
) CHAPTER SEVEN

) Linear Recusion

Introduction

In this chapter we consider transformations of linear recursive functions, ie functions
whose body contains a single recursive call. We will provide proofs for the common techniques of
linear recursion removal within our system: we follow the terminology of Bauer & Wossner [Bauer &
Wossner 80] in discussing these techniques. They used an applicative language with no side effects
and algebraic definition of specifications, we use an imperative kernel language with applicative
constructs added. We extend their transformations to deal with functions and expressions with side
effects and general specifications, expressed using first order logic. By using side-effects where
necessary we can transate any linear recursive function (or procedure) into the following form:

funct L(m) ≡ if B(m) then φ(L(k(m)),E(m))
else H(m) fi.

Here B(m) is a boolean function and φ, k, E and H are functions which do not call L (so there is only
the single recursive call of L). We will use the same letters for their procedural equivalents taking b to
be the variable assigned by the procedural equivalent of B(m) (so we use IC(B,b) for the procedural
equivalent of B). Let r be the variable assigned by the other procedural equivalents. Thus a
procedural equivalent of L is:

proc L1(m) ≡
B(m);
if b=tt then L1(k(m)); r:=φ(r,E(m))

else r:=H(m) fi.
We add a global stack S to replace the parameter m since it is needed after the recursive call:

proc L1(m) ≡ S:=〈〉; L1. where
L1 ≡ B(m);
if b=tt then S←m; m:=k(m); L1; m←S; r:=φ(r,E(m))

else r:=H(m) fi.
Using the direct method of recursion removal, L1 is equivalent to:

proc L1(m) ≡
S:=〈〉;
do B(m);
if b=ff then exit fi;
S←m; m:=k(m) od;
r:=H(m);

1



do if S= 〈〉 then exit fi;
m←S; r:=φ(r,E(m)) od.

We now represent the stack S by an array of the same name together with a variable i which indicates
the top of the stack. S:=〈〉 becomes i:=0, the statement S←m becomes i:=i+1; S[i]:=m, the
statement m←S becomes m:=S[i]; i:=i−1 and the test S= 〈〉 becomes i=0. If we then replace i by j
in the second loop we see that j takes the values i,. . . ,1 and we can replace the loop by a for loop. We
also apply proper inversion to the first loop and convert it to a while loop:

proc L1(m) ≡
i:=0; B(m);
while b=tt do
i:=i+1; S[i]:=m; m:=k(m); B(m) od;
r:=H(m);
for j:=i to 1 step −1 do
r:=φ(r,E(S[j])) od.

We will now examine various transformation techniques which, under certain
circumstances, will enable us to dispense with the stack S.

The Technique of Re-Bracketing

Suppose we can find a function Ψ which satisfies:
∀r,s,t. φ(φ(r,s),t) = φ(r,Ψ(s,t))

ie z:=φ(r,s); z:=φ(z,t) ≈ z:=Ψ(s,t); z:=φ(r,z).

Suppose also that (for procedural equivalents on different variables):
Ψ is independent of φ, H and E.
E is independent of φ, H and E.
m:=k(m); b:=B(m) is independent of z:=Ψ(E(m),z)
(So, for example: φ(a,b); Ψ(c,d) ≈ Ψ(c,d); φ(a,b) and so on.)
By “E is independent of E” we mean that for new distinct variables r1, r2, a, b:

∆ ⊢ r1:=E(a); r2:=E(b) ≈ r2:=E(b); r1:=E(a).

Then L is equivalent to:
funct L2(m) ≡
if B(m) then G(E(m),k(m))

else H(m) fi. where

2



funct G(z,m) ≡
if B(m) then G(Ψ(E(m),z),k(m))

else φ(H(m),z) fi.
A procedural equivalent of this is:

proc L2(m) ≡
if B(m) then z:=E(m); m:=k(m);

while B(m) do
z:=Ψ(E(m),z); m:=k(m) od;
r:=φ(H(m),z)

else r:=H(m) fi.

Proof: First we take out the “i=0” case from L1 (by unrolling the first step of the loop):
proc L1(m) ≡
i:=0; B(m);
if b=tt
then i:=i+1; S[i]:=m; m:=k(m); B(m);

while b=tt do
i:=i+1; S[i]:=m; m:=k(m); B(m) od;

r:=H(m);
for j:=i to 2 step −1 do
r:=φ(r,E(S[j])) od;

r:=φ(r,E(S[1])).
else r:=H(m) fi.

Claim:
If i>0 then for any X which is a combination of H, E and φ applied to m: A ≈ B where
A = z:=X; B = z:=E(S[1]);
for j:=i to 2 step −1 do for j:=2 to i step 1 do
z:=φ(z,E(S[j])) od; z:=Ψ(E(S[j]),z) od;

z:=φ(z,E(S[1])) . z:=φ(X,z).

Proof of Claim: By induction on i using the independence conditions.

Applying this to L1 (with X=H(m)) gives:

3



proc L1(m) ≡
i:=0; B(m);
if b=tt
then i:=1; S[1]:=m; m:=k(m); B(m);
while b=tt do
i:=i+1; S[i]:=m; m:=k(m); B(m) od;

z:=E(S[1]);
for j:=2 to i step 1 do
z:=Ψ(E(S[j]),z) od;

r:=φ(H(m),z)
else r:=H(m) fi.

Notice that here the first loop (the while) fills the array S from 2 onwards with i counting
the number of places filled. The second loop (the for) does the same number of iterations and reads
the values assigned to S in the same order. We would like to “overlap” the two loops so that after
each iteration of the first loop we immidiately carry out the corresponding iteration of the second
loop. Then each element of the array will be assigned and accessed (and finished with) before the next
element is assigned. This means that the array can be collapsed to a simple variable (for which, for
convenience, we will use m). This gives:

proc L1(m) ≡
B(m);
if b=tt
then z:=E(m); m:=k(m); B(m);
while b=tt do
z:=Ψ(E(m),z); m:=k(m); B(m) od;

r:=φ(H(m),z)
else r:=H(m) fi.

This is the procedure L2 above.

All that remains is to prove the Lemma:

Lemma: Loop Overlapping:
Suppose statements while B do i:=i+1; S1 od and S2 are independent, except for

arrays which have their ith element assigned in S1 and jth element accessed in S2, and neither S1 nor
S2 assign to i or j.
Then the two loops:

i:=1; while B do i:=i+1; S1 od; for j:=2 to i step 1 do S2 od = i:=1; DO; FOR

4



are equivalent to the single loop:
i:=1; while B do i:=i+1; S1; S2[i/j] od = DO′.

Proof: The trick is to move the iterations of the second loop up one at a time so that they “overlap” the
iterations of the first loop.

Claim: For all 16q< ω:
{i=1}; DO; FOR
≈ {i=1}; while B ∧ i<q do i:=i+1; S1; S2[i/j] od;
while B do i:=i+1; S1 od;
for j:=q+1 to i step 1 do S2 od
= {i=1}; DO′

q; DO; FORq

Here we have “overlapped” up to the first q−1 iterations in the first loop, and then carried out the
rest of the iterations (if any) separately in the following two loops.
Proof of Claim: By induction on q. For q=1 the first loop is void so the result follows. Suppose the
result holds for q. Note that i6q is invariant over DO′

q and
(

B⇒i=q
)

∧
(

i<q⇒ ¬B
)

holds after
DO′

q. Also note that by loop merging DO′

q+1 ≈ DO′

q; DO′

q+1.
Consider the cases: B holds after DO′

q and ¬B holds after DO′

q:
If ¬B holds after DO′

q then DO′

q+1 ≈ skip and DO ≈ skip and as i6q we have FORq ≈ skip
and FORq+1 ≈ skip.
So {i=1}; DO; FOR
≈ {i=1}; DO′

q; DO; FORq by induction hypothesis
≈ {i=1}; DO′

q; DO′

q+1; DO; FORq+1

≈ {i=1}; DO′

q+1; DO; FORq+1 as required.
If B holds after DO′

q then we must have i=q and unrolling the first step of DO gives:
{i=1}; DO; FOR
≈ {i=1}; DO′

q; {B ∧ i=q}; i:=i+1; S1; {i=q+1};
DO; {i>q+1}; FORq

since DO increases i and preserves q.
So we can unroll the first step of FORq to give:
≈ {i=1}; DO′

q; {B ∧ i=q}; i:=i+1; S1; {i=q+1};
DO; S2[q+1/j]; FORq+1

By the premise DO and S2 are independent and q does not occur in DO so we can interchange the
order of DO and S2[q+1/j] to give:
≈ {i=1}; DO′

q; {B ∧ i=q}; while B ∧ i<q+1 do i:=i+1; S1; S2[i/j] od;
DO; FORq+1

≈ {i=1}; DO′

q+1; DO; FORq+1 by loop merging.

5



which proves the result for all q.

Hence by assertion insertion we have for all 16q< ω:
{i=1}; DO; FOR; {i<q} ≈ {i=1}; DO′

q; DO; FORq; {i<q}

Now:
{i=1}; DO′

q; DO; FORq; {i<q}
≈ {i=1}; DO′

q; {i<q}; DO; FORq since i is invariant over DO and FORq

≈ {i=1}; DO′

q; {i<q ∧ ¬B}; DO; FORq since i<q ⇒ ¬B holds after DO′

q.
≈ {i=1}; DO′

q; {i<q ∧ ¬B}; FORq

≈ {i=1}; DO′

q; {i<q ∧ ¬B}; DO′

≈ {i=1}; DO′

q; DO′; {i<q}
≈ {i=1}; DO′; {i<q} by loop merging.

So the claim is proved.

Hence for all 16q< ω:
{i=1}; DO; FOR; {i<q} ≈ {i=1}; DO′; {i<q} where q only occurs in the assertions.

So κ{i=1} ∪∆ ⊢ DO; FOR; {i<q} ≈ DO′; {i<q} for all q< ω

so {i=1} ∪∆ ⊢
∨

q<ωWP(DO; FOR; {i<q}, G(w)) ⇐⇒
∨

q<ωWP(DO′; {i<q}, G(w))

so {i=1} ∪∆ ⊢
∨

q<ωWP(DO; FOR,
(

i<q
)

∧ G(w)) ⇐⇒
∨

q<ωWP(DO′,
(

i<q
)

∧ G(w))

so {i=1} ∪∆ ⊢WP(DO; FOR,
∨

q<ω

(

i<q
)

∧ G(w)) ⇐⇒ WP(DO′,
∨

q<ω

(

i<q
)

∧ G(w))
by continuity of WP.

But
∨

q<ω

(

i<q
)

⇐⇒ true
so {i=1} ∪∆ ⊢WP(DO; FOR, G(w)) ⇐⇒ WP(DO′, G(w))
ie ∆ ⊢ {i=1}; DO; FOR ≈ {i=1}; DO′ and the result is proved.
This completes the proof of the Lemma.

Example: Suppose we have the following function R which takes a list as its first argument and
returns another list:
funct R(a,y) ≡
if B(a,y) then H(a,y)

else R(tl(a),y)&〈hd(a)〉 fi.

Here we have E(a,y)= 〈hd(a)〉, k(a,y)= 〈tl(a),y〉 and φ(p,q)=p&q.
φ is associative so we can apply the transformation by taking Ψ = φ to give:

6



funct R2(a,y) ≡
if B(a,y) then H(a,y)

else z:=〈hd(a)〉; a:=tl(a);
while ¬B(a,y) do

z:=hd(a)::z; a:=tl(a) od;
H(a,y)&z fi.

where we have replaced 〈hd(a)〉&z by hd(a)::z (also called cons(hd(a),z)).

In a totally functional (or “applicative”) style we need a sub-function to represent the while loop:
funct R3(a,y) ≡
if B(a,y) then H(a,y)

else G(tl(a),〈hd(a)〉) fi. where
funct G(a,z) ≡
if B(a,y) then H(a,y)&z

else G(tl(a),hd(a)::z) fi.

Note that if B(a,y) holds initially then G(a,〈〉) = H(a,y)&〈〉 = H(a,y) while if B(a,y)
fails initially then G(a,〈〉) = G(tl(a),hd(a)::z) so we may eliminate the first if to give:
funct R3(a,y) ≡
G(a,〈〉). where
funct G(a,z) ≡
if B(a,y) then H(a,y)&z

else G(tl(a),hd(a)::z) fi.

This transformation would be described as “adding an accumulating parameter z” by
devotees of functional programming.

The Technique of Operand Commutation

Suppose we can find a function Ψ which satisfies:
∀r,s,t.φ(Ψ(r,s),E(t))= Ψ(φ(r,E(t)),s)

ie z:=Ψ(r,s); z:=φ(z,E(t)) ≈ z:=φ(r,E(t)); z:=Ψ(z,s).
and also: ∀r.Ψ(H(m0),r)= φ(H(m0),r) where m0 is the “argument on termination” (see below).
Suppose also that: m:=k(m); b:=B(m) is independent of r:=Ψ(r,E(m)).

7



Then L is equivalent to:
funct L3(m) ≡
G(H(m0),z). where
funct G(z,m) ≡
if B(m) then G(Ψ(z,E(m)),k(m))

else z fi.

The “argument on termination” m0 is the final value put onto the stack. With this
technique the other values are used in the order they are put on the stack except the final value which
will be needed first. So if this value can be determined in advance we can apply “loop overlapping”
and do away with the stack.
Recall our procedural equivalent for L:
proc L1(m) ≡
i:=0; B(m);
while b=tt do
i:=i+1; S[i]:=m; m:=k(m); B(m) od;
r:=H(m);
for j:=i to 1 step −1 do
r:=φ(r,E(S[j])) od.

Claim:
A = r:=H(m); ≈ B = r:=H(m)
for j:=i to 1 step −1 do for j:=1 to i step 1 do
r:=φ(r,E(S[j])) od. r:=Ψ(r,E(S[j])) od

Note that this only needs to be true when m is an argument on termination, for example ¬B(m) is a
sufficient condition.

Proof of Claim: Let b=H(m0) where m0 is the initial value of m.
The proof is by induction on i; the result is trivial for i60.
We introduce the abbreviations: For any integers p,q let
φ[p..q] =DF for j:=p to q step −1 do

r:=φ(r,E(S[j])) od
and
Ψ[p..q] =DF for j:=p to q step 1 do

r:=Ψ(r,E(S[j])) od.
So we wish to prove: r:=b; φ[i..1] ≈ r:=b; Ψ[1..i].

8



Base Step: i=1:
From the premise φ(b,x)= Ψ(b,x) we get:
A ≈ r:=b; r:=φ(r,E(S[1])) ≈ r:=φ(b,E(S[1]) ≈ r:=Ψ(b,E(S[1]) ≈ B.

Induction Step: Suppose i>1 and the result holds for smaller i:
Claim 1: For −16l6i−1:

r:=b; φ[i−1..0] ≈ r:=b; φ[l..0]; Ψ[l+1..i−1].
The case l=i−1 is trivial so suppose −16l<i−1 and the result holds for l+1 and all smaller i:

r:=b; φ[i−1..0] ≈ r:=b; φ[l+1..0]; Ψ[l+2..i−1] by induction hypothesis.
≈ r:=b; r:=φ(r,E(S[l+1])); φ[l..0]; Ψ[l+2..i−1] since 06l+1.
≈ r:=b; r:=Ψ(r,E(S[l+1])); φ[l..0]; Ψ[l+2..i−1] by premise.

Claim 2: For any c and any l:
r:=Ψ(r,c); φ[l..0] ≈ φ[l..0]; r:=Ψ(r,c).

To prove this we prove:
r:=Ψ(r,c); φ[l..0] ≈ φ[l..k]; r:=Ψ(r,c); φ[k−1..0] for all 06k6l+1.

by induction on k.

Hence: r:=b; φ[i−1..0]
≈ r:=b; φ[l..0]; r:=Ψ(r,E(S[l+1])); Ψ[l+2..i−1] by Claim 2.
≈ r:=b; φ[l..0]; Ψ[l+1..i−1]

which proves Claim 1.

So putting l= −1 gives:
r:=b; φ[i−1..0]
≈ r:=b; φ[−1..0]; Ψ[0..i−1]
≈ r:=b; Ψ[0..i−1] since φ[−1..0] ≈ skip.

Using this claim we get the version:
proc L1(m) ≡
i:=0; B(m);
while b=tt do
i:=i+1; S[i]:=m; m:=k(m); B(m) od;
r:=H(m);
for j:=1 to i step 1 do
r:=Ψ(r,E(S[j])) od.

We cannot apply loop overlapping directly to this because of the assignment r:=H(m) between the

9



two loops (Note that m is assigned in each iteration of the first loop and r is accessed in the first
iteration of the second loop and we need the final value of m to calculate the first value of r). If we
can find or calculate the value assigned to r between the loops then loop overlapping can be applied
since this assignment to r can be moved to before the first loop. Suppose we have a statement S′

which is such that:
L1(m) ≈ S′; i:=0; B(m);

while b=tt do
i:=i+1; S[i]:=m; m:=k(m); B(m) od;

{m=m0}; r:=H(m);
for j:=1 to i step 1 do
r:=Ψ(r,E(S[j])) od.

Then we can replace the assignment r:=H(m) by r:=H(m0) and then move it to before the first loop
(since m0 and r are not used in that loop). This enables us to apply loop overlapping which gives:

L1(m) ≈ S′; r:=H(m0); i:=0; B(m);
while b=tt do
i:=i+1; S[i]:=m; m:=k(m); B(m); r:=Ψ(r,E(S[i])) od.

We can move r:=Ψ(r,E(S[i])) to before m:=k(m); B(m) (by independence) and then replace S[i] by
m. Then we can remove S and i to get:

L1(m) ≈ S′; r:=H(m0); B(m);
while b=tt do
r:=Ψ(r,E(m)); m:=k(m); B(m) od.

In the case where H does not depend on m (eg if H(m) is a constant c0) then we don’t need the
argument on termination since we know H(m)=c0 at the end of the first loop so we replace r:=H(m)
by r:=c0 and move the assignment to the beginning to give:

L1(m) ≈ r:=c0; B(m);
while b=tt do
r:=Ψ(r,E(m)); m:=k(m); B(m) od.

Another special case is where there is only one value of m such that B(m) returns ff in variable b, that
is if: B(m) ≈ B(m); {b=ff ⇒ m=m0}. Inserting this assertion at the end of the loop body gives:

L1(m) ≈ i:=0; B(m); {b=ff ⇒ m=m0};
while b=tt do
i:=i+1; S[i]:=m; m:=k(m); B(m); {b=ff ⇒ m=m0} od;

{b=ff ∧
(

b=ff ⇒ m=m0

)

};
{m=m0}; r:=H(m);
for j:=1 to i step 1 do
r:=Ψ(r,E(S[j])) od.

10



Thus the argument on termination must be m0, which can be assigned to r at the beginning.

For the general case, if k and B are determinate and have no side-effects then we can
determine m0 by “precomputation”. We double the first while loop (saving and restoring the initial
value of m) to get:

L1(m) ≈ m′:=m; i:=0; B(m);
while b=tt do
i:=i+1; S[i]:=m; m:=k(m); B(m) od;

m0:=m;
m:=m′; i:=0; B(m);
while b=tt do
i:=i+1; S[i]:=m; m:=k(m); B(m) od;

{m=m0}; r:=H(m);
for j:=1 to i step 1 do
r:=Ψ(r,E(S[j])) od.

Move the assignment to r to after the first copy of the while loop, replace m in the first loop by
m0 (and remove m′). Now we can apply loop overlapping and remove the stack (and the variable i)
to get: L1(m) ≈ m0:=m; B(m0);

while b=tt do
m0:=k(m0); B(m0) od;

B(m); r:=H(m);
while b=tt do
r:=Ψ(r,E(m)); m:=k(m); B(m) od.

This does away with the stack without us needing to know the argument on termination in
advance but at the expense of computing the sequence of values of m twice over. However, if k and B
are efficient compared with Ψ then the resulting procedure will be only slightly less efficient than the
original function but using a small and fixed amount of store instead of a variable amount.

To summarise: the functional forms of these different versions are:
funct L3(m) ≡

S′; G(m,H(m0)) . where
funct G(m,z) ≡
if B(m) then G(k(m),Ψ(z,E(m)))

else z fi.

11



If H(m)=c0 for all m then we have the version:
funct L3(m) ≡
G(m,c0). where
funct G(m,z) ≡
if B(m) then G(k(m),Ψ(z,E(m)))

else z fi.

Example: The Cooper Transformation:

Defn: ρ is right-commutative if (a ρ b) ρ c = (a ρ c) ρ b.
Note that + and . are commutative and associative and so are right-commutative, but

so also are − and / since (a−b)−c = (a−c)−b and (a/b)/c = (a/c)/b.
If ρ is right-commutative and a, b are integers then we have the following

transformation (called the “Cooper transformation”):
funct F(m,n) ≡ if m>0 then F(m−1,n) ρ m

else n fi.
≈
funct F(m,n) ≡ if m>0 then F(m−1, n ρ m)

else n fi.

This was described by Cooper in [Cooper 66]. A variant of it was used in [Darlington &
Burstall 76] and a special case derived in [Morris 71].

This can be seen as a special case of our result.
Let m be an integer and set:
B(m) ⇐⇒ a>0,
E(m) = m,
H(m) = n (which does not depend on m), k(m) = m−1 and
φ(x,y) = x ρ y.
Then since ρ is right-commutative we may set Ψ = φ and:

funct F(m,n) ≡
L(m). where
funct L(m) ≡ if m>0 then L(m−1) ρ m

else n fi.
From this our transformation gives:

12



funct F(m,n) ≡
L3(m). where
funct L3(m) ≡
G(m,n). where
funct G(m,z) ≡
if m>0 then G(m−1, z ρ m)

else z fi.
which we can unfold to:

funct F(m,n) ≡
G(m,n). where
funct G(m,z) ≡
if m>0 then G(m−1, z ρ m)

else z fi.
which is equivalent to:

funct F(m,n) ≡ if m>0 then F(m−1, n ρ m)
else n fi.

If k and B are determinate and have no side-effects then we have the version:
funct L3(m) ≡
G(m,H(F(m))) where
funct F(n) ≡
if B(n) then F(k(n))

else n fi ,
funct G(m,z) ≡
if B(m) then G(k(m),Ψ(z,E(m)))

else z fi.
A special case is when φ does not depend on the second argument, ie when

φ(r,s)= γ(r). Here right-commutivity holds automatically and we can take Ψ = φ ie Ψ(r,s)= γ(r).
We get for example:

funct L3(m) ≡
G(m,c0). where
funct G(m,z) ≡
if B(m) then G(k(m),γ(z))

else z fi.
This transformation can be found in [Morris 71].

13



The Technique of Function Inversion

If there exists an inverse for the function k on at least a certain part of its domain then we
can avoid the need for the stack by reconstructing the stacked values from the argument on
termination.
We have the following procedural version of L:

proc L1(m) ≡ S:=〈〉; L1. where
L1 ≡ B(m);
if b=tt then S←m; m:=k(m); L1; m←S; r:=φ(r,E(m))

else r:=H(m) fi.
If k has inverse k′ which is such that we can insert the assertions:

proc L1(m) ≡ S:=〈〉; L1. where
L1 ≡ B(m);
if b=tt then S←m; m:=k(m); {hd(S)=k′(m)}; L1;

{hd(S)=k′(m)}; m←S; r:=φ(r,E(m))
else r:=H(m) fi.

then we can replace {hd(S)=k′(m)}; m←S by m:=k′(m); S:=tl(S). This means that the stack is not
needed so we get:

proc L1(m) ≡ L1. where
L1 ≡ B(m);
if b=tt then m:=k(m); L1; m:=k′(m); r:=φ(r,E(m))

else r:=H(m) fi.
In order to remove the recursion in the usual way we add a count (i) to enable us to distinguish the
outer call from inner calls. The direct method of recursion removal then gives:

proc L1(m) ≡
i:=0;
B(m);
while b=tt do
m:=k(m); i:=i+1; B(m) od;

r:=H(m);
while i>0 do
i:=i−1; m:=k′(m); r:=φ(r,E(m)) od.

If both k and B are defined and determinate and Dom(L) is the required domain for L then a
sufficient condition on k′ for this to work is:

∀x∈ {ki(m)|i>0 ∧ m∈Dom(L) ∧ ∀j.06j6i ⇒ B(kj(m))}, k′(k(x))=x
For example if k is doubling of integers then it does not have an inverse for all integers but the inverse

14



(halving of even integers) exists wherever it is needed so this is a suitable candidate for function
inversion.

If the sequence m, k(m), k2(m),. . . does not repeat so long as B(ki(m)) holds then if we
use y instead of m in the loops we have i=0 ⇐⇒ y=m and we can therefore remove the count by
changing the test on the second loop to y=m:

proc L1(m) ≡
y:=m; B(y);
while b=tt do
y:=k(y); B(y) od;

r:=H(y);
while y6=m do
y:=k′(y); r:=φ(r,E(y)) od.

Sometimes however, particularly if m (and therefore y also) is a large data structure, the test of
equality y6=m can be much more expensive than testing if an integer is zero. Then leaving in i will give
a more efficient version.
A functional version is:

funct L4(m) ≡
m0:=P(m); R(m0,H(m0)) . where

funct P(n) ≡
if B(n) then P(k(n))

else n fi,
funct R(y,z) ≡
if y6=m then y:=k′(y); G(y,φ(z,E(y)))

else z fi.

If in addition the argument on termination m0 can be determined easily and B and k are defined and
determinate then the first loop can be replaced by y:=m0:

proc L1(m) ≡
y:=m0; r:=H(m0);
while y6=m do
m:=k′(m); r:=φ(r,E(m)) od.

This has the functional version:

15



funct L4(m) ≡
r:=H(m0); y:=m0;

while y6=m do
y:=k′(y); r:=φ(r,E(y)) od;

r .

Another kind of function inversion can be used when sequences are being processed from
one end: we may be able to transform the function to process the sequence from the other end. For
example:

funct L(m) ≡
if m 6= 〈〉 then φ(L(tl(m)),E(hd(m)))

else c0 fi.
which may be transformed to:

funct L1(m) ≡
G(m,c0). where
funct G(y,z) ≡
if y6= 〈〉 then G(upper(y), φ(z,E(bot(y))))

else z fi.
where bot(S) =DF S[ℓ(S)] and upper(S) =DF S[1..ℓ(S)−1].

The procedural version of L is:
proc L1(m) ≡
i:=0;
while m 6= 〈〉 do
i:=i+1; S[i]:=m; m:=tl(m) od;

r:=c0;
for j:=i to 1 step −1 do
r:=φ(r,E(hd(S[j]))) od.

Note that we only want the hd of each element on the stack so we only have to store hd(m):
proc L1(m) ≡
i:=0;
while m 6= 〈〉 do
i:=i+1; S[i]:=hd(m); m:=tl(m) od;

r:=c0;
for j:=i to 1 step −1 do
r:=φ(r,E(S[j])) od.

16



The effect of the first loop is to set i to ℓ(m), and S to m and m to 〈〉. m is not needed after the first
loop so we can use it instead of S in the second loop by replacing S[j] with m[j].

proc L1(m) ≡
i:=ℓ(m);
r:=c0;
for j:=i to 1 step −1 do
r:=φ(r,E(m[j])) od.

This for loop processes the elements of m in reverse order so since m is not needed after the loop,we
can represent m by m[1..j], then mEj] becomes bot(m):

proc L1(m) ≡
i:=ℓ(m);
r:=c0;
for j:=i to 1 step −1 do
r:=φ(r,E(bot(m))); m:=upper(m) od.

Now within the loop j>i ⇐⇒ m= 〈〉 so we can replace the for by a while and remove i and j:
proc L1(m) ≡
r:=c0;
while m 6= 〈〉 do
r:=φ(r,E(bot(m))); m:=upper(m) od.

This leads to the functional equivalent given above.

Primitive Recursive Functions

The general “Induction Scheme” for a primitive recursive function f is:
f(m,0) = g(m)
f(m,n+1) = h(f(m,n),m,n)

This can be expressed (using the theorem on recursive implementation of specifications) as the
function:

funct f(m,n) ≡
if n>0 then h(f(m,n−1),m,n−1)

else g(m) fi.

Here k(〈m,n〉) = 〈m,n−1〉 and E(〈m,n〉) = 〈m,n−1〉 and φ =h.
k′ exists and m0 =0 so we can apply function inversion to get:

17



proc f(m,n) ≡
r:=g(m); y:=0;
while y6=n do
y:=y+1; r:=h(r,k,y−1) od.

which can be transformed to a for loop:
proc f(m,n) ≡
r:=g(m);
for y:=0 to n−1 do
r:=h(r,k,y) od.

Hence the class of primitive recursive functions is not wider than the class of functions
defined by repetitive routines and systems (cf [Rice 65]).

There is in fact a completely general transformation of a linear recursive function like L to
an iterative form which does not use any stacks, (provided B and k are defined and determinate and
have no side effects) but this is very inefficient and therefore only of theoretical interest. The trick is to
recompute the values S[j] each time they are needed (using the fact that S[j]=kj−1(m)) and so do
away with the stack. We add a function kj(m,j) which computes kj(m) and then replace the accesses
to the stack by calls to this function:

proc L5(m) ≡
i:=0; m0:=m; B(m0);
while b=tt do
i:=i+1; m0:=k(m0); B(m0) od;
r:=H(m0);
for j:=i to 1 step −1 do
r:=φ(r,E(kj(m,j−1))) od. where

funct kj(m,j) ≡
if j=0 then m

else kj(k(m),j−1) fi.
We may convert function kj to a procedure returning the result in a new variable r1. This procedure
can be converted to a for loop and copied in to the body of L5:

proc L5(m) ≡
i:=0; m0:=m; B(m0);
while b=tt do
i:=i+1; m0:=k(m0); B(m0) od;
r:=H(m0);

18



for j:=i to 1 step −1 do
r1:=m;
for l:=j−1 to 1 step −1 do
r1:=k(r1) od;

r:=φ(r,E(r1)) od.

EXAMPLES:

We now give some examples of applying these techniques to simple recursive functions.

Exponentiation

Suppose we wish to design a function to evaluate xn for positive integers n using only
addition and multiplication. Thus we want a function equivalent to:

funct expt(x,n) ≡ xn.
which is implemented in terms of addition and multiplication.

Noting that x0 =1 and xn+1 =x.xn we split expt into two cases:
funct expt(x,n) ≡
if n=0 then {n=0}; xn

else {n>0}; xn .
Then apply the formulas given:

funct expt(x,n) ≡
if n=0 then {n=0}; 1

else {n>0}; x.xn−1 .
Then by the theorem on recursive implementation of a specification this is equivalent to:

funct expt(x,n) ≡
if n=0 then 1

else x.expt(x,n−1).
The argument on termination (n=0) is known and multiplication is commutative and associative so
we can use either re-bracketing or operand commutation. Putting:
k(x,n)= 〈x,n−1〉, E(x,n)=x, H(x,n)=1, φ(a,b)=a.b, B(x,n)⇐⇒ n6=0
gives:

19



funct expt(x,n) ≡
if B(x,n) then φ(expt(k(x,n)), E(x,n))

else H(x,n) fi.

Re-bracketing and operand commutation both give the same result namely:
proc expt(x,n) ≡
if n6=0 then z:=x; n:=n−1;

while n6=0 do
z:=x.z; n:=n−1 od;
z:=z.1

else z:=1 fi.
which by loop rolling and using the the fact that 1.x=x, this is equivalent to:

proc expt(x,n) ≡
z:=1;
while n6=0 do
z:=x.z; n:=n−1 od.

The function k has an inverse k′(x,n)= 〈x+1,n〉, so function inversion gives:
proc expt(x,n) ≡
y:=n; while y6=0 do y:=y−1 od;
z:=1;
while y6=n do
y:=y+1; z:=x.z od.

The first loop simplifies to y:=0 whence the second loop can be written as a for loop:
proc expt(x,n) ≡
z:=1;
for y:=0 to n step 1 do
z:=x.z od.

A more efficient version of expt can be derived by using the fact that x2.n =
(

x.x
)n

. Taking out the
cases for even and non-zero n we get the function:

funct expt(x,n) ≡
if n=0 → 1
⊓⊔ n6=0 → x.expt(x,n−1)
⊓⊔ n6=0 ∧ even(n) → expt(x.x,n/2) fi.

20



For n6=0 and even(n), n/2 will reduce n by more than 1 so we should choose the third alternative
wherever possible. We can ensure this by strengthening the guard on the second alternative to
n6=0 ∧ ¬even(n) which is n6=0 ∧ odd(n). This can be written as simply odd(n) since
odd(n)⇒n6=0. We get:

funct expt(x,n) ≡
if n=0 → 1
⊓⊔ odd(n) → x.expt(x,n−1)
⊓⊔ n6=0 ∧ even(n) → expt(x.x,n/2) fi.

This is deterministic so can be written as:
funct expt(x,n) ≡
if n=0 then 1
elsf even(n) then expt(x.x,n/2)

else x.expt(x,n−1) fi.
Re-arrange the tests:

funct expt(x,n) ≡
if n6=0 ∧ even(n) then expt(x.x,n/2)

else if n=0 then 1
else x.expt(x,n−1) fi.

The first call is in a terminal position so we can apply tail-recursion to get:
funct expt(x,n) ≡

while n6=0 ∧ even(n) do x:=x.x; n:=n/2 od;
if n=0 then 1

else x.expt(x,n−1) fi .
The assertion n6=0 is invariant over the loop (n6=0 ⇒ n/2 6=0) so we take out the n=0 case and
remove the test from the loop:

funct expt(x,n) ≡
if n=0 then 1

else while even(n) do x:=x.x; n:=n/2 od;
x.expt(x,n−1) fi.

This is now in the same form as our standard linear recursion (note the use of side-effecting
expressions):
DO = while even(n) do x:=x.x; n:=n/2 od
k(x,n)= DO; 〈x,n−1〉
E(x,n)= DO; x = k(x,n)[1]
φ(a,b)= a.b

21



Function inversion cannot now be used (without needing as stack) since the function k is
not one to one (for example k(2,4)=k(4,2)=k(16,1)= 〈16,0〉).

Re-bracketing:
This gives the procedural equivalent:

proc expt(x,n) ≡
if n6=0 then z:=E(x,n); 〈x,n〉:=k(x,n);

while n6=0 do
z:=z.E(x,n); 〈x,n〉:=k(x,n) od;

z:=1.z
else z:=1 fi.

Now z:=E(x,n); 〈x,n〉:=k(x,n)
≈ z:=k(x,n)[1]; 〈x,n〉:=k(x,n)

k is determinate so we can replace the two calls by a single one:
≈ 〈x1,n1〉:=k(x,n); z:=x1; 〈x,n〉:=〈x1,n1〉
≈ 〈x1,n1〉:=〈x,n〉; DO[x1,n1/x,n]; n1:=n1−1; z:=x1; 〈x,n〉:=〈x1,n1〉
≈ DO; n:=n−1; z:=x

Similarly z:=z.E(x,n); 〈x,n〉:=k(x,n) ≈ DO; n:=n−1; z:=z.x

So our procedure becomes:
proc expt(x,n) ≡
if n6=0 then DO; n:=n−1; z:=x;

while n6=0 do
DO; n:=n−1; z:=z.x od

else z:=1 fi.
Insert z:=1 at the beginning, replace z:=x by z:=z.x and z:=1 by skip and then roll the first step of
the loop to get:

proc expt(x,n) ≡
z:=1;
while n6=0 do
DO; n:=n−1; z:=z.x od.

The result is:

22



proc expt(x,n) ≡
z:=1;
while n6=0 do
while even(n) do
x:=x.x; n:=n/2 od;

n:=n−1; z:=z.x od.

Operand commutation:
The problem is in determining the argument on termination, clearly n=0 but the value of

x is not directly available. However this does not matter as H is independent of its arguments.
H(x,n)=1 so put c0 =1. We get:

proc expt(x,n) ≡
z:=1;
while n6=0 do
z:=z.E(x,n); m:=k(m) od.

This gives the same result as re-bracketing.

23


