
) CHAPTER FIVE

) Transformationfof Recursive Systems

“The transformation from recursion to iteration is one of the most fundamental
concepts of computer science.” Knuth 1974

Introduction

In this chapter we build on the results of the previous chapter to derive further
transformations of recursive actions. These are used to extend our programming language to include
procedures with parameters and local variables. We initially concentrate on transformations from
recursive to iterative forms: this is not simply because iterative algorithms are more efficient but
because it gives insights into deriving new iterative (and recursive) strategies. As Arsac puts it [Arsc
82]: “The true problem is not efficiency: the recursive procedures may be so efficient that the effort
to obtain iterative ones is not worthwhile. It is rather a problem of knowledge: we are interested in
discovering new iterative strategies.” He goes on to make the bold claim: “Transforming recursion
into iteration is, in my opinion, the most powerful way to develop iterative procedures and discover
new strategies”. The transformations from recursion to iteration have proved fundamental to our
research on the derivation of algorithms from specifications. In the course of deriving an algorithm
from its specification, the application of our “theorem on the recursive implementation of
specifications” naturally gives rise to recursive functions or procedures, which may well be good
candidates for transformation to an iterative algorithm.

This Chapter deals with the two main techniques for recursion removal, adding a protocol
stack and adding a stack to record “postponed” obligations to compute statements or recursive calls.
The first section deals with the case of a regular action system (a regular system corresponds to a
program written using labels and goto statements together with a halt statement).

Solution of a Regular Action Systems:

Suppose we have an action X1 ≡ S1 in a regular action system where S1 contains calls to
several other actions, say X2,...,Xn, as well as X1. We can replace all these by calls to a new action Y by
adding a new variable call and defining:
Y ≡ if call=‘X2’ → X2 ⊓⊔ ... ⊓⊔ call=‘Xn’ → Xn ⊓⊔ call=‘Z’ → Z fi
X1 ≡ S1[call:=‘Xi’;Y/Xi|i=2,...,n][call:=‘Z’;Y/Z]

Then by applying the theorem of the last chapter we get X1 ≈

1



X1 ≡ do do S1[exit/X1][call:=‘Xi’;exit(2)/Xi|i=2,...,n][call:=‘Z’;exit(2)/Z] od od; Y.
We would like to apply absorption to this to get something like:
X1 ≡ do do S1[exit/X1][call:=‘Xi’;Y+2/Xi|i=2,...,n][call:=‘Z’;Y+2/Z] od od. (*)

However, the way we defined S+k for primitive statements S was S;exit(k) which in this
case would give Y;exit(2) within the loop which violates our rule about not having action calls from
within do...od loops. This is because of the problem of keeping track of different incarnations of a
recursive action being at different depths, which would make things more complicated than they need
be. The action call is not “really” in the loop however since as soon as it is completed the loop is
terminated. What we need is some way of expressing the fact that the action call also causes
termination of the loop. We do this by extending the definitional transformation to transform Xi+k
to action:=‘Xi’;X+k and adding to the definition of guardn so that guardn(X+k)= if depth=n
then depth:=depth−k; X fi. We deal with Z+k within guardZ by defining guardZ(Z+k)=
action:=‘Z’;exit(k). With these definitions we can allow action calls of the form X+k provided they
occur within k nested loops. We will then still have depth=0 for every procedure call.

To sum up:
Defn: If AS= 〈X1 ≡ S1,...,Xm ≡ Sm〉 is a (not necessarily regular) action system which includes action
calls of the form Xi+k then it is interpreted by the definitional transformation as:
action:=‘A1’;A where
proc A ≡
if action=‘A1’ → action:=‘O’; guardZ(S1[action:=‘Ai’;A+k/Ai+k])
⊓⊔ . . .
⊓⊔ action=‘Am’ → action:=‘O’; guardZ(Sm[action:=‘Ai’;A+k/Ai+k]) fi.

where guardZ is defined as in the previous Chapter with: guardZ(Z+k)= action:=‘Z’; exit(k)
and guardn(X+k)= if depth=n then depth:=depth−k; X fi.

Note that if we unfold an action call Xi+k where Xi ≡ Si then we replace it by Si+k.
Hence if we unfold the calls to Y in (*) we get:
X1 ≡ do do S1[exit/X1]

[call:=‘Xi’; if call=‘X2’ → X2 ⊓⊔ ... ⊓⊔ call=‘Xn’ → Xn ⊓⊔ call=‘Z’ → Z fi+2/Xi|i=2,...,n]
[call:=‘Z’; if call=‘X2’ → X2 ⊓⊔ ... ⊓⊔ call=‘Xn’ → Xn ⊓⊔ call=‘Z’ → Z fi+2/Z] od od.

Pruning the ifs gives:
X1 ≡ do do S1[exit/X1][call:=‘Xi’; Xi+2/Xi|i=2,...,n][call:=‘Z’; Z+2/Z] od od.

2



Now the variable call is dead so it can be removed:
X1 ≡ do do S1[exit/X1][Xi+2/Xi|i=2,...,n][Z+2/Z] od od.

With this substitution X1 is no longer recursive so it can be eliminated from the system
(provided it is not the first in the system) by unfolding all calls to it and removing it. Also Y can be
removed since there are no calls to it. Repeated use of this rule on each recursive action in turn,
together with unfolding of each non-recursive action will eliminate every action in the system (except
the first and Z). We get:
AS ≈ action:=‘A1’; A where
proc A ≡
if action=‘A1’ → action:=‘O’; guardZ(S1[action:=‘Ai’;A+k/Ai+k]) fi.

where S1 contains no action calls except those of the form Z+k. Hence:
AS ≈ action:=‘A1’; proc A ≡ if action=‘A1’ → action:=‘O’; guardZ(S1) fi.
≈ action:=‘A1’;
if action=‘A1’ → action:=‘O’; guardZ(S1) fi

[A/proc A ≡ if action=‘A1’ → action:=‘O’; guardZ(S1) fi.]
by recursion unfolding.

≈ action:=‘A1’; if action=‘A1’ → action:=‘O’; guardZ(S1) fi
since S1 contains no calls to actions other than Z+k.
≈ action:=‘A1’; action:=‘O’; guardZ(S1) by pruning the if.
≈ action:=‘O’; guardZ(S1)

We claim that this is equivalent to do S1[exit(k+1)/Z+k] od.

Note that if all occurrences of Z are in terminal positions then the body of the loop is
reducible and therefore the loop is equivalent to S1[exit(k)/Z+k] by false iteration since every
execution of S1 leads to an action call which must be a Z+k at depth k (note that this property is
preserved by the recursion removal transformation) hence every terminal statement of
S1[exit(k+1)/Z+k] is an exit(k+1) substituted for a Z+k. Proof of Claim: action:=‘O’;
guardZ(S1) ≈ do

(

action:=‘O’; guardZ(S1)
)

+1 od by false iteration.
≈ do action:=‘O’; guardZ(S1+1) od

Now guard0(do action:=‘O’; guardZ(S1+1) od)
≈ depth:=1; while depth=1 do guard1(action:=‘O’; guardZ(S1+1)) od

From the way the recursion removal was carried out we see that each occurrence of Z+k must be at
depth k. (Prove that this property is preserved by the recursion removal transformation).
guardZ(Z+k)= action:=‘Z’; exit(k) which therefore sets the depth to zero.

3



Hence depth=0 iff action=‘Z’ and depth>0 iff action=‘O’. So we can replace Z+k
by exit(k) and remove the guardZ .

Removing Non-terminal Recursion

Suppose our set of actions has some non-terminal calls such as: F;Y. If every execution of
F eventually leads to a call of the terminating action (this is always the case for a regular action
system) then the statement Y in the action cannot be reached and so may be eliminated.

To regularise a set of actions we need to add action calls to those terminal statements
which are not action calls and which can be reached without encountering an action.

If F has such a terminal statement then we add a new action called /F and add a call to
/F after each such terminal statement. So far this is simply a void action (ie the body of /F is simply
skip) and is therefore itself non-regular. In order to “regularise” /F we need to copy into it the
sequence of statements which are executed on termination of a call to /F via a call to F. If F is the
only non-regular action then the result of this copying will make /F regular and hence the whole
system will be regular. If there are several non-regular actions then they will have to be treated in turn.

Theorem: Suppose we have the following program which calls a recursive procedure:
P ≡ S1; F0; S2. where
proc F0 ≡ if B then a; F0; b; F0; c

else d fi.
The problem with transforming this to an iterative form is that when an activation of F0

terminates we cannot tell which of the three calls gave rise to that particular activation. So we cannot
tell whether S2 or b or c will be executed after F0 terminates. This becomes clearer if we write the
program in this form (which can easily be seen to be equivalent to the first form by copying in /F, X0,
X1 and X2):
P ≡ S1; X0.
X0 ≡ F0; S2; Z.
F0 ≡ if B then a; X1

else d; /F fi.
X1 ≡ F0; b; X2.
X2 ≡ F0; c; /F0.
/F0 ≡ skip.

Now a call to any action other than /F0 leads to an action call. The problem is that when /F0

terminates the next statement to be executed will either be S2 or b or c so we cannot jump directly to

4



it. Suppose there is some condition of the state which can be tested to determine which statement to
execute–ie suppose we can insert assertions thus:
P ≡ S1; X0.
X0 ≡ F; {B0}; S2; Z.
F0 ≡ if B then a; X1

else d; /F fi.
X1 ≡ F0; {B1}; b; X2.
X2 ≡ F; {B2}; c; /F0.
/F0 ≡ skip.

where B0, B1 and B2 are disjoint, ie
(

B0 ∧ B1

)

⇐⇒
(

B0 ∧ B2

)

⇐⇒
(

B1 ∧ B2

)

⇐⇒ false.

Then we claim that the program is equivalent to the following:
P2 ≡ S1; X0

X0 ≡ F.
F ≡ if B then a; X1

else d; /F fi.
X1 ≡ F.
X2 ≡ F.
/F ≡ if B0 → S2; Z
⊓⊔ B1 → b; X2

⊓⊔ B2 → c; /F fi.

Unfolding the calls to F in X0, X1 andX2 will make the bodies of these four actions identical. They
can
all be replaced by F to get:
P2 ≡ S1; F.
F ≡ if B then a; F

else d; /F fi.
/F ≡ if B0 → S2; Z
⊓⊔ B1 → b; F
⊓⊔ B2 → c; /F fi.

To prove that the two programs are equivalent we will prove that:
F0; /F ≈ F

From this we have:

5



P2 ≈ S1; F0; /F
≈ S1; F0; {B0}; /F from the premises.
≈ S1; F0; {B0}; S2; Z since the Bi are disjoint conditions.
≈ S1; F0; S2; Z
≈ P

as required.

To prove F0; /F ≈ F we will prove the following by induction on n:
(1) Fn 6 F0; (/F)n.
(2) (F0)

n; /F ≈ F.

Proof of (1):
Fn+1 ≈ if B then a; Fn by unfolding.

else d; (/F)n fi
6 if B then a; F0; (/F)n by induction hypothesis.

else d; (/F)n fi
6 if B then a; F0; (/F)n+1

else d; (/F)n fi
≈ if B then a; F0; b; Fn by unfolding (/F)n+1 and inserting
else d; (/F)n fi the assertion {B1}.

6 if B then a; F0; b; F0; (/F)n by induction hypothesis.
else d; (/F)n fi
≈ if B then a; F0; b; F0

else d fi; (/F)n by taking out the (/F)n.
≈ F0; (/F)n by folding F0.

6 F0; (/F)n+1 as required.

Proof of (2):
(F0)

n+1; /F ≈ if B then a; (F0)
n; b; (F0)

n; c
else d fi; /F.
≈ if B then a; (F0)

n; {B1}; b; (F0)
n; {B2}; c

else d fi; /F. by inserting assertions.
≈ if B then a; (F0)

n; {B1}; b; (F0)
n; {B2}; c; /F

else d; /F fi.

6



≈ if B then a; (F0)
n; {B1}; b; (F0)

n; /F by folding /F.
else d; /F fi.

6 if B then a; (F0)
n; {B1}; b; F by induction hypothesis.

else d; /F fi.

≈ if B then a; (F0)
n; /F by definition of /F.

else d; /F fi.
6 if B then a; F by induction hypothesis.

else d; /F fi.
≈ F. by folding.

This proves the Theorem.
For the general case we can treat each non-regular action in turn by using this technique.

Finding such Bi to insert may be quite a problem since there may be no way of
distinguishing the next action to call from the state alone. A way round this is to introduce new “ghost
variables” which “enrich” the state so that it becomes possible to distinguish the actions. For example,
by adding a single variable next and changing Xi to Xi ≡ next:=‘Yi’;F;Yi will work (with Bi as
next=‘Yi’) provided F does not change the value of next. In general F will call other actions Xj ,
which will re-assign next, so this may not work. A completely general solution is to use a stack onto
which information designating the successor to F is pushed immediately prior to calling F. For
example:
X0 ≡ stack:=〈〉; F; {stack= 〈〉}; Y0

Xi ≡ stack:=stack&〈‘Yi’〉; {hd(stack)=‘Yi’}; F;
{hd(stack)=‘Yi’}; stack:=tl(stack); Yi

/F ≡ skip

Given that each inner action call preserves stack it is easy to prove that each action body
preserves stack and hence, by induction, each action preserves stack.

We could push the integer i onto the stack instead of ‘Yi’, then the stack will contain
integers in the range 0..n−1. Such a stack can be represented by a single integer, with the digits of this
integer in base n giving the elements of our stack. Note that we represent the empty stack by 1 rather
than 0 so that we can distinguish an empty stack from a stack containing only zeros.

When there is only one Xi, ie when n=1, the stack contains a sequence of 1’s so we only
need to record the length of the stack: we represent a sequence of 1’s by an integer set to zero in X0,
incremented when 1’s are added and decremented when 1’s are removed. In fact this integer records
the current depth of recursion nesting: while it is non-zero we know that we are within a recursive
procedure call, once it reaches zero we know that the outermost procedure call has just terminated.

7



FORMAL PARAMETERS AND LOCAL VARIABLES

For simplicity we will only consider procedures with parameters which are called by value
or by value-result. Here the value of the actual parameter is copied into a local variable which
replaces the formal parameter in the body of the procedure. For result parameters, the final value of
this local variable is copied back into the actual parameter. In this case the actual parameter must be
a variable or some other object (eg an array element) which can be assigned a value. Such objects are
often denoted as “Lvalues” because they can occur on the left of assignment statements.

The reason for concentrating on value parameters is that they avoid some of the problems
caused by “aliasing” where two variable names refer to the same object. For example if a global
variable of the procedure is also used as a parameter, or if the same variable is uses for two actual
parameters then with other forms of parameter passing aliasing will occur but with value parameters
the aliasing is avoided (unless the same variable is used for two result parameters and the procedure
tries to return two different values). This means that procedures with value parameters have simpler
semantics.

In most cases the different methods of parameter passing produce the same result, though
there may be differences in efficiency. For this reason the language Ada allows the compiler to choose
between call by value and call by reference and requires all programs to give the same result whatever
method is used: programs which would give different results are technically illegal, although no
compiler could determine which programs are legal and which are illegal [Ghezzi & Jazayeri 82]. It is
generally better to specify that a compiler rejects certain specific constructs as erroneous rather than
simply leaving the result “undefined”. (For example: making it an error to access the value of a loop
variable after the loop has terminated rather than leaving the value undefined). This prevents
programmers making use of the effect produced by a particular compiler and so writing programs
which may give different results at a different installation, or with a different version of the compiler.

Other languages (eg Modula) default to passing simple variables by value (to avoid
repeated recomputation of expressions) and passing structures and arrays by reference (to avoid
copying the whole structure when only part of it may be accessed).

Our “definitional transformation” for a procedure with formal parameters and local
variables will replace them both by global stacks as follows:
F(t,v) where
proc F(x, var y) ≡ Here x is a value parameter and y is a value-result parameter.
var a:=d, b; Defines two local variables, the first is assigned an initial value.
S. The body of the procedure. May contain recursive calls.

Transforms to:
x:=〈〉; y:=〈〉; a:=〈〉; b:=〈〉;
x←t; y←v; F; v:=hd(y); x:=tl(x); y:=tl(y) where

8



proc F ≡
a←d; beg b′: b←b′ end;
S[hd(x),hd(y),hd(a),hd(b) / x,y,a,b]

[x←t′; y←v′; F; v′:=hd(y); x:=tl(x); y:=tl(y) / F(t′, v′)];
a:=tl(a); b:=tl(b).

where x←v pushes the value of v onto the stack stored in x and v←x pops the top value off the stack
in x and stores it in v.

Here the substitution of hd(x) for x etc. ensures that the body of the procedure only
accesses and updates the top of the stacks which have replaced the parameters and local variables.
The statement beg b′: b←b′ end has the effect of pushing an arbitrary value onto the top of stack
b: our formal system ensures that once the procedure has been proved correct we know it will give the
right answer whatever value is pushed onto b. This means that the program will give the correct result
no matter what values are assigned to uninitialised local variables.

With such a procedure it is easy to prove that any call of F will only affect the values at the
top of the stacks x, y, a, and b so an inner recursive call of F, which is of the form: x←t′; y←v′; F;
v:=hd(y); x:=tl(x); y:=tl(y), will only affect the value of v and not affect the stack. The proof is by
the theorems on invariant maintenance for recursive statements. All the theorems we derived for
recursive procedures acting on global variables have analogous forms for procedures with
parameters and local variables. For example:

∆ ⊢ S where proc F(x) ≡ S′. ≈ S[S′[y/x] / F(y)] where proc F(x) ≡ S′.
This is a form of unfolding for procedures with parameters (we are ignoring problems

caused by name clashes which can be removed by systematic re-naming of variables).

Defn: We say that a parameter x in a procedure F is fixed if the call F(..,x,..) leads to no other calls
of the procedure except those of the form F(...,x,...) (with x in the same place).
Thus all parameters of non-recursive procedures are fixed.

A fundamental result about recursive procedures is that fixed parameters may be directly
replaced by global variables. This follows from the definitional transformation: prove that all the
values on the stack representing x are the same (we call such a stack a constant stack) whence we can
replace the stack by a simple variable, replacing push and pop operations by simple assignments.
We do not need to record the length of the stack since it is never needed (technically we represent a
constant stack by two variables, a value and a length, and then note that the length variable is never
accessed and hence is dead and can be removed).

Regularisation only applies to parameterless procedures acting on global variables. To
remove the recursion when parameters and local variables are present we convert them to global

9



stacks, by using the definitional transformation, and then can apply regularisation. In some cases the
initial value of a parameter or local variable (ie the value pushed onto the stack) can be computed
from the final value (ie the value popped off the stack) so that we can dispense with the stack.

Transforming Formal Parameters into Global Variables

In this section we discuss two special cases where formal parameters may be replaced by
global variables.
Suppose B is a formula,

x is a list of formal parameters called by value.
S1, S2 are statements which do not call F and do not modify x.
S′ is a statement which calls F but does not modify x.

(A): Suppose we have:
proc F(x) ≡ if B then S1

else S′; S2 fi.

To make x global we require that every call of F in S′, such as F(g(x)) is replaced by
x:=g(x); F. This has the effect of destroying the previous value of x which must be restored after the
call to ensure that x is globally invariant over F. (this is because S1, S2, and S′ do not affect x). This
can be achieved by using a stack for x (as in the definitional transformation): push(x); x:=g(x); F;
pop(x). If an inverse function g−1(x) exists then the stack can be avoided by recomputing the original
value of x.

To prove that F globally preserves x we take T to be any statement which preserves x (ie
{x=x0};T ≈ {x=x0};T;{x=x0} where x0 /∈vars(T)) and prove:

{x=x0}; if B then S1 else S′; S2 fi [x:=g(x); T; x:=g−1(x) / F(g(x))]
≈ {x=x0}; if B then S1 else S′; S2 fi [x:=g(x); T; x:=g−1(x) / F(g(x))]; {x=x0}.

Then by the theorem on invariant maintenance:
≈ {x=x0}; proc F ≡ if B then S1 else S′; S2 fi [x:=g(x); F; x:=g−1(x) / F(g(x))]. ; {x=x0}.

Since only S′ contains calls to F and nothing else affects x we need only prove:
{x=x0}; S′[x:=g(x); T; x:=g−1(x) / F(x)]
≈ {x=x0}; S′[x:=g(x); T; x:=g−1(x) / F(g(x))]; {x=x0}.

If the above can be proved then an equivalent recursive action is:

10



F ≡ if B then S1

else S′[x:=g(x); F; x:=g−1(x) / F(g(x))]; S2 fi.

(B): Suppose we have:
proc F(x) ≡ if B then S1

else S′; F(h(x)) fi.

In this case if a stack is used this becomes:
F ≡ if B then S1

else S′[push(x); x:=g(x); F; pop(x) / F(g(x))]; x:=h(x); F fi.

The final call of F is terminal so we need only distinguish the outermost call and the first
inner one. This leads to a simpler iterative procedure but still requires a stack. If then functions g−1

and h−1 exist (as above) then we can avoid the stack by recomputing x:
F ≡ if B then S1

else S′[x:=g(x); F; x:=g−1(x) / F(g(x))]; x:=h(x); F; x:=h−1(x) fi.

The final call of F is now no longer regular and so we have at least two non-regular calls
of F which means that if we wish to remove the recursion we would need some way of distinguishing
them (the general solution would be to use a protocol stack).

Alternatively we could keep the final call terminal. The final value δ(x0) of x when
exiting F has to be connected in some way with the initial value x0, ie: {x=x0}; F; {x= δ(x0)}. When
B holds x is not modified so we have: B ⇒ x0 = δ(x0). Otherwise F(x) ends with F(h(x)) so x0

and h(x0) must give the same final value of x. We have the recursive definition for δ(x):
δ(x) = if B then x else δ(h(x)) fi.

This is tail-recursive and can be transformed into the form of an iterative statement:
{x=x0}; while ¬B do x:=h(x) od; {x= δ(x0)}.

If δ and g both have computable inverses then we can transform F to:
F ≡ if B then S1

else S′[x:=g(x); F; x:=δ−1(x); x:=g−1(x) / F(g(x))]; x:=h(x); F fi

This has the final recursive call of F in a terminal position. Recursion removal can then be applied to
get:

11



F ≡ while B do
S′[x:=g(x); F; x:=δ−1(x); x:=g−1(x) / F(g(x))]; x:=h(x) od;

S1.

Note that if not all of x can be recomputed then part of it could be put on a stack.

Summery of Technique

This technique of recursion removal involves the following stages:
(1) Starting with a recursive procedure, transform it to a system of actions on global variables by
removing the parameters and local variable. Note that different ways of doing this often give
different action systems.
(2) Regularise the system of actions. (generally need to use a stack of some kind to record the action
to be executed on completion of the current one. Sometimes the stack can be avoided by making use
of assertions).
(3) Carefully examine for possible simplifications. For example: try to replace simple loops by
direct computations and look for other representations of the stack which will allow further
simplifications. See the proof of the theorem “Arithmetising the Flow of Control” for an example of
the simplifications which become possible using this technique.

THE POSTPONED OBLIGATIONS TECHNIQUE

Introduction

The previous section discussed a frequently-used method of recursion removal which, in
the general case, involves a “protocol stack”: a stack of marks which record which occurrence of the
call statement created each invocation of the recursion. This chapter discusses a different technique
for implementing recursive procedures and functions as iterative programs, called the “postponed
obligations” technique. With this technique, rather than recording our “current position” on a stack
when we encounter a recursive call, we record the list of operations (statements and recursive calls)
which have to be done once the current operation has finished. To see how this works, imagine an
executive working through a pile of paperwork. Some of the tasks can be carried out immediately,
others will generate subtasks which can be listed onto more pieces of paper and placed on top of the
pile in the order in which they need to be carried out. Some of these subtasks will create further sub-
sub-tasks and so on. Once the pile is empty, the executive knows that he has finished.

Sometimes the resulting program can be simplified jf the order of execution of certain
statements can be re-arranged: this leads to the concept of “statement ordr independence”:

12



Lemma: Statement Order Independence:
If S1 and S2 are statements such that var(S1)⊆V∪W1 and var(S2)⊆V∪W2, where V, W1

and W2 are disjoint sets of variables, and S1 and S2 preserve the values of all variables in V then:
∆ ⊢ S1;S2 ≈ S2;S1

Proof: Let v be a list of all the variables in V. If v′ are new variables then
S1 ≈ beg v′:=v; S1; {v=v′} end

since {v′ =v}; S1 ≈ {v′ =v}; S1; {v′ =v}.
We now represent the variables v in S1 by v′ to form S′

1. We get:
S1;S2 ≈ beg v′:=v; S′

1; v:=v′ end; S2

≈ beg v′:=v; S′

1 end; S2 (from above)
≈ beg v′:=v; S′

1;S2 end since v′ do not occur in S2

Now S′

1 and S2 have no variables in common:

Claim: If S′

1 and S2 have no variables in common then:
∆ ⊢ S′

1;S2 ≈ S2;S
′

1

Then S1;S2 ≈ beg v′:=v; S2;S
′

1 end
≈ S2; beg v′:=v; S′

1 end since S2 preserves the values of variable in v.
≈ S2; beg v′:=v; S′

1 end
≈ S2;S1 as above.

Proof of claim: By induction on the structure of S′

1.
Case (i): S′

1 = x/y.Q
We prove x/y.Q;S2 ≈ S2;x/y.Q by induction on the structure of S2:
Base step: x/y.Q; x1/y1.Q1

The premise implies var(Q)∩var(Q1)= ∅ and x̃∩var(Q1) = x̃1∩var(Q) = ∅

WP(x/y.Q; x1/y1.Q1, G(w))
⇐⇒ WP(x/y.Q, WP(x1/y1.Q1, G(w)))
⇐⇒ ∃x.Q ∧ ∀x.

(

Q ⇒
(

∃x1.Q1 ∧ ∀x1

(

Q1 ⇒ G(w)
)))

⇐⇒ ∃x1.Q1 ∧ ∀x1

(

Q1 ⇒
(

∃x.Q ∧ ∀x.
(

Q ⇒ G(w)
)))

⇐⇒ WP(x1/y1.Q1, WP(x/y.Q, G(w)))
⇐⇒ WP(x1/y1.Q1; x/y.Q, G(w)) as required.

The various induction steps are simple applications of the induction hypothesis. For example,
suppose S′

1 =S′;S′′. The premise implies S′ and S2 have no variables in common and S′′ and S2

have no variables in common. Hence by the induction hypothesis:
S′;S′′;S2 ≈ S′;S2;S

′′ ≈ S2;S
′;S′′ ≈ S2;S

′

1.

13



This step shows why induction could not be used on the problem as originally stated since
if S1 preserves the values of variables in v and S1 =S′;S′′ then we cannot assume S′ and S′′ also
preserve the values of variable in v. (For instance if variable x is in v then x:=x+1; x:=x−1
preserves x but x:=x+1 by itself does not).

The Method of “Postponed Obligations”

In this chapter we will use the following notation for operations on stacks:
If A is a stack, e an expression and x a variable we write:
A←e for A:=e::A ie A:=〈e〉&A (pushing the value of e onto stack A)
x←A for x:=hd(A); A:=tl(A) ie x:=A[1]; A:=A[2..] (popping a value off A into variable x)

The next theorem introduces the postponed obligations technique discussed above. This
method can give a more efficient iterative form than that described in the previous chapter (which
from now on will be described as the “direct method”, following the terminology of [Bird 77]) but it
does impose more conditions on the recursive procedure. Some special cases of the method of
postponed obligations are discussed in [Manna & Waldinger 78].

We will be concentrating on procedures of the following general form: (which is called
“cascade recursion”):
proc F(x) ≡ if B then S1; F(g1(x)); S2; F(g2(x)); S3

else S4 fi.
where S1, S2, S3, and S4 contain no calls to F.

Theorem: If x is invariant over S2 then F(x) is equivalent to:
proc F(x) ≡ var A:=〈0,x〉;

while A6= 〈〉 do
〈m,x〉 ←A;
if m=0 → if B then S1; A← 〈3,x〉; A← 〈0,g2(x)〉;

A← 〈2,x〉; A← 〈0,g1(x)〉
else S4 fi

⊓⊔ m=2 → S2

⊓⊔ m=3 → S3 fi od.
where A and m are new variables which only exist within the procedure.

Here, the stack A records the list of postponed obligations which are gradually “worked
through” or “discharged” by the body of the loop. Discharging some obligations may result on other
obligations being pushed onto the stack. For example, in this case if B is true then discharging 〈0,x〉
causes S1 to be executed and four other items to be put on the stack. The stack contains pairs of

14



numbers, the first is a “mark” which records what statement has been postponed (m=0 for a
recursive call, m=2 for S2 and m=3 for S3) and the second is the value of x for which the statement
is to be executed. Note that the statements and the condition B may contain other variables as well as
x and x may be a list of variables. Discharging an obligation to execute F will result in further
obligations being added to the list if B holds.
Proof: The proof uses the induction rules for recursion and iteration:
Let DO= while A6= 〈〉 do
〈m,x〉 ←A;
if m=0 → if B then S1; A← 〈3,x〉; A← 〈0,g2(x)〉;

A← 〈2,x〉; A← 〈0,g1(x)〉
else S4 fi

⊓⊔ m=2 → S2

⊓⊔ m=3 → S3 fi od.

Let DO′ = while A6= 〈〉 do
〈m,x〉 ←A;
if m=0 → F(x)
⊓⊔ m=2 → S2

⊓⊔ m=3 → S3 fi od.

Claim: DO ≈ DO′. Proof is by the induction rules.
(i) Prove DOn 6DO′∀n< ω. The induction step is:
DOn+1 6 if A6= 〈〉 then 〈m,x〉 ←A;

if m=0 → if B then S1; A← 〈3,x〉; A← 〈0,g2(x)〉;
A← 〈2,x〉; A← 〈0,g1(x)〉

else S4 fi
⊓⊔ m=2 → S2

⊓⊔ m=3 → S3 fi; DO′ fi by induction hypothesis.
Push the DO′ inside both ifs and push the statement 〈m,x〉 ←A inside the outer if, changing the tests
to A[1][1]=0 etc.:
≈ if A6= 〈〉
then if A[1][1]=0 → 〈m,x〉 ←A; if B then S1; A← 〈3,x〉; A← 〈0,g2(x)〉;

A← 〈2,x〉; A← 〈0,g1(x)〉; DO′

else S4; DO′ fi
⊓⊔ A[1][1]=2 → 〈m,x〉 ←A; S2; DO′

⊓⊔ A[1][1]=3 → 〈m,x〉 ←A; S3; DO′ fi fi

15



Now push the statement 〈m,x〉 ←A inside the inner if, replacing B by B[A[1][2]/x]:
≈ if A6= 〈〉
then if A[1][1]=0 → if B[A[1][2]/x]

then 〈m,x〉 ←A; S1; A← 〈3,x〉; A← 〈0,g2(x)〉;
A← 〈2,x〉; A← 〈0,g1(x)〉; DO′

else 〈m,x〉 ←A; S4; DO′ fi
⊓⊔ A[1][1]=2 → 〈m,x〉 ←A; S2; DO′

⊓⊔ A[1][1]=3 → 〈m,x〉 ←A; S3; DO′ fi fi
To prove this consider the cases:
Case (i): A[1][1]=0 ∧ ¬B[A[1][2]/x].
Case (ii): A[1][1]=2.
Case (iii): A[1][1]=3. -these are trivial.
Case (iv): A[1][1]=0 ∧ B[A[1][2]/x]:
Then 〈m,x〉 ←A; S1; A← 〈3,x〉; A← 〈0,g2(x)〉; A← 〈2,x〉; A← 〈0,g1(x)〉; DO′

≈ 〈m,x〉 ←A; S1; A← 〈3,x〉; A← 〈0,g2(x)〉; A← 〈2,x〉;
A← 〈0,g1(x)〉; 〈m,x〉 ←A; {m=0 ∧ B}; if m=0 → F(x) ⊓⊔ . . . fi; DO′

by unrolling first step of loop. A is a new variable so does not occur in B so assignments to A do not
affect B.
≈ 〈m,x〉 ←A; S1; A← 〈3,x〉; A← 〈0,g2(x)〉; A← 〈2,x〉; F(g1(x)); DO′

≈ 〈m,x〉 ←A; S1; F(g1(x)); A← 〈3,x〉; A← 〈0,g2(x)〉; A← 〈2,x〉; DO′

since F preserves x, m, and A.
≈ 〈m,x〉 ←A; S1; F(g1(x)); A← 〈3,x〉; A← 〈0,g2(x)〉; S2; DO′

by unrolling first step of DO′ and simplifying.
≈ 〈m,x〉 ←A; S1; F(g1(x)); S2; A← 〈3,x〉; A← 〈0,g2(x)〉; DO′

since S2 preserves x, m, and A.
≈ 〈m,x〉 ←A; S1; F(g1(x)); S2; A← 〈3,x〉; F(g2(x)); DO′ as above.
≈ 〈m,x〉 ←A; S1; F(g1(x)); S2; F(g2(x)); A← 〈3,x〉; DO′

≈ 〈m,x〉 ←A; S1; F(g1(x)); S2; F(g2(x)); S3; DO′

≈ 〈m,x〉 ←A; {m=0 ∧ B}; F(x); DO′ by folding F(x).
≈ DO′ by rolling the first step of the loop.

Putting these together gives:

16



DOn+1 6 if A6= 〈〉 then if A[1][1]=0 → if B[A[1][2]/x] then DO′

else DO′ fi
⊓⊔ A[1][1]=2 → DO′

⊓⊔ A[1][1]=3 → DO′ fi fi
Hence DOn+1 6 if A6= 〈〉 then DO′ fi
But {A= 〈〉} ≈ {A= 〈〉}; DO′ so
DOn+1 6 DO′.
Hence by induction DO 6 DO′.

For the converse we first prove F(x)n;DO 6 A← 〈0,x〉;DO by induction on n:
The induction step is:
F(x)n+1;DO ≈ if B then S1; F(g1(x))n; S2; F(g2(x))n; S3

else S4 fi; DO

By case analysis on B we prove:
F(x)n 6 A← 〈0,x〉; DO for all n< ω.
Hence by induction rule for recursion:
F(x) 6 A← 〈0,x〉; DO

Now we claim DO′n 6 DO by induction on n:
DO′n+1 6 if A6= 〈〉

then 〈m,x〉 ←A;
if m=0 → F(x); DO
⊓⊔ m=2 → S2; DO
⊓⊔ m=3 → S3; DO fi fi.

(by induction hypothesis and forward expansion).
6 if A6= 〈〉

then 〈m,x〉 ←A;
if m=0 → A← 〈0,x〉; DO

⊓⊔ m=2 → A← 〈2,x〉; DO
⊓⊔ m=3 → A← 〈3,x〉; DO fi fi. by above.

6 if A6= 〈〉 then DO fi
≈ DO since {A= 〈〉}; DO ≈ {A= 〈〉}.

17



Hence DO′ 6 DO by induction rule for iteration.
Hence DO′ ≈ DO as required.

We can simplify the resulting iterative procedure if we note that 〈0,g1(x)〉 is pushed onto
the stack only to be popped off again on the next iteration of the while loop. We will avoid this by
showing that the while loop is equivalent to the following nested loop:
while A6= 〈〉 do
〈m,x〉 ←A;
if m=0 → while B do S1; A← 〈3,x〉; A← 〈0,g2(x)〉; A← 〈2,x〉; x:=g1(x) od; S4

⊓⊔ m=2 → S2

⊓⊔ m=3 → S3 fi od.
First apply entire loop unfolding after the statement A← 〈0,g1(x)〉, the inner if statement becomes:
if B then S1; A← 〈3,x〉; A← 〈0,g2(x)〉; A← 〈2,x〉; A← 〈0,g1(x)〉;

while A6= 〈〉 ∧ A[1][1]=0 ∧ B[A[1][2]/x] do
〈m,x〉 ←A;
if m=0 → if B then S1; A← 〈3,x〉; A← 〈0,g2(x)〉;

A← 〈2,x〉; A← 〈0,g1(x)〉
else S4 fi

⊓⊔ m=2 → S2

⊓⊔ m=3 → S3 fi od
else S4 fi

≈ if B then S1; A← 〈3,x〉; A← 〈0,g2(x)〉; A← 〈2,x〉; A← 〈0,g1(x)〉;
while A6= 〈〉 ∧ A[1][1]=0 ∧ B[A[1][2]/x] do
〈m,x〉 ←A; {m=0 ∧ B};
S1; A← 〈3,x〉; A← 〈0,g2(x)〉;
A← 〈2,x〉; A← 〈0,g1(x)〉 od

else S4 fi

Convert the while loop to a do...od loop, apply proper inversion and simplify to get:
≈ do S1; A← 〈3,x〉; A← 〈0,g2(x)〉; A← 〈2,x〉; x:=g1(x);

if ¬B then exit fi od;
A← 〈m,x〉

The result is therefore:

18



proc F(x) ≡
var A:=〈0,x〉;
while A6= 〈〉 do
〈m,x〉 ←A;
if m=0 → if B then do S1; A← 〈3,x〉; A← 〈0,g2(x)〉; A← 〈2,x〉; x:=g1(x);

if ¬B then exit fi od;
A← 〈m,x〉

else S4 fi
⊓⊔ m=2 → S2

⊓⊔ m=3 → S3 fi od.

After the loop we have ¬B ∧ m=0 so by loop unrolling we can replace A← 〈m,x〉 by:
A← 〈m,x〉; 〈m,x〉 ←A; S4 ≈ S4. Then take the statement S4 outside the if, apply proper inversion
to the inner loop and convert it to a while loop to get the final form:
proc F(x) ≡
var A:=〈0,x〉;
while A6= 〈〉 do
〈m,x〉 ←A;
if m=0 → while B do S1; A← 〈3,x〉; A← 〈0,g2(x)〉; A← 〈2,x〉; x:=g1(x) od; S4

⊓⊔ m=2 → S2

⊓⊔ m=3 → S3 fi od.

The method can be applied to more complicated procedures, (with more than two inner
calls for example) provided: (a) the values of the parameters are invariant over any statements
between inner calls, (b) the guards on any conditional statements within the procedure are invariant
over the body and (c) no inner call is within a loop or nested recursion.

The condition (b) means that backward expansion can be applied to any conditional
statements within the body which can then be collected into a single conditional at the beginning so
that the procedure can be written in the form:
proc F(x) ≡ if B1 → S1,1; F(g1,1(x)); S1,2; F(g1,2(x)); . . . ; S1,n(1)

⊓⊔ B2 → S2,1; F(g2,1(x)); S2,2; F(g2,2(x)); . . . ; S2,n(2)

⊓⊔ . . .
⊓⊔ Bm → Sm,1; F(gm,1(x)); Sm,2; F(gm,2(x)); . . . ; Sm,n(m) fi.

where the Si,j contain no calls to F.

19



The ith guarded statement has n(i) statements separating n(i)−1 inner calls.
Condition (a) implies that x is invariant over S1,2,...,S1,n(1)−1,S2,2,...,Sm,n(m)−1.

Note that procedures with var parameters will not work in this scheme in general: though
if each gij is the identity function for the var parameters then the var parameters can be replaced by
global variables and the above scheme can be applied to the new procedure. We can apply the scheme
to parameterless procedures, in this case the stack will contain integers which record the next
statement to be executed and the result is very similar to the result of the direct method of recursion
removal.

General Tree-Traversal Algorithm

In this section we will consider the special case when S2 =skip and S4 =skip, ie
transformations of the following procedure:

proc F(x) ≡ if B then S1; F(g1(x)); F(g2(x)); S3 fi.
This general scheme is used in several sorting and tree-traversal algorithms.

An example of this kind of procedure is:
proc P(x,y) ≡ if x6=y then z:=m(x,y); T(x,z); T(z+1,y); M(x,y) fi.

Here if we further specify m(x,y)= (x+y)/2⊇ and specify M(x,y) to be a procedure which merges
the two sorted arrays k[x..z] and k[z+1..y] where z= (x+y)/2⊇ then we get a simple version of
Mergesort. P first sorts the left half of k[x..y], then the right half, then merges the halves. Another
interpretation gives Quicksort: M(x,y) is skip and m(x,y) is a function which produces some value z
such that x6z<y. m also re-arranges array k such that no value in k[x..z] exceeds a value in
k[z+1..y]. To sort k we perform m(x,y) and then sort the left and right halves of k.
There are two obvious special cases of this procedure:

Case (1): S3 =skip. (as for the Quicksort example) ie:
proc F(x) ≡ if B then S1; F(g1(x)); F(g2(x)) fi.

Replace the parameter by a global variable:
proc F(x) ≡ var A:=〈〉; F; Z where
F ≡ if B then S1; A←x; x:=g1(x); F; x←A; A←x; x:=g2(x); F; x←A fi.

Note that F does not have to preserve the value of x so we can simplify
A←x; x:=g2(x); F; x←A to x:=g2(x); F to give:

F ≡ if B then S1; A←x; x:=g1(x); F; x←A; x:=g2(x); F fi.
Regularise F and add G:

20



F ≡ if B then S1; A←x; x:=g1(x); F; G
else /F fi.

G ≡ x←A; x:=g2(x); F.
/F ≡ skip.

There are only two non-terminal calls to F (in F(x) and in F) and the one in F(x) can be
characterised by A= 〈〉 (since F preserves A) so we can regularise /F to give:

proc F(x) ≡ var A:=〈〉; F where
F ≡ if B then S1; A←x; x:=g1(x); F

else /F fi.
G ≡ x←A; x:=g2(x); F.
/F ≡ if A= 〈〉 then Z else G fi.

Remove the recursion in the usual and simplify to get :
proc F(x) ≡ var A:=〈〉;

do while B do S1; A←x; x:=g1(x) od;
if A= 〈〉 then exit fi;
x←A; x:=g2(x) od.

Convert the inner while loop to a do...od loop, apply absorption to the rest of the body of the outer
loop (which makes the body reducible) and remove the double loop (by false iteration):

proc F(x) ≡ var A:=〈〉;
do if B then S1; A←x; x:=g1(x)

elsf A6= 〈〉 then x←A; x:=g2(x)
else exit fi od.

Case (2): S1 =skip. ie:
proc F(x) ≡ if B then F(g1(x)); F(g2(x)); S3 fi.

Remove the parameter:
proc F(x) ≡ var A:=〈〉; F; Z where
F ≡ if B then A←x; x:=g1(x); F; x←A; A←x; x:=g2(x); F; x←A; S3 fi.

In this case the last call of P is not in a terminal position so the first method above will not work. We
need to stack the argument for both calls, since it is needed after the second call, since S3 may well use
the value of x:

proc F(x) ≡ var A:=〈〉; F; Z where
F ≡ if B then A←x; x:=g1(x); F; G

else /F fi.
G ≡ x←A; A←x; x:=g2(x); F; H.
H ≡ x←A; S3.

21



/F ≡ skip.
Here we have two inner calls of F so we need to add another stack to record which is the current
return point. In fact we will merge the stacks into one since we pop from them and push to them in
the same places:

F ≡ if B then A← 〈0,x〉; x:=g1(x); F; {A[1][1]=0}; G
else /F fi.

G ≡ x←A; A← 〈1,x〉; x:=g2(x); F; {A[1][1]=1}; H.
H ≡ x←A; S3.

This leads to the procedure:
proc F(x) ≡
var A:=〈〉;
do if B then A← 〈0,x〉; x:=g1(x)

else do if A= 〈〉 then exit(2) fi;
〈m,x〉 ←A;
if m=0 then A← 〈1,x〉; x:=g2(x); exit

else S3 fi od fi od.

Applying the method of postponed obligations gives a different form of the solution:
proc F(x) ≡
var A:=〈〈0,x〉〉;
while A6= 〈〉 do
〈m,x〉 ←A;
if m=0 then if B then A← 〈1,x〉; A← 〈0,g1(x)〉; A← 〈0,g2(x)〉 fi

else S3 fi od.
With the simplification given there we get the more efficient form:

proc F(x) ≡
var A:=〈〈0,x〉〉;
while A6= 〈〉 do
〈m,x〉 ←A;
if m=0 then while B do A← 〈1,x〉; A← 〈0,g1(x)〉; x:=g2(x) od

else S3 fi od.

Another solution is to use the stack to record postponed obligations to execute S3. We
postpone all executions of S3 until the last moment: this only works when B contains no variables
(other than x) which are modified by S3. We get:

22



proc F(x) ≡
var A:=〈〉;
G(x); while A6= 〈〉 do x←A; S3 od. where
proc G(x) ≡
if B then A←x; G(g2(x)); G(g1(x)) fi.

If the condition on B is relaxed then the transformation may not work, for example:
proc F(x) ≡ if ¬

(

z=1 ∨ x=2 ∨ x= −1
)

then F(x+1); F(x−2); z:=1 fi.
If z=0 initially then:
F(0) ≈ F(1); F(−2); z:=1 ≈ F(2); F(−1); z:=1; F(−2); z:=1
≈ F(−1); z:=1; F(−2); z:=1
≈ z:=1; F(−2); z:=1
≈ z:=1.

However if we try to apply the transformation we get:
proc F(x) ≡
var A:=〈〉;
G(x); while A6= 〈〉 do x←A; z:=1 od. where
proc G(x) ≡
if ¬

(

z=1 ∨ x=2 ∨ x= −1
)

then A←x; G(x+1); G(x−2) fi.
So if z=0 initially then:
F(0) ≈ var A:=〈〉; G(0); while A6= 〈〉 do x←A; z:=1 od
≈ ...A←x; G(1); G(−2);... note that z is invariant over G so:
≈ ...G(1); {z=0}; G(−2);...
≈ ...G(1); {z=0}; A←x; G(−1); G(−4);...
≈ ...G(−1); {z=0}; G(−4);...
≈ ...G(−3); {z=0}; G(−6);...

etc. So the call to G(0) does not terminate. This is why we needed the extra condition that B must not
reference any variable (other than x) modified in S3.

For the proofs of these transformations we will use the induction rule for recursion:
Let DO= while A6= 〈〉 do x←A; S3 od.
Claim: F(x)k ≈ A:=〈〉; G(x)k; DO. The induction step is:
F(x)k+1 ≈ if B then F(g1(x))k; F(g2(x))k; S3 fi

≈ if B then A′′:=〈x〉; F(g1(x))k; A:=〈〉; G(g2(x))k; DO; x←A′′; S3 fi
by the induction hypothesis since F preserves x but DO may not do so.

23


