
) CHAPTER EIGHT

) Non-Linear Recursion and
= the Derivation of Algorithms

Introduction

We have shown that with a linear recursive function or procedure the transformation to an
iterative form does not require a protocol stack but may require a parameter stack. In this chapter we
examine some cases of non-linear recursion (ie where the body of the procedure contains more than
one recursive call). Note that for non-linear functions both protocol and parameter stacks may be
required; for example Strong [Strong 71] showed that the scheme:

funct F(x) ≡
if B(x) then φ(F(M(x)),F(N(x)))

else H(x) fi.
cannot (without further restrictions) be transformed to iterative form. Both the protocol stack and a
parameter stack are needed in general.
The function:

funct fusc(n) ≡
if n=1 → 1
⊓⊔ n>1 ∧ even(n) → fusc(n/2)
⊓⊔ n>1 ∧ odd(n) → fusc((n−1)/2)+fusc(n+1)/2) fi.

is defined in terms of various linear combinations of fusc(i) and fusc(i−1). We have dealt with
similar functions by defining a more general function which returns these two values, say:

funct Gfusc(n) ≡ 〈fusc(n),fusc(n−1)〉.
This was used to derive a linear form of the function for Fibonacci series. Here we use a different
method: define a function which computes a given linear combination of fusc(i) and fusc(i−1):

funct F(m,a,b) ≡ a.fusc(m)+b.fusc(m−1).
Thus fusc(m)=F(m,1,0) (for m>2). We want to transform F so that it is defined in terms of F
rather than fusc. Take out the case m=2 and split the other case:

funct F(m,a,b) ≡
if m=2
then a.fusc(2/2)+b.fusc(1)
else if even(m) then a.fusc(m)+b.fusc(m−1)

else a.fusc(m)+b.fusc(m−1) fi fi.
Unfolding the calls of fusc (using the fact that even(m)⇒odd(m+1) etc.):

1

funct F(m,a,b) ≡
if m=1
then a+b
else if even(m)

then a.fusc(m/2)+b.
(

fusc(m/2)+fusc(m/2−1)
)

else a.
(

fusc((m−1)/2)+fusc((m+1)/2)
)

+b.fusc((m−1)/2) fi fi.
These are linear combinations of fusc(i) and fusc(i+1) with i<m so by the theorem on recursive
implementation of specifications F is equivalent to:

funct F(m,a,b) ≡
if m=2
then a+b
else if even(m) then F(m/2, a+b, b)

else F((m+1)/2, a, a+b) fi fi.
This is tail-recursive so can be transformed to the iterative form:

funct F(m,a,b) ≡
while m 6=2 do
if even(m) then m:=m/2; a:=a+b

else m:=(m+1)/2; b:=a+b fi od;
a+b .

Using this to calculate the values of fusc for m>2 (since fusc(m) = F(m,1,0)) gives the following
log time version of fusc:

funct fusc(m) ≡
if m=1 then 1

else a:=1; b:=0;
while m 6=2 do
if even(m) then m:=m/2; a:=a+b

else m:=(m+1)/2; b:=a+b fi od;
a+b fi.

Theorem: A generalisation of fib is:
funct H(m,r,s) ≡
if B(m)
then if B(δ(m)) then φ(H(δ(m),r,s), H(δ2(m),r,s))

else r fi
else s fi.

2

If we set δ(m)=m−1, B(m)⇐⇒m>1, φ(x,y)=x+y
then H(m,0,1) = fib(m).

We will prove that this is equivalent to:
funct G(m,r,s) ≡
if B(m) then m:=δ(m);

while B(m) do
m:=δ(m); 〈r,s〉:=〈φ(r,s),r〉 od;

r
else s fi.

Provided δ, φ and B are determinate and have no side effects and φ is independent of H and δ.
(φ and B need not be defined everywhere though).
If any of δ, φ or B are not determinate then G will be a refinement of H.

The condition ensures that H is determinate and has no side effects, in turn this ensures
that sequences of calls to H (which assign the result to variables which are not global in δ, φ and B)
may be carried out in any order, and that two consecutive calls may be replaced by a single call and an
assignment. Hence for example:
a:=H(δ(m),r,s); b:=H(m,r,s); c:=H(δ(m),r,s)
≈ a:=H(δ(m),r,s); c:=H(δ(m),r,s); b:=H(m,r,s)
≈ a:=H(δ(m),r,s); c:=a; b:=H(m,r,s)
≈ a:=H(δ(m),r,s); b:=H(m,r,s); c:=a

Proof: Note that H(m,r,s) is defined (in the general case) in terms of H(δ(m),r,s) and H(δ2(m),r,s)
(the parameters r and s are never changed so may just as well be global variables. They are made use
of in G). Our linear form of the similar function fib suggests defining an auxiliary function which
returns both H(m,r,s) and H(δ(m),r,s). What we actually do is define a procedure which sets the
variables 〈r,s〉 to 〈H(m,r,s), H(δ(m),r,s)〉 except when ¬B(m) holds when we only set r (since in
this case H(δ(m),r,s) may not even be defined). We define:

proc F(m) ≡
if B(m)
then if B(δ(m)) then 〈r,s〉:=〈H(m,r,s), H(δ(m),r,s)〉 fi
else r:=s fi

Then H(m,r,s) ≈ funct H1(m,r,s) ≡ F(m); r .

Claim: F(m) ≈ F1(m) where:

3

funct F1(m) ≡
if B(m) then var i:=0;

while B(δ(m)) do
m:=δ(m); i:=i+1 od;

for j:=1 to i step 1 do
〈r,s〉:=〈φ(r,s),r〉 od

else r:=s fi.
= if B(m) then var i:=0; DO; FOR

else r:=s fi.

Proof of Claim:
We use the induction rule for recursion to prove Fn(m) 6 F1(m) ∀n< ω.
This uses the fact that:
〈r,s〉:=〈Hn+1(m,r,s), Hn+1(δ(m),r,s)〉

≈ 〈r,s〉:=〈φ(Hn(δ(m),r,s), Hn(δ2(m),r,s)), Hn+1(δ(m),r,s)〉
6 κκ〈r,s〉:=〈φ(Hn+1(δ(m),r,s), Hn(δ2(m),r,s)), Hn+1(δ(m),r,s)〉
6 κκ〈r,s〉:=〈Hn+1(δ(m),r,s), Hn(δ2(m),r,s)〉; 〈r,s〉:=〈φ(r,s), r〉

where we have replaced two calls of Hn+1(δ(m),r,s) by a single call.
Now apply the induction hypothesis to get:
Fn+1(m) 6 if B(m)

then if B(δ(m))
then m:=δ(m);

if B(δ(m))
then m:=δ(m);
var i:=0; DO; FOR;
〈r,s〉:=〈φ(r,s),r〉 fi

else 〈r,s〉:=〈φ(r,s),r〉 fi
else 〈r,s〉:=〈φ(r,s),r〉 fi

else r:=s fi
≈ if B(m)
then var i:=0; DO; FOR
else r:=s fi

by loop rolling (twice).
≈ F1(m).

Conversely:

4

if B(m) 6 if B(m)
then i:=0; DOn; FOR then if B(δ(m))
else r:=s fi then m:=δ(m);

〈r,s〉:=〈Hn(m,r,s), Hn(δ(m),r,s)〉;
〈r,s〉:=〈φ(r,s),r〉 fi
else r:=s fi

by induction hypothesis.
6 if B(m)
then if B(δ(m))

then m:=δ(m);
〈r,s〉:=〈φ(Hn(m,r,s),Hn(δ(m),r,s)), Hn+1(δ(m),r,s))〉 fi

else r:=s fi
where we have refined a single call Hn(δ(m),r,s) to two calls Hn(δ(m),r,s) and Hn+1(δ(m),r,s).
≈ Fn+1

1 (m) by folding.
which proves the claim.

Now since φ is independent of B and δ we may apply loop overlapping to F1 to get:
F1(m) ≈ G′(m) where

proc G′(m) ≡
if B(m) then while B(δ(m)) do

m:=δ(m); 〈r,s〉:=〈φ(r,s),r〉 od
else r:=s fi.

which may be written (using proper inversion):
proc G′(m) ≡
if B(m) then m:=δ(m);

while B(m) do
〈r,s〉:=〈φ(r,s),r〉; m:=δ(m) od

else r:=s fi.
Hence H(m,r,s) ≈

funct H2(m,r,s) ≡
G′(m); r .

which leads to our=function G above.
(The subsidiary function G∗ implements the while loop in the procedure G′).

If we add the extra condition that φ and δ are defined everywhere then we can add
extra statements to G′ to give:

5

proc G′(m) ≡
if B(m) then m:=δ(m);

while B(m) do
〈r,s〉:=〈φ(r,s),r〉; m:=δ(m) od;
〈r,s〉:=〈φ(r,s),r〉;
r:=s

else r:=s fi.
(since we don’t care what the final value of s is).
≈ if B(m) then m:=δ(m); 〈r,s〉:=〈φ(r,s),r〉;

while B(m) do
〈r,s〉:=〈φ(r,s),r〉; m:=δ(m) od fi; r:=s.

since φ is independent of B and δ.
≈ while B(m) do 〈r,s〉:=〈φ(r,s),r〉; m:=δ(m) od; r:=s.

by loop rolling.

Thus we get the more compact (though less efficient) version of G:
funct G1(m,r,s) ≈
if B(m) then G1(δ(m),φ(r,s),r)

else s fi.

Arithmetization of the Flow of Control

In the case of a “cascade recursion” for which all the parameters can be replaced by global
variables, but the transformation to iterative form requires a protocol stack (which will be a stack of
marks to decide the next action) we can replace the stack of marks by an integer (as described in
Chapter Eight). The stack operations become integer operations which can frequently be simplified.
Bauer & Wossner [Bauer & Wossner 80] describe one such transformation under the name
“Arithmetization of the Flow of Control”. For example, consider the function:

funct F(n,x) ≡
if n>0 then F(n−1, φ(n, F(n−1,x)))

else x fi.
This can be transformed to:

6

funct F(n,x) ≡
for c:=2n−1 step −1 to 1 do
x:=φ(ntz(c)+1,x) od;

x , where
funct ntz(c) ≡ “the number of trailing zeros in the binary

representation of c”.

A similar example is described by Partsch & Pepper [Partsch & Pepper 76].

Proof: A procedural version of F is:
proc F(n,x) ≡
if n>0 then F(n−1,x); x:=φ(n,r); F(n−1,x)

else r:=x fi.
The parameter x is now fixed so we can use function inversion on n to remove both parameters:

proc F(n,x) ≡ F; Z. where
F ≡ if n>0 then n:=n−1; F; x:=φ(n+1,r); F; n:=n+1

else r:=x fi.
We can now remove the variable r from F by replacing it by x so that F now returns its result in x
which is then assigned to r in F(n,x):

proc F(n,x) ≡ F; r:=x; Z. where
F ≡ if n>0 then n:=n−1; F; x:=φ(n+1,x); F; n:=n+1 fi.

The theorem on recursion removal gives the iterative version:
proc F(n,x) ≡
Stack:=〈〉;
while n>0 do n:=n−1; Stack←1 od;

while Stack6= 〈〉 do
d←Stack;
if d=1 then x:=φ(n+1,x); Stack←0;

while n>0 do n:=n−1; Stack←1 od
else n:=n+1 fi od; r:=x.

If we represent the stack by an integer c so that the digits in the binary representation of c are the
elements of Stack then:

Stack:=〈〉 becomes c:=1
Stack= 〈〉 becomes c=1
Stack←d becomes c:=2.c+d
d←Stack becomes 〈c,d〉:=〈c÷2〉

7

The statement while n>0 do n:=n−1; Stack←1 od becomes c:=c.2n+2n−1; n:=0
ie c:=(c+1).2n−1; n:=0

We get: proc F(n,x) ≡
c:=2n+1−1; n:=0;
while c6=1 do
〈c,d〉:=〈c÷2〉;
if d=1 then x:=φ(n+1,x); c:=2.c;

c:=(c+1).2n−1; n:=0
else n:=n+1 fi od; r:=x.

Apply entire loop unroll to the else part:
proc F(n,x) ≡
c:=2n+1−1; n:=0;
while c6=1 do
〈c,d〉:=〈c÷2〉;
if d=1 then x:=φ(n+1,x); c:=2.c;

c:=(c+1).2n−1; n:=0
else n:=n+1;

while c6=1 ∧ even(c) do
c:=c/2; n:=n+1 od fi od; r:=x.

We now backward expand the if, changing the test from d=1 to odd(c). The statement
〈c,d〉:=〈c÷2〉 can now be replaced by c:=c/2 when c is even and c:=(c−1)/2 when c is odd. The
variable d disappears.

proc F(n,x) ≡
c:=2n+1−1; n:=0;
while c6=1 do
if odd(c) then c:=(c−1)/2; x:=φ(n+1,x); c:=2.c;

c:=(c+1).2n−1; n:=0
else c:=c/2; n:=n+1;

while c6=1 ∧ even(c) do
c:=c/2; n:=n+1 od fi od; r:=x.

When c is even the statements c:=c/2; n:=n+1; while c6=1 ∧ even(c) do c:=c/2; n:=n+1 od can
be replaced by c:=c/2ntz(c); n:=n+ntz(c).
Also the assignments c:=(c−1)/2; c:=2.c; c:=(c+1).2n−1 may be merged to: c:=c.2n−1. We get:

8

proc F(n,x) ≡
c:=2n+1−1; n:=0;
while c6=1 do
if odd(c) then c:=c.2n−1; x:=φ(n+1,x); n:=0

else c:=c/2ntz(c); n:=n+ntz(c) fi od; r:=x.
Now we apply loop unrolling to the first arm of the inner if, using the fact that if c is odd and greater
than 1 then c.2n−1 is even. This means that c will be odd after every loop and as c is odd initially
we can prune the if in the loop to give:

proc F(n,x) ≡
c:=2n+1−1; n:=0;
while c6=1 do
c:=c.2n−1; x:=φ(n+1,x); n:=0
c:=c/2ntz(c); n:=n+ntz(c) od; r:=x.

Convert the while loop to a do...od loop and simplify the body:
proc F(n,x) ≡
c:=2n+1−1; n:=0;
do if c=1 then exit fi;
c:=c.2n−1; x:=φ(n+1,x);
n:=ntz(c); c:=c/2n od; r:=x.

Since 2n+1−1 is odd we can replace n:=0 by n:=ntz(c); c:=c/2n and then apply proper inversion to
the loop:

proc F(n,x) ≡
c:=2n+1−1;
do n:=ntz(c); c:=c/2n;
if c=1 then exit fi;
c:=c.2n−1; x:=φ(n+1,x) od; r:=x.

If n0 is the initial value of n then we see that c>2n0 ∧
(

c=2n0 ⇒ c/2ntz(c) =1
)

is invariant over
the loop. So we can move the test to the beginning of the loop (since we are not interested in the final
values of n and c):

proc F(n,x) ≡
c:=2n+1−1; n0:=n;
do if c=2n0 then exit fi;
n:=ntz(c); c:=c/2n;
c:=c.2n−1; x:=φ(n+1,x) od; r:=x.

9

Now we can merge the assignments c:=c/2n; c:=c.2n−1 to c:=c−1 and replace c by c−2n0 since
for c>2n0, ntz(c)=ntz(c−2n0): (and c>2n0 is invariant over the loop so c>2n0 is true within the
loop.

proc F(n,x) ≡
c:=2n+1−1; n0:=n; c:=c−2n0;
do if c=0 then exit fi;
n:=ntz(c);
c:=c−1; x:=φ(n+1,x) od; r:=x.

Finally we replace the do...od loop by a while and do some simplification to get:
proc F(n,x) ≡
c:=2n−1;
while if c6=0 do
x:=φ(ntz(c)+1,x) c:=c−1; od; r:=x.

The loop may be replaced by a for loop thus:
proc F(n,x) ≡
for c:=2n−1 to 1 step −1 do
x:=φ(ntz(c)+1,x) od;

r:=x.

With this version of the program we can see precisely what the sequence of values of the
first argument of φ is. The sequence of values which was originally defined by the flow of control, is
now defined by an arithmetic function, whence the term “Arithmetisation of the flow of control”.
This illustrates Arsac’s comment about the value of transforming recursion to iteration in giving
insights and suggesting new strategies.

Note9that ntz(2n−c)=ntz(c) for 16c<2n so we could replace c by 2n−c which runs
from 1 to 2n. Hence our decreasing for loop could be replaced by an increasing one:

proc F(n,x) ≡
for c:=1 to 2n−1 step 1 do
x:=φ(ntz(c)+1,x) od;

r:=x.

Range-of-Values Tabulation

Suppose we have a recursive function h(x) and a well-order on the type of x. If the
“argument on termination” x0 is known in advance (or can be calculated easily from x) then we can
build up a table of the values of h from x0 to x and in doing so we can replace the inner recursive calls

10

of h by references to this table. Note that this will only work if the parameters for the inner calls are
always smaller than the current parameter. An added advantage is that the table can be made a
global variable (if we start it from the smallest possible parameter) which will be preserved between
calls to the function. Then repeated function calls with the same (or smaller) arguments can be read
straight off the table without requiring further computation. This type of function is often called a
“memorised” function [Abelson & Sussman 84] since previously calculated values of the function are
“remembered” in the table. For this to work our function must be determinate, have no side effects,
and depend only on its argument (ie not on any global variable). In other words, it must be a “pure”
function.
A procedure for tabulating the function h from h(a) to h(b) in table T[a..b] is:

proc tabh(a,b) ≡
for i:=a to b step 1 do
T[i]:=h(i) od.

A function which returns the list of values of h from h(a) to h(b) is:
funct tabh(b) ≡
if b=a then 〈h(a)〉

else h(b)::tabh(b−1) fi.
where 〈x〉 is the sequence with one element x and x::list is list with x added to the front ie
〈x〉&list.
Applying function inversion to this gives:

funct tabh(b) ≡
t(a,〈h(a)〉). where
funct t(y,z) ≡
if y6=b then t(y+1, h(y+1)::z)

else z fi.
which can also be written in the form:

funct tabh(b) ≡
t(a,〈〉). where
funct t(y,z) ≡
if y6=b+1 then t(y+1, h(y)::z)

else z fi.
Here we have the invariant ∀i.

(

a6i<y ⇒ z[i−a+1]=h(i)
)

within the inner function so if we
unfold h within the inner function we can replace the recursive calls of h by references to z. Then t
becomes independent of h. In procedural form this is:

11

proc tabh(b) ≡
for i:=a to b step 1 do
{∀i.

(

a6j<i ⇒ T[j]=h(j)
)

};
T[i]:=h(i) od.

We unfold the call h(i) using the assertion. Suppose h is:
funct h(x) ≡ Eh.

We get:
proc tabh(b) ≡
for i:=a to b step 1 do
T[i]:=Eh[T[e]/h(e)][i/x] od.

where T[e] replaces h(e) for every expression e.
Now we can replace h(i) by:

funct h(x) ≡
tabh(x); T[x] . where

proc tabh(b) ≡
for i:=a to b step 1 do
T[i]:=Eh[T[e]/h(e)][i/x] od.

We can make this more efficient by adding another global variable l which records how far T has
been filled in. At the start of the program we initialise l to a−1 which sets up the invariant
∀i.

(

a6i6l ⇒ T[i]=h(i)
)

. We can then replace h by:
funct h(x) ≡

if l<x
then for i:=l+1 to x step 1 do

T(i):=Eh[T[e]/h(e)] od;
l:=x;

T[x] .

Example:

qn denotes the number of ways a set of n elements may be partitioned, where q0 =1,
qn+1 =

∑

06s6n(n s).qn−s

where (n s) = n!
s!.(n−s)!

is the number of ways s elements may be chosen from a set of n different elements.

12

This is because with n+1 elements we may choose 1 element to form the first partition in
(n+1 1) ways and form the other partitions from the remaining n elements in qn ways, choose 2
elements in (n+1 2) ways and form the other partitions in qn−1 ways,. . .

In general for 06s6n we form the first partition from s+1 elements in (n+1 s+1)
ways and form the other partitions in qn+1−s−1 = qn−s ways.

A simple recursive function to evaluate this is:
funct part(n) ≡
if n=0 then 1

else var sum:=0;
for s:=0 to n step 1 do
sum:=sum+comb(n,s).part(n−s) od;
sum fi. where

funct comb(n,s) ≡
fact(n)/(fact(s).fact(n−s)),

funct fact(n) ≡
if n=0 then 1

else n.fact(n−1) fi.
However this is grossly inefficient; a call part(5) will lead to 31 recursive calls, 15 of

which will call comb. Thus fact will be called 45 times. In general part(n) results in 2n−1 recursive
calls and calls fact 3.2n−1 times.

Note that for n>0 part(n) is defined in terms of all of part(0) to part(n−1) which
suggests that it is a good candidate for range-of-values tabulation. If we initialise the program with
l:=1; T[1]:=1 then the transformation gives:
funct part(n) ≡

if l<n
then for i:=l+1 to n step 1 do

sum:=0;
for s:=0 to i−1 step 1 do
sum:=sum+comb(i−1,s).T[i−1−s] od;

T[i]:=sum od fi;
T[n] . where
funct comb(n,s) ≡
fact(n)/(fact(s).fact(n−s)),

13

funct fact(n) ≡
if n=0 then 1

else n.fact(n−1) fi.

This calls comb n.(n+1)/2 times (for a call of part(n) when l=1) and therefore calls
fact 3.n.(n+1)/2 times. We can make this more efficient by noting that:
comb(n,s+1) = comb(n,s).(n−s)/(s+1) for 06s6n so we can add a variable c and maintain
the invariant c=comb(i−1,s) within the inner loop. This means that we can dispense with all calls to
comb and fact. We get:
funct part(n) ≡

if l<n
then for i:=l+1 to n step 1 do

sum:=0; c:=1;
for s:=0 to i−1 step 1 do
sum:=sum+c.T[i−1−s]; c:=c.(i−1−s)/(s+1) od;

T[i]:=sum od fi;
T[n] .

Representing s by t where t=i−1−s gives the slightly improved version:
funct part(n) ≡

if l<n
then for i:=l+1 to n step 1 do

sum:=0; c:=1;
for t:=i−1 to 0 step −1 do
sum:=sum+c.T[t]; c:=c.t/(i−t) od;

T[i]:=sum od fi;
T[n] .

Disentanglement of the Control

Linear recursive routines do not require a protocol stack, more general recursive routines
may require a protocol stack and a parameter stack. However, in some cases we can use function
inversion to remove some or all of the parameters without needing the parameter stack. To see which
parameters do not need stacks we add assignments to local variables until no parameter positions
contain expressions. For example Ackermans function:

14

funct Ack(m,n) ≡
if m=0 then n+1
elsf n=0 then Ack(m−1,1)

else Ack(m−1, Ack(m,n−1)) fi.
becomes:
funct Ack(m,n) ≡
if m=0 then n+1
elsf n=0 then var m1,n1; m1:=m−1; n1:=1; Ack(m1,n1)

else var m1,n1; n1:=n−1; n1:=Ack(m,n1); m1:=m−1; Ack(m1,n1) fi.

The result is said to be disentangled if none of the parameters (or auxiliary variables) is
used both before and after the same recursive call. This means that their values need not be preserved
by the function (or procedure) and so they can be replaced by global variables. Ack(m,n) is not
disentangled since the parameter m is used after an inner call. However the function:
funct F(x) ≡
if B(x) then G(x)

else F(F(H(x))) fi

can be written in the disentangled form:
funct F(x) ≡
if B(x) then G(x)

else var x1,z1; x1:=H(x); z1:=F(x1); F(z1) fi.

We can use function inversion to disentangle a routine: if we deliver one of the parameters
as an extra result of the function then we can apply the inverse of the function to this result to recover
the original parameter. For Ack(m,n) we define a function Ack∗(m,n) which returns the pair of
integers 〈m,Ack(m,n)〉.
funct Ak(m,n) ≡
Ack∗(m,n)[2]. where
funct Ack∗(m,n) ≡
if m=0 then 〈m,n+1〉
elsf n=0 then var m1,n1; m1:=m−1; n1:=1; Ack∗(m1,n1)

else var m1,m2,n1;
n1:=n−1; 〈m2,n1〉:=Ack∗(m,n1); m1:=m−1; Ack∗(m1,n1) fi.

Initially the extra result has no use, but now we have m2 =m after the first inner call so we can rplace
the reference to m by m2 to give:

15

funct Ack(m,n) ≡
Ack∗(m,n)[2]. where
funct Ack∗(m,n) ≡
if m=0 then 〈m,n+1〉
elsf n=0 then var m1,n1; m1:=m−1; n1:=1; Ack∗(m1,n1)

else var m1,m2,n1;
n1:=n−1; 〈m2,n1〉:=Ack∗(m,n1); m1:=m2−1; Ack∗(m1,n1) fi.

which is disentangled. Replacing the parameters of Ack∗ by global variables gives:
funct Ack(m,n) ≡
Ack∗∗()[2]. where
funct A∗∗() ≡
if m=0 then 〈m,n+1〉
elsf n=0 then m:=m−1; n:=1; A∗∗()

else n:=n−1; 〈m,n〉:=A∗∗; m:=m−1; A∗∗() fi.

Finally we can replace A∗∗ by a procedure which returns the results in m and n:
funct Ack(m,n) ≡

A∗∗; n . where
proc A∗∗ ≡
if m=0 then n:=n+1
elsf n=0 then m:=m−1; n:=1; A∗∗

else n:=n−1; A∗∗; m:=m−1; A∗∗ fi.

Cascade Recursion

Consider the cascade recursion (where k1 and k2 are different):
funct F(x) ≡
if B(x) then φ(F(k1(x)), F(k2(x)), E(x))

else H(x) fi.

The detailed form is:

16

funct F(x) ≡
if B(x) then var x1,x2,z1,z2;

x1:=k1(x); z1:=F(x1); x2:=k2(x); z2:=F(x2);
φ(z1, z2, E(x))

else H(x) fi.
x and z1 violate the condition. As above we return z1 as an additional result:
funct F(x) ≡
F∗(x)[2]. where
funct F∗(x) ≡
if B(x) then var x1,x2,y1,y2,z1,z2;

x1:=k1(x); 〈y1,z1〉:=F∗(x1);
x2:=k2(x); 〈y2,z2〉:=F∗(x2);
φ(z1, z2, E(x))

else 〈x,H(x)〉 fi.

Using the inverses k′

1 and k′

2 we replace x by k′

1(y1) or k′

2(y2) to disentangle x:
funct F(x) ≡
F∗(x)[2]. where
funct F∗(x) ≡
if B(x) then var x1,x2,y1,y2,z1,z2;

x1:=k1(x); 〈y1,z1〉:=F∗(x1);
x2:=k2(k

′

1(y1)); 〈y2,z2〉:=F∗(x2);
〈x, φ(z1, z2, E(k′

2(y2))) 〉
else 〈x,H(x)〉 fi.

z1 is still entangled and we cannot in general use function inversion to restore it so it needs
a stack but x and the other local variables do not. Using a stack for z1 and replacing x and the local
variables by global variables and writing F∗ as a procedure gives:
funct F(x) ≡

Stack:=〈〉; F∗∗; x . where
F∗∗ ≡ if B(x) then x:=k1(x); F∗∗; x:=k2(k

′

1(x)); Stack←z; F∗∗; z1 ←Stack; x:=k′

2(x);
z:=φ(z1, z, E(x));

else z:=H(x) fi.

where x is used for x, y1 and y2 and z is used for z1 and z2.

17

If k1 or k2 do not have inverses then x will need a stack as well: all the intermediate
results can be put on the same stack if needed.

Nested Recursion:

Consider:
funct G(x) ≡
if B(x) then φ(G(Ψ(G(k1(x)), k2(x))), E(x))

else H(x) fi.

In detailed form:
funct G(x) ≡
if B(x) then var x1,x2,z1,z2;

x1:=k1(x); z1:=G(x1);
x2:=Ψ(z1,k2(x)); z2:=G(x2);
φ(z2,E(x))

else H(x) fi.

z1 and z2 are already disentangled, but in general we will not be able to reconstruct x by
function inversion so it required a stack:
funct G(x) ≡

Stack:=〈〉; G; z . where
G ≡ if B(x) then Stack←x; x:=k1(x); G; x←Stack;

Stack←x; x:=Ψ(z,k2(x)); G; x←Stack; z:=φ(z,E(x))
else z:=H(x) fi.

Reshaping the type of control flow

Sometimes reshaping the control flow allows us to disentangle more efficiently. For
example if ρ is an associative operation, suppose we have:
funct F(x) ≡
if B(x) then F(k1(x)) ρ F(k2(x)) ρ E(x)

else H(x) fi.

18

To use functional embedding we need a close relation between k1 and k2 (eg
k1(x)=k2(k1(x))), to use range-of-values tabulation k1 and k2 also have to satisfy strict conditions.
For many cases these conditions fail and we have to use a stack.

Since ρ is associative we can use re-bracketing on F. Let F1 be identical to F, then:
funct F(x) ≡
if B(x) then F(k1(x)) ρ F1(k2(x)) ρ E(x)

else H(x) fi.
and re-bracketing gives (where e is an identity element for ρ):

funct F(x) ≡
G(x,e). where
funct G(x,z) ≡
if B(x) then G(k1(x), (F1(k2(x)) ρ E(x)) ρ z)

else H(x) ρ z fi.
The inner call of F can be replaced by G(x,e) since F1 is still equivalent to F:

funct F(x) ≡
G(x,e). where
funct G(x,z) ≡
if B(x) then G(k1(x), G(k2(x), e) ρ E(x) ρ z))

else H(x) ρ z fi.
Now since ρ is associative G(x,y) ρ z = G(x, y ρ z) (the proof is by the induction rule for
recursion) so we can replace G(k1(x), G(k2(x), e) ρ E(x) ρ z)) by G(k1(x), G(k2(x), E(x)) ρ z))
to get the form:

funct F(x) ≡
G(x,e). where
funct G(x,z) ≡
if B(x) then G(k1(x), G(k2(x), E(x)) ρ z))

else H(x) ρ z fi.
which in detailed form is:

19

funct F(x) ≡
G(x,e). where
funct G(x,z) ≡
if B(x) then var x1,x2,z1,z2,r1;

x1:=k2(x); z1:=E(x) ρ z;
r1:=G(x1,z1);
x2:=k1(x); z2:=r1;
G(x2,z2)

else H(x) ρ z fi.

Now only x violates the condition and, as we have assumed nothing about k1 and k2 we must use a
stack for x:

funct F(x) ≡
Stack:=〈〉; z:=e; G; z . where

G ≡ if B(x)
then Stack←x; x:=k2(x); z:=E(x) ρ z; G;

x←Stack; x:=k1(x); G
else z:=H(x) ρ z fi.

If we had an inverse for k2 we could use function inversion to remove this stack.

Recurrence Relations

The r-term recurrence:
funct F(m) ≡
if m=m0 → H0(m)
⊓⊔ m=m1 → H1(m)
⊓⊔ ...
⊓⊔ m=mr−2 → Hr−2(m)
⊓⊔ m>mr−1 → φ(F(pred(m)),F(pred2(m)),...,F(predr−1(m)),m) fi.

(where mi =succi(m0) and pred(succ(m))=m), can be treated in a similar way to our derivation of
a linear function for computing fib, (which is in fact a 3-term recurrence).

As with our first treatment of fib we proceed by introducing the function:
funct G(m) ≡
〈F(predr−2(m)),F(predr−3(m)),...,F(pred(m)),F(m)〉.

20

which returns an (r−1)-tuple of results. Unfold F(m) and then transform G(m) so that it is defined
in terms of G(m−1) (taking out the cases m=m0,...,m=mr−2). The result can be transformed to give
the following linear iterative form for F:

funct F(m) ≡
if m=m0 → H0(m)
⊓⊔ m=m1 → H1(m)
⊓⊔ ...
⊓⊔ m=mr−2 → Hr−2(m)
⊓⊔ m>mr−1 → 〈v1,v2,...,vr−1〉:=〈H0(m0),H1(m1),...,Hr−2(mr−2)〉;

y:=mr−1;
while y6=succ(m) do
〈v1,v2,...,vr−1〉:=〈v2,v3...,vr−1,φ(v1,v2,...,vr−1,y)〉;
y:=succ(y) od;
vr−1 fi.

This can also be thought of as a form of range-of-values tabulation in which the table is not preserved
between calls: so, as only the top r−1 elements of the table are needed to compute the next element,
we only need to save r−1 elements in the table. These elements are stored in the variables v1,. . . ,vr−1.

The Derivation of Algorithms

In this section and the next chapter we give examples of the transformation of a
specification into a complete, efficient algorithm which implements the specification, using the
results developed so far. We will also discuss the application of these results to software
maintenance, particularly in discovering the specification of a section of code. We will describe our
current research at Durham into the analysis of IBM Assembler programs and the derivation of Z
specifications from the code.

A Traditional Example: Set x to n! (n factorial).

This is a simple example of transforming a specification to a recursive procedure, making
use of our theorem on recursive implementation of specifications. We will carry out the
transformation in some detail so as to illustrate the stages in the process. These general stages apply
to a great many algorithm developments and many of the detailed steps can be automated.

21

Defn: n!=1 if n=0
n!=n.(n−1)! otherwise.

Our specification is simply: S ≡ x:=n!
First we split this on the cases occurring in the definition to separate the base case and general case:
≈ if n=0 then x:=n! by splitting a tautology.

else x:=n! fi
Next we apply the definition to the two cases:
≈ if n=0 then x:=1

else x:=(n−1)! ; x:=x.n fi
Massage the general case to get it in terms of the specification (here by splitting the assignments):
≈ if n=0 then x:=1

else n:=n−1; x:=n! ; n:=n+1; x:=x.n fi
≈ if n=0 then x:=1

else n:=n−1; S; n:=n+1; x:=x.n fi
Now the term n is reduced before the inner occurrence of S so we can apply our theorem on the
recursive implementation of a specification to give the recursive procedure:
S ≈ F where
proc F ≡ if n=0 then x:=1

else n:=n−1; F; n:=n+1; x:=x.n fi.
Next we apply our general theorem on recursion removal. To distinguish the outer and inner calls of F
we use an auxiliary variable n0 which stores the initial value of n. Then n=n0 only for the outermost
call of F. The theorem gives:
S ≈

P ≡ n0:=n; F.
F ≡ if n=0 then x:=1; /F

else n:=n−1; F fi.
G ≡ n:=n+1; x:=x.n; /F
/F ≡ if n=0 then Z

else G fi.

Remove the tail recursion in F:
F ≡ while n6=0 do n:=n−1 od; x:=1; /F.

For integer n>0 initially this is equivalent to:
F ≡ n:=0; x:=1; /F.

22

Copy G into /F and remove the recursion:
/F ≡ while n6=n0 do n:=n+1; x:=x.n od; Z.

Copy all into P and get:
P ≡ n:=n0; n:=0; x:=1;
while n6=n0 do n:=n+1; x:=x.n od.

which for integer n can be replaced by a for loop: (replacing n by i and n0 by n):
P ≡ x:=1;
for i:=0 to n−1 step 1 do
x:=x.

(

i+1
)

od
Which is equivalent to: (representing i+1 by i):

P ≡ x:=1;
for i:=1 to n step 1 do
x:=x.i od

A typical iterative factorial calculation.

Largest true Square

Given a two dimensional boolean array b[1..m, 1..n], where m,n>0 find a largest true
square, ie the largest size>0 such that:
∃m1,n1. 0<m1 ∧ m1+size−16m ∧ 0<n1 ∧ n1+size−16n
∧ ∀i,j.

(

m1 6i<m1+size ∧ n1 6j<n1+size
)

⇒b[i,j]=true.

Thus if m=0 or n=0 or b is all false then size will be 0, if n>0 and m>0 and b contains a single
true element then size will be 1 etc.

Testing that a given square is true involves testing up to size2 elements of the boolean
array, so a simple search for a true square of size size>0 will involve up to (m−size).(n−
size). size2 tests. If m=n and the whole array is true then a simple search will require:

∑

16size6n(n−size).(n−size). size2

tests, which is of order n4.

To find a more efficient method we make use of the technique of “finite differencing” as follows:
(1) Find some properties of the data structure which, if known, would make the calculation of

the required property fairly simple.
(2) Add other properties (if necessary) so that the properties (1) and (2) for a data structure

can be easily determined given their values for all smaller data structures.

23

(3) Find a way of scanning through the data so that the number of sets of values of the
properties is as small as possible. (It may help (1) and (2) if we try various scanning methods first and
then work out the required properties for each method).

Suppose we are scanning through the array from left to right and top to bottom so that the
current position is 〈i,j〉 and the area already scanned is

{〈i1,j1〉|16j ∧ 16i ∧
(

j1 <j ∨
(

j1 =j ∧ i1 6i
))

}
Suppose know the position and size of largest true square within this area but know

nothing about any true squares which extend beyond this area. We will suppose LTS(i,j) returns the
size and bottom right-hand corner of the largest true square in the area up to and including 〈i,j〉. This
scanning method leads to the following program:
(where P ⇐⇒ 〈size,row,col〉 =LTS(i,j)):

i:=1; j:=0; size:=0; row:=0; col:=0; {P};
while i6m do
while j<n do
{P};
j:=j+1;
〈size,row,col〉:=LTS(i,j) od;

{P};
i:=i+1; j:=0;
〈size,row,col〉:=LTS(i,j) od;

{i=m+1 ∧ j=n ∧ P}.
Incrementing i and setting j to zero does not add any squares to the scanned area so the occurrence
of LTS outside the inner loop is redundant. We have:

i:=1; j:=0; size:=0; row:=0; col:=0; {P};
while i6m do
while j<n do
j:=j+1;
〈size,row,col〉:=LTS(i,j) od;

i:=i+1; j:=0 od;
{i=m+1 ∧ j=n ∧ P}.

If we add the square 〈i,j+1〉 to the area scanned then we need to change LTS only if the added
square is the bottom right-hand corner of a true square larger than LTS (in fact it must be exactly one
unit larger than LTS).

To test for this we need to test if all the elements of the square [i−size..i, j−size−
1..j+1] are true (where size is the size of LTS) -provided these squares are all in the array. This will

24

be so only when 〈i,j+1〉 forms the bottom right-hand corner of a true rectangle at least size+1
high and size wide and if 〈i,j+1〉 is at the bottom of a column of true elements which is at least
size+1 high.

This last point leads to our considering the size of the “true column” above each element in
the bottom row of the scanned area. This quantity should be easy to maintain as the area is increased:
either we add a new true element to the column or we start a new column of height zero. So suppose
we have a function col(p,j) which returns the size of the true column above 〈p,j〉. We can use this to
implement the function LTS under the condition P:

i:=1; j:=0; size:=0; row:=0; col:=0; {P};
while i6m do
while j<n do
j:=j+1;
p:=i;
while p6i−size ∧ p>1 ∧ col(p,j)>size do
p:=p+1 od;

if p=i−size+1 then 〈size,row,col〉:=〈size+1,i,j〉 fi od;
i:=i+1; j:=0 od;

{i=m+1 ∧ j=n ∧ P}.
In the case of an n×n array which is all true this will require order n3 iterations. Note that the
columns to the left of the current position may be tested several times over. Trying to find further
properties of the scanned area which would eliminate this leads to two suggestions:
(1) Maintain the width of the tallest true rectangle of width size which has 〈i,j〉 at the bottom

right-hand corner.
(2) Maintain the height of the widest true rectangle of height size which has 〈i,j〉 as the

bottom right-hand corner.

Either of these will allow us to replace the innermost loop in the last version by a simple
test and thus lead to a more efficient program provided the property can be maintained efficiently.

Case (A): For the tallest size−wide rectangle: taking a column from the left and adding a column
to the right leads to the following cases (where H is the current height, left is the height of the leftmost
column and right is the height of the rightmost column):

(1) If left>H then adding a column right>H cannot change H (since all the columns are still of
height>H and there is still some column in the rectangle with height H).

(2) If left>H then adding a column right<H means that the new H is right.

25

(3) If left=H then adding right>H could increase H iff no other column has height H (perhaps
we could maintain the number of columns in the rectangle with height H?).

(4) If left=H then adding right=H doesn’t change H.
(5) If left=H then adding right<H means that the new H is right.

The problem here is that each time H is increased (in case (3) we have to do a scan to
calculate the new H (the worst case is still of order n3).

Case (B): For the widest size-high rectangle we have only two cases (again right is the height of
the column added to the right of the current rectangle and W is the current width):

(1) If right<size then there cannot be a size-high rectangle which includes this column so the
new W is 0.

(2) If right>size then we can add the column to the rectangle which will still be size-high so the
new W is W+1.

If we take TSW(size,i,j) to be the height of the tallest size-wide rectangle with 〈i,j〉 as
the bottom right-hand corner and WSH(size,i,j) as the widest size-high rectangle then we have the
two versions:

size:=0; row:=0; col:=0; i:=1; j:=0; H:=0; {H=TSW(i,j) ∧ P};
while i6m do
while j<n do
{H=TSW(i,j) ∧ P};
j:=j+1;
if H>size+1 ∧ col(i,j)>size+1
then size:=size+1; row:=i; col:=j; H:=TSW(i,j)
else H:=TSW(i,j) fi od;

i:=i+1; j:=0 od;
{i=m+1 ∧ j=n ∧ P}.

and:

26

size:=0; row:=0; col:=0; i:=1; j:=0; W:=0; {W=WSH(i,j) ∧ P};
while i6m do
while j<n do
{W=WSH(i,j) ∧ P};
j:=j+1;
if W>size ∧ col(i,j)>size+1
then size:=size+1; row:=i; col:=j; W:=WSH(i,j)
else W:=WSH(i,j) fi od;

i:=i+1; j:=0 od;
{i=m+1 ∧ j=n ∧ P}.

In the second version the assignment W:=WSH(i,j) can be carried out in constant time except for the
case when size is increased when it requires order n time. However size can be increased no more
than n times (for the worst case) in the whole program so the n2 assignments W:=WSH(i,j) only
require order n2 time. This is obviously better than the first version which required order n3 time in
the worst case.

We split the assignments W:=WSH(i,j) into the two cases described above:
size:=0; row:=0; col:=0; i:=1; j:=0; W:=0; {W=WSH(i,j) ∧ P};
while i6m do
while j<n do

{W=WSH(i,j) ∧ P};
j:=j+1;
if W>size ∧ col(i,j)>size+1
then size:=size+1; row:=i; col:=j;
if col(i,j)<size
then W:=0
else W:=0; while col(i,j−W)>size ∧ j−W>0 do W:=W+1 od fi;
{W=WSH(i,j) ∧ P}

else if col(i,j)<size
then W:=0
else W:=W+1 fi;
{W=WSH(i,j) ∧ P} fi od;

i:=i+1; j:=0; W:=0 od;
{i=m+1 ∧ j=n ∧ P}.

27

If we now maintain the size of all the true columns in the scanned area in an integer array
cols [1..n] then the program becomes:
size:=0; row:=0; col:=0; i:=1; j:=0; W:=0;
for j:=1 to n step 1 do cols[j]:=0 od;
while i6m do
while j<n do
j:=j+1;
if b[i,j]=true then cols[j]:=cols[j]+1

else cols[j]:=0 fi;
{cols[j]=col(i,j)};
if W>size ∧ cols[j]>size+1
then size:=size+1; row:=i; col:=j; W:=0;
if cols[j]>size
then while cols[j−W]>size ∧ j−W>0 do W:=W+1 od fi

else if cols[j]<size
then W:=0
else W:=W+1 fi fi od;

i:=i+1; j:=0; W:=0 od;
{i=m+1 ∧ j=n ∧ P}.

This gives the result in linear time (that is order n×m time) and requires order n+m storage.

Data Types

Until now we have not made use of the concept of the types of the variables in any of our
transformations, all our variables have been simple variables of unspecified type, although we have
used them with stack and array operations. Many transformations are correct whatever type the
variables have. We have merely stated that variables take their values from a set D of values which
has not been further specified or given any structure. Practical programs have variables of different£
introduce a notation for data types, which is based on the concept of “prototypes” which are “cloned”
and modified to create new variables of various types.

28

Prototypes

We assume that there exists a set of primitive variables (the prototypes) called “integer”,
“real”, “boolean”, etc. which can be used in their own right as global variables and can also be used
to define new variables of the same type by using the like construct. Thus statements like:

integer:=integer+1
real:=real/integer
if ¬boolean ∧ integer=3 then . . . fi

are legal statements involving these variables.

The statements:
var a,b like integer var x,y,z like real etc.

define new variables of the same type. Once a variable has been defined it can itself be used as a
prototype to define other variables of the same type by using the like construction. So:

var a,b like integer;
var c,d like a

defines four integer variables a,b,c, and d.

This removes the distinction between variable names and type names which is the cause of
much confusion in strongly-typed languages such as Pascal. All names are variable names and if a
local variable is needed of the same type as some other variable then it can be declared without having
to remember or look up the type of the variable. This reduces the number of names that someone has
to keep in mind in order to understand the program which therefore reduces “memory load”: which
is now recognised as very important for readability. Amit [Amit 84] defines the memory load at a
point in the program to be a function of the number of items the programmer needs to remember in
order to understand the program, together with the distance between the current point and the last
definition or use of each item.

So far as our formal system is concerned, a declaration of the type of a new variable is a
“promise” that all the values assigned to that variable will satisfy a certain condition. This condition
will therefore be a “global invariant” which is satisfied throughout execution of the program. For
example the variable real satisfies the condition real∈R where R is the set of real numbers,
boolean satisfies the condition boolean∈ {true,false} and so on. If x is a typed variable then we
write Ix for the condition that x must satisfy. Ix is called the “global condition” for x. For any
assignment to x we must have:

{Ix}; x:=x′.Q ≈ {Ix}; x:=x′.Q; {Ix}
If x is not assigned a value when it is declared then x must be assigned before it is accessed and the
first assignment to x may not assume Ix holds initially but must ensure that it holds after the

29

assignment. We may assume that Ix is included as part of the condition in any assignment to x and
therefore we interpret: x:=x′.Q to mean x:=x′.

(

Ix ∧ Q
)

if necessary. For example if x and y are

like integer then the assignment: x:=x′.
(

x′ >y
)

will only assign integer values to x.
Space precludes a full discussion of these ideas, see [Ward 89b] for the details. We will

however discuss how recursive type definitions can be incorporated in this system since they make use
of infinitary logic:

Recursive Data Structures

For the global condition of a recursively defined data structure we need an infinitely long
formula. If variable r is recursively defined then we define:

I0 = “r is one of the base cases”
and for n>0: In = “r is constructed from components which all satisfy

∨

i<nIi”
Then the global condition for r is:

I =
∨

n<ωIn

For example, if we have:
var list either atom like string

or cons like 〈list,list〉

then I0 = ∃x.
(

list= 〈1,x〉 ∧ Istring[x/string]
)

In = ∃x,y.
(

list= 〈2,〈x,y〉〉 ∧
∨

i<nIi[x/list] ∧
∨

i<nIi[y/list]
)

and Ilist =
∨

n<ωIn.

30

