Aq,Ar] odn; AS′ n−1(r),
AS′ n(r) / Aq,Ar] by induction hypothesis.
≈ depth:=1; Sq[while depth=1 do Sq[skip, depth:=0/Aq,Ar] odn; AS′ n−1(r),

depth:=0; AS′ n(r) / Aq,Ar]
6 depth:=1; Sq[while depth=1 do Sq[skip, depth:=0/Aq,Ar] odn; AS′ n(r),

depth:=0; AS′ n(r) / Aq,Ar]
since AS′ n−1(r) 6 AS′ n(r).

≈ depth:=1; Sq[while depth=1 do Sq[skip, depth:=0/Aq,Ar] odn; AS′ n(r),
depth:=0; while depth=1 do... odn; AS′ n(r) / Aq,Ar]

≈ depth:=1; Sq[skip,depth:=0 / Aq,Ar];
while depth=1 do Sq[skip, depth:=0/Aq,Ar] odn; AS′ n(r)

by absorption.
≈ depth:=1; while depth=1 do Sq[skip, depth:=0/Aq,Ar] odn+1; AS′ n(r).

Hence ASn+1(q) 6 depth:=1; while depth=1 do Sq[skip,depth:=0/Aq,Ar] od; AS′ n(r)
≈ depth:=1; while depth=1 do guard1(Sq[skip,exit/Aq,Ar]) od; AS′ n(r)
≈ guard0(do Sq[skip,exit/Aq,Ar] od); AS′ n(r)
≈ guard0(do Sq[skip,exit/Aq,Ar] od; Ar); [AS′ n(r)/Ar]
≈ AS′ n+1(r) since Sq contains calls to Aq and Ar only.

19

Hence ASn(i) 6 AS′ n(i) for 16i6p and n< ω.

Hence by induction AS6AS′ and thus AS ≈ AS′ as required.

Regular Action Systems:

Theorem: Translation to Iterative Form: The regular action system:
AS= 〈A1 ≡ S1,A2 ≡ S2,...,An ≡ Sn〉 with terminating action Z is equivalent to the iterative statement:

AS′ = action:=‘A1’;
do do if action=‘A1’ → S1[action:=‘Ai’;exit / Ai|16i6n][exit(2)/Z]

⊓⊔ action=‘A2’ → S2[action:=‘Ai’;exit / Ai|16i6n][exit(2)/Z]
⊓⊔ . . .
⊓⊔ action=‘An’ → Sn[action:=‘Ai’;exit / Ai|16i6n][exit(2)/Z] fi od od.

Proof:
Let IF be: if action:=‘A1’ → S1

⊓⊔ action:=‘A2’ → S2

⊓⊔ . . . fi
Then by the definitional transformation:

AS ≈ action:=‘A1’; A where
proc A ≡ action:=‘O’; guardZ(IF[action:=‘Ai’;A / Ai|16i6n][action:=‘Z’ / Z].

We want to prove that this is equivalent to:
action:=‘A1’; do do IF[action:=‘Ai’;exit / Ai|16i6n][exit(2) / Z] od od

Note that we don’t care about the final value of action.
Hence we need to prove that the procedure:

proc A ≡ action:=‘O’; guardZ(IF[action:=‘Ai’;A / Ai|16i6n][action:=‘Z’ / Z].
is equivalent to the double loop:

do do IF[action:=‘Ai’;exit / Ai|16i6n][exit(2) / Z] od od
The proof uses the following lemma:

Lemma: Induction rule for double iteration.
For the double loop do do S od od we define the nth truncation by:
do do S od od0 = abort
do do S od odn+1 = action:=‘O’; guardZ(S-(2,3))[do do S od odn/(n,T)|τ =0 ∨ τ =1]

[action:=‘Z’/(n,T)|τ =2]
where action is a new variable.
Then if do do S od odn 6 S′ for all n< ω then do do S od od 6 S′.

20

Proof: The S-(2,3) will reduce all the terminal statements with terminal value >0 in the original
loop by two (to compensate for the fact that they have been moved out of two loops), the guardZ is to
ensure that terminal statements with terminal value 2 are dealt with correctly and terminal
statements of S which do not terminate the loop are replaced by the next lower truncation.

A rigorous proof involves translating the double loop to a double while loop (using the
definitional transformations), transforming the double while loop to a single loop using lemma B in
the previous Chapter, and showing that the nth truncations of this while loop are equivalent to do do
S od odn. The details are omitted for brevity.

We can easily show that the nth truncation:
proc A ≡ action:=‘O’; guardZ(IF[action:=‘Ai’;A / Ai|16i6n][action:=‘Z’ / Z].n

is equivalent to:
do do IF[action:=‘Ai’;exit / Ai|16i6n][exit(2) / Z] od od

by induction on n since the only terminal statements of IF are action calls (because the original action
system was regular).
Hence the only terminal statements of IF[action:=‘Ai’;exit / Ai|16i6n][exit(2) / Z] with terminal
value zero or one are the exits which arise from the substitution of action calls.

This Lemma then completes the proof of the theorem. We can use this theorem to prove Theorem
(A):

Proof of Theorem(A):
Recall that the action system is regular and Sq contains calls to Aq and Ar only.
By the previous theorem, since AS is regular:
AS ≈ action:=‘A1’;

do do if action=‘A1’ → S1[action:=‘Ai’; exit/Ai|16i6p]
. . .
⊓⊔ action=‘Aq’ → Sq[action:=‘Ai’; exit/Ai|16i6p]
. . .
⊓⊔ action=‘Ap’ → exit(2) fi od od

where Aq represents X, Ar represents Y (16q<p, 16r6p, q6=r) and Ap is the unique terminating
action.
From the premises we deduce that all the terminal statements in Sq are of the form:

action:=‘Aq’; exit or action:=‘Ar’; exit.
This is a double-nested loop so we can use selective unrolling on selected terminal

statements with terminal value one. We will unroll on the statements action:=‘Aq’; exit and use
action=‘Aq’ as the extra condition on the inserted loop. The body of the inserted loop can then be
simplified to give (for the qth condition):

21

⊓⊔ action=‘Aq’
→ Sq[action:=‘Ar’; exit /Ar]

[action:=‘Aq’; do do if action=‘Aq’
then Sq[action:=‘Ar’; exit /Ar][action:=‘Aq’; exit /Aq]
else exit(2) fi od od]

The else exit(2) can be replaced by else exit(3) since the inserted loop is in a terminal position in
the body of the outer double loop. Use selective unrolling on the inserted loop to replace action:=‘Ar’;
exit by action:=‘Ar’; exit(3). Now the predicate action=‘Aq’ is preserved by the loop body and is
true initially so we can remove the test and remove the statement action:=‘Aq’ replacing Aq.

⊓⊔ action=‘Aq’
→ Sq[action:=‘Ar’; exit /Ar]

[action:=‘Aq’; do do Sq[action:=‘Ar’; exit(3) /Ar][exit /Aq] od od]
Loop rolling gives:

⊓⊔ action=‘Aq’
→ do do Sq[action:=‘Ar’; exit(3) /Ar][exit /Aq] od od

Finally we move the statement action:=‘Ar’ outside the loop:
⊓⊔ action=‘Aq’
→ do do Sq[exit(2) /Ar][exit /Aq] od od; action:=‘Ar’

We can add an exit to the end of this statement (since it is at the end of the body of a
double loop), then translating the result back to a regular action system completes the proof.

22

