
) CHAPTER NINE

)Further Algorithm Derivations

(THE SCHORR-WAITE GRAPH MARKING ALGORITHM

In this Chapter we give further examples of the derivation of efficient algorithms by a
process of transformation starting with a specification. The first problem we will tackle is one of
marking all the nodes of a connected graph; a recursive procedure to do this is developed which is
simple but inefficient since it uses a variable amount of extra storage. This algorithm will be
successively transformed into an iterative form which only uses a fixed amount of extra storage. The
algorithm developed is known as the Schorr-Waite graph marking algorithm which was first
presented (in the form of a flowchart) in [Schorr & Waite 67].

This algorithm seems to have acquired the status of a standard testbed for program
verification techniques applied to complex data structures. A proof of a modified version of the
algorithm using the method of invariants was given in [Gries 79], an informal development from a
standard recursive algorithm is described in [Griffiths 79]. [Morris 82] proves the algorithm using
the axiomatic methods of [Hoare 69]. [Topor 79] presents a proof using the method of “intermittent
assertions” which are assertions of the form: “if at some time during the execution assertion A holds
at this point then at some later time assertion B will hold at this point”. Intermittent assertions are
described in [Manna & Waldinger 78] where they are used to reason about some iterative algorithms
for computing recursive functions. [Yelowitz & Duncan 77], [de Roever 78] and [Kowalski 79] also
give proofs for this algorithm.

Most of these proofs start with a statement of the algorithm and hence they can give few
indications as to how such an algorithm could be devised. The methods that rely on invariants give a
long list of complex invariants, again with little indication of how these invariants could be developed.

Our development of the algorithm starts with the specification of a graph-marking
algorithm which is transformed into a recursive procedure and thence to the iterative form. We take a
different route to that of [Griffiths 79] since we follow our usual practice of doing as much
simplification as possible with the recursive form of the algorithm before removing the recursion. In
particular we introduce the central idea of the algorithm while it is still in the form of a recursive
procedure. This gives a much clearer development than Griffith’s introduction of the idea after he
has removed the recursion.

1

The Problem

We are given a graph stored as a set of nodes, each node has a value, a mark value and two
pointers to the left and right subgraphs of the node. So the node at x (where x is an integer, the
address of the node) may be represented:

ie: x:

where m[x] gives the value of the mark of node x (which as we will see later must be able to store at
least four distinct values), l[x] and r[x] are the pointers to the left and right subtrees respectively with
initial values left(x) and right(x) respectively. For the purposes of this algorithm we ignore the
value fields of the nodes.

We require all nodes reachable from a root node (given in root) to be marked, ie the
program is to terminate with m[x]=1 for all reachable nodes x where initially all nodes have
m[x]=0. To make our initial specification and subsequent development more concise we will assume
that all pointers which are not used contain 0 (so that for instance all the leaves of the tree have both
pointers set to 0) and that we have a special node at position 0 with m[0]=1, l[0]=0 and r[0]=0
(the zero node).

We define the set of nodes “reachable” from a given node and a given array m as:
reachable(x,m) =DF ∅ if m[x]=1

{x}∪ reachable(left(x),m′) ∪ reachable(right(x),m′)
if m[x]=0

where m′ is m with node x marked, ie m′[y] = 1 if y=x
= m[y] otherwise.

So our specification is:
MARK(x) ≡ m:=m′.

(

∀y.
((

y∈reachable(x,m)⇒m′[y]=1
)

∧
(

y/∈reachable(x,m)⇒m′[y]=m[y]
)))

An obvious recursive procedure to implement this is to mark x (if it is not already
marked), then mark all nodes reachable from left(x) and then mark all nodes reachable from
right(x). However, when we mark this second set of nodes we have changed the array m such that the
nodes in the first set are already marked. So to show that this will work we need to use a little
elementary graph theory to prove the following:

2

Theorem:
reachable(x,m) = ∅ if m[x]=1

{x}∪ reachable(left(x),m′) ∪ reachable(right(x),m′′)
if m[x]=0

where m′ is m with node x marked, ie m′[y] = 1 if y=x
= m[y] otherwise.

and m′′ is m′ with all nodes reachable from left(x) marked, ie:
m′′[y] = 1 if y∈reachable(left(x),m′)
= m′[y] otherwise.

Proof: We use the concept of a path to a reachable node. A path is a sequence of nodes p[1..ℓ(p)]
where each node is connected to the previous one and no node is marked. ie:
PATH(p,m) =DF

∀i∈1..ℓ(p)−1.
(

p[i+1]=left(p[i]) ∨ p[i+1]=right(p[i])
)

∧ ∀i∈1..ln(p).
(

m[p[i]]=0
)

We define the set of paths from a given node as:
paths(x,m) = {p|PATH(p,m) ∧ p[1]=x}
note that if the graph has cycles then this set will be infinite.
As usual, the length of path p is ℓ(p), so the last element of a path is p[ℓ(p)].

With this definition we can prove that for each node reachable from x there is a path to
that node, and every node on a path from x is reachable from x. ie:
y∈reachable(x,m) ⇐⇒ ∃p∈paths(x,m).p[ℓ(p)]=y.
The proof is by induction on path lengths and induction on the size of the set of reachable elements.
To prove the theorem we will prove:

y∈ reachable(x,m) −
(

{x}∪ reachable(left(x),m′)
)

⇐⇒ y∈ reachable(x,m′′)
“ =⇒ ”: Follows from: reachable(right(x),m′′) ⊆ reachable(right(x),m′)
“⇒”: If y6=x and y∈reachable(x,m) and y/∈reachable(left(x),m′) then there is a path to y in
paths(x,m) which does not cross x or any element of reachable(left(x),m′) except for the first
element. The second element of this path must be right(x) since it cannot be left(x). Hence this path
with the first element removed is a path to y in paths(right(x),m′′), hence y is reachable from
right(x) in m′′.

So MARK(x) is equivalent to:
mark(x) where
proc mark(x) ≡ if m[x]=0 then m[x]:=1; MARK(left(x)); MARK(right(x)) fi.

3

So applying the theorem on recursive implementation of specifications we get MARK(x) ≈
mark(x) where
proc mark(x) ≡ if m[x]=0 then m[x]:=1; mark(left(x)); mark(right(x)) fi.

where we have used the fact that the total number of nodes is finite and each recursive call either
terminates immediately or marks at least one unmarked node.

The Transformations

The difficulty the Schorr-Waite algorithm presents to any formal analysis of it is that it
uses the same data structure for three different purposes: to store the original graph structure, to
record the path from the current node to the root, and to record the current “state of play” at each
node. The program is required to mark the graph without changing its structure yet works by
modifying that structure as it executes, therefore any proof of correctness must also demonstrate that
all the pointers are restored on termination of the program. We use our general method for deriving
algorithms involving abstract data types to deal with this problem, the same method can also be used
with other algorithms which use one set of storage for two purposes. The steps in the development
are:

(1) Derive a version of the program which uses two data structures (for example by transforming
a specification into a program). The variables representing these data structures are the abstract
variables.
2 (2) Add the variables which will represent the actual data store as ghost variables (so at the

moment these are assigned but not accessed). These are the concrete variables.
(3) Add assertions which show the relationship between the abstract and concrete variables.
(4) Replace references to the abstract variables by references to the concrete variables using the

assertions to show that the required values are available.
(5) The abstract variables are now ghost variables (they are assigned but never referenced) so they

can be removed from the program leaving the concrete variables.

To slightly simplify the development we add tests to ensure that mark is only called when
m[x]=0. This gives:

proc mark(x) ≡
m[x]:=1;
if m[left(x)]=0 then mark(left(x)) fi;
if m[right(x)]=0 then mark(right(x)) fi.

Our development of the algorithm may be summerised as:
(1) Devise a simple recursive procedure (as above).

4

(2) Replace the parameter by a global stack (standard technique).
(3) Add l(x), r(x) and q as new ghost variables (l(x) and r(x) are the pointers at node x, their

initial and final values will be left(x) and right(x) for all x. q is a variable which will record the
node at the top of the stack).

(4) Replace all references to left(x), right(x) and the stack by references to l[x], r[x] and q
(this will be possible because the stack will be “embedded” in the pointers).

(5) Remove the recursion using the “postponed obligations” technique.
(6) Implement the stack of “postponed obligations” by extra assignments to m[x], so that for

each x, m[x] records what operations on x have been postponed.

Using global stack S to remove the parameter gives:
Prog ≡ x:=root; S:=〈〉; if m[x]=0 then mark fi.
mark ≡ m[x]:=1;

if m[left(x)]=0 then S←x; x:=left(x); mark; x←S fi;
if m[right(x)]=0 then S←x; x:=right(x); mark; x←S fi.

Note that mark preserves S and x and is only called when m[x]=0.

We will now add l[x], r[x] and q as ghost variables which have the initial values (for all
nodes x which are reachable from the root): l[x]=left(x) and r[x]=right(x).

The assignments will maintain these values for all nodes apart from those on the stack. We
will use q to store the value on the top of the stack, and implement S as an array with an integer i such
that:

x←S becomes S[i]:=x; i:=i+1 and
S←x becomes i:=i−1; x:=S[i]

So we maintain the invariant: q=S[i−1].

The central idea behind the algorithm devised by Schorr and Waite is that when we return
from having marked the left subtree of a node we know what the value of left(x) is for the current
node (since we just came from there) so that while we were marking the left subtree we could use the
pointer l[x] to store something else–for instance the current top of the stack (which is the node we
will return to when we have finished marking this one). Similarly while we are marking the right
subtree we can store this “previous node” pointer in r[x]. Since we only call mark when m[x]=0 and
all nodes on the stack have m[x]=1 we know that the invariant for l and r holds for each node we
encounter.

The values we want to assign to our “ghost variables” will be as follows:
First visit: l[x]=S[i−1], r[x]=right(x), q=left(x)

5

Second visit: l[x]=left(x), r[x]=S[i−1], q=right(x)
Third visit: l[x]=left(x), r[x]=right(x), q=S[i−1].

We also ensure that q=S[i−1] before each call of mark:
Prog ≡ x:=root; q:=0; i:=0; S[−1]:=0;

if m[x]=0 then {m[x]=0 ∧ q=S[i−1]}; mark fi.
mark ≡ {m[x]=0}; m[x]:=1;

if m[left(x)]=0 then l[x]:=S[i−1]; q:=x;
S[i]:=x; i:=i+1; x:=left(x);
{q=S[i−1] ∧ m[x]=0}; mark;
i:=i−1; x:=S[i]; q:=left(x)

else l[x]:=S[i−1]; q:=left(x) fi;
if m[right(x)]=0 then l[x]:=left(x); r[x]:=S[i−1]; q:=x;

S[i]:=x; i:=i+1; x:=right(x);
{q=S[i−1] ∧ m[x]=0}; mark;
i:=i−1; x:=S[i]; q:=right(x)

else l[x]:=left(x); r[x]:=S[i−1]; q:=right(x) fi;
r[x]:=right(x); q:=S[i−1].

From this we can see that mark preserves the values of q and x, and preserves the values
of the pointers of all nodes with m[x] 6=0 initially. These two facts allow us to replace all references to
left(x), right(x) and S by references to l[x], r[x] and q: for example in the middle if statement we
have q=left(x) so the assignment l[x]:=left(x) becomes l[x]:=q and so on. This gives:
Prog ≡ x:=root; q:=0; i:=0; S[−1]:=0; if m[x]=0 then {m[x]=0 ∧ q=S[i−1]}; mark fi.
mark ≡ {m[x]=0}; m[x]:=1;

if m[l[x]]=0 then S[i]:=x; i:=i+1;
〈l[x],q,x〉:=〈q,x,l[x]〉;
{q=S[i−1] ∧ m[x]=0}; mark;
i:=i−1;
〈x,q〉:=〈q,x〉

else 〈l[x],q〉:=〈q,l[x]〉 fi;

6

if m[r[x]]=0 then S[i]:=x; i:=i+1;
〈r[x],l[x],q,x〉:=〈l[x],q,x,r[x]〉;
{q=S[i−1] ∧ m[x]=0}; mark;
i:=i−1;
〈x,q〉:=〈q,x〉

else 〈r[x],l[x],q〉:=〈l[x],q,r[x]〉 fi;
〈r[x],q〉:=〈q,r[x]〉.

The next step is to remove the recursion using the “postponed obligations” technique of
Chapter 6. To get the recursive procedure into the right format we create a new procedure mark1

which is equivalent to mark; i:=i−1; 〈x,q〉:=〈q,x〉, we also split mark into three sections:
Prog ≡ x:=root; q:=0; i:=0; S[−1]:=0; if m[x]=0 then mark1; 〈x,q〉:=〈q,x〉; i:=i+1 fi.
mark1 ≡ m[x]:=1;

if m[l[x]]=0 then S[i]:=x; i:=i+1;
〈l[x],q,x〉:=〈q,x,l[x]〉; mark1

else 〈l[x],q〉:=〈q,l[x]〉 fi; mark2.
mark2 ≡ if m[r[x]]=0 then S[i]:=x; i:=i+1;

〈r[x],l[x],q,x〉:=〈l[x],q,x,r[x]〉; mark1

else 〈r[x],l[x],q〉:=〈l[x],q,r[x]〉 fi; mark3.
mark3 ≡ 〈r[x],q〉:=〈q,r[x]〉; 〈x,q〉:=〈q,x〉; i:=i−1.

We use another stack A to record which section of mark has been postponed, this stack is
also implemented as an array with j as the index variable:
Prog ≡ x:=root; q:=0; i:=0; S[−1]:=0;

if m[x]=0
then A[1]:=1; j:=1;

while j6=0 do
m[x]:=1;

a:=A[j]; j:=j−1;
if a=1 → if m[l[x]]=0 then S[i]:=x; i:=i+1;

〈l[x],q,x〉:=〈q,x,l[x]〉;
j:=j+1; A[j]:=2; j:=j+1; A[j]:=1;

else 〈l[x],q〉:=〈q,l[x]〉; j:=j+1; A[j]:=2 fi

7

⊓⊔ a=2 → if m[r[x]]=0 then S[i]:=x; i:=i+1;
〈r[x],l[x],q,x〉:=〈l[x],q,x,r[x]〉;
j:=j+1; A[j]:=3; j:=j+1; A[j]:=1

else 〈r[x],l[x],q〉:=〈l[x],q,r[x]〉; j:=j+1; A[j]:=3 fi
⊓⊔ a=3 → 〈r[x],q〉:=〈q,r[x]〉; 〈x,q〉:=〈q,x〉; i:=i−1 fi od;

〈x,q〉:=〈q,x〉 fi.

The final step is to use the extra states which can be stored in the mark part of each node
to record the status of each node (ie what has been postponed for that node). We introduce another
array M as a ghost variable which stores this inormation by maintaining the invariant: for each k in
the stack (ie 16k6j) , M[k]=A[S[k]]. Note that the values of i and j follow each other:
Prog ≡ x:=root; q:=0; i:=0; S[−1]:=0;

if m[x]=0
then A[1]:=1; j:=1; M[x]:=1;

while j6=0 do
m[x]:=1;

a:=A[j]; j:=j−1;
if a=1 → if m[l[x]]=0 then M[x]:=2; M[l[x]]:=1

S[i]:=x; i:=i+1;
〈l[x],q,x〉:=〈q,x,l[x]〉;
j:=j+1; A[j]:=2; j:=j+1; A[j]:=1;

else 〈l[x],q〉:=〈q,l[x]〉; M[x]:=2;
j:=j+1; A[j]:=2 fi

⊓⊔ a=2 → if m[r[x]]=0 then M[x]:=3; M[r[x]]:=1
S[i]:=x; i:=i+1;
〈r[x],l[x],q,x〉:=〈l[x],q,x,r[x]〉;
j:=j+1; A[j]:=3; j:=j+1; A[j]:=1

else 〈r[x],l[x],q〉:=〈l[x],q,r[x]〉; M[x]:=3;
j:=j+1; A[j]:=3 fi

⊓⊔ a=3 → 〈r[x],q〉:=〈q,r[x]〉; 〈x,q〉:=〈q,x〉; i:=i−1 fi od;
〈x,q〉:=〈q,x〉 fi.

Now we can replace all references to A[j] by references to M[S[j]] which (since i and j
follow each other) is the same as M[S[i]] which is the same as either M[x], or M[l[x]] or M[r[x]].
This means we can remove S and then remove i (since it is only used in assignments to S). Note that j
is only reduced in the third arm, so for j to be reduced to zero we must have had j=1 and A[j]=3, ie

8

A[1]=M[S[1]]=M[root]=3. So we can replace the test j6=0 by M[root] 6=3 and remove j. If we
initialise M to 1 then all the assignments which set elements of M to 1 can be removed (since they only
apply to “new” elements, ie those with m zero). We get:
Prog ≡ x:=root; q:=0;

if m[x]=0
then while M[root] 6=3 do

m[x]:=1;
a:=M[x];
if a=1 → if m[l[x]]=0 then M[x]:=2; 〈l[x],q,x〉:=〈q,x,l[x]〉

else 〈l[x],q〉:=〈q,l[x]〉; M[x]:=2 fi
⊓⊔ a=2 → if m[r[x]]=0 then M[x]:=3; 〈r[x],l[x],q,x〉:=〈l[x],q,x,r[x]〉

else 〈r[x],l[x],q〉:=〈l[x],q,r[x]〉 fi
⊓⊔ a=3 → 〈r[x],q〉:=〈q,r[x]〉; 〈x,q〉:=〈q,x〉 fi od;

〈x,q〉:=〈q,x〉 fi.

The usual algorithm combines m and M into a single array m′ with the values:
m′[x]=0 if m[x]=0 (in this case the value in M[x] is always 1)
m′[x]=1 if m[x]=1 and M[x]=1

m′[x]=2 if m[x]=1 and M[x]=2
m′[x]=3 if m[x]=1 and M[x]=3

This gives the following algorithm which sets m′[x] to 3 for all nodes x reachable from root:
Prog ≡ x:=root; q:=0;

if m[root]=0
then while m′[root] 6=3 do

m′[x]:=m′[x]+1;
if m′[x]=1 → if m′[l[x]]=0 then 〈l[x],q,x〉:=〈q,x,l[x]〉

else 〈l[x],q〉:=〈q,l[x]〉 fi
⊓⊔ m′[x]=2 → if m′[r[x]]=0 then 〈r[x],l[x],q,x〉:=〈l[x],q,x,r[x]〉

else 〈r[x],l[x],q〉:=〈l[x],q,r[x]〉 fi
⊓⊔ m′[x]=3 → 〈r[x],q〉:=〈q,r[x]〉; 〈x,q〉:=〈q,x〉 fi od;

〈x,q〉:=〈q,x〉 fi.

This is essentially the algorithm devised by Schorr and Waite. We can get a more compact
(though slightly less efficient) form of the algorithm by changing the assignments to the “ghost
variables” so that the values left[x], right[x] and S[i−1] are rotated around the variables l[x], r[x]
and q each time node x is visited.

9

We have:
First visit (m′[x]=1): l[x]=right[x], r[x]=S[i−1], q=left[x]
Second visit (m′[x]=2): l[x]=S[i−1], r[x]=left[x], q=right[x]
Third visit (m′[x]=3): l[x]=left(x), r[x]=right(x), q=S[i−1].

This leads to the algorithm:
Prog ≡ x:=root; q:=0;

while m′[root] 6=3 do
m′[x]:=m′[x]+1;

if m[x]=1 → if m′(l[x])=0 then 〈l[x],r[x],q,x〉:=〈r[x],q,x,l[x]〉
else 〈l[x],r[x],q〉:=〈r[x],q,l[x]〉 fi

⊓⊔ m[x]=2 → if m′(r[x])=0 then 〈l[x],r[x],q,x〉:=〈r[x],q,x,l[x]〉
else 〈l[x],r[x],q〉:=〈r[x],q,l[x]〉 fi

⊓⊔ m[x]=3 → 〈l[x],r[x],q,x〉:=〈r[x],q,x,l[x]〉 fi od.

This can now be further simplified by re-arranging the if statements to get the final version:
Prog ≡ x:=root; q:=0;

while m[root] 6=3 do
m[x]:=m[x]+1;
if m[x]=3 ∨ m[l[x]]=0 then 〈l[x],r[x],q,x〉:=〈r[x],q,x,l[x]〉

else 〈l[x],r[x],q〉:=〈r[x],q,l[x]〉 fi od.

An Improved Version

Although the Schorr-Waite algorithm is very efficient in the use of storage it is less
efficient than the original recursive procedure in terms of the number of assignments carried out.
Also if we knew that the graph structure was similar to a bushy tree (with many nodes but few long
paths) then a small fixed stack would be able to deal with the majority of the nodes. For example with
a binary tree in which each node had either zero or two subtrees a stack of length 40 could deal with
trees containing more than 1,000,000,000,000 nodes. This suggests using a stack to deal with the short
paths and using the general “pointer switching” strategy when the stack runs out. Starting with an
intermediate version, we add tests so that we only assign values to the new variables l[x], r[x] etc.
when i>N:
Prog ≡ x:=root; q:=0; i:=0; S[−1]:=0;

if m[x]=0 then {m[x]=0 ∧ q=S[i−1]}; mark fi.

10

mark ≡ {m[x]=0}; m[x]:=1;
if m[left(x)]=0

then if i>N then l[x]:=S[i−1]; q:=x;
S[i]:=x; i:=i+1; x:=left(x); mark;
i:=i−1; x:=S[i]; q:=left(x)

else S[i]:=x; i:=i+1; q:=x; x:=left(x); mark;
i:=i−1; x:=S[i]

else if i>N then l[x]:=S[i−1]; q:=left(x) fi fi;
if m[right(x)]=0

then if i>N then l[x]:=left(x); r[x]:=S[i−1]; q:=x;
S[i]:=x; i:=i+1; x:=right(x); mark;
i:=i−1; x:=S[i]; q:=right(x)

else S[i]:=x; i:=i+1; q:=x; x:=left(x); mark;
i:=i−1; x:=S[i]

else if i>N then l[x]:=left(x); r[x]:=S[i−1]; q:=right(x) fi fi;
if i>N then r[x]:=right(x); q:=S[i−1]

else x:=S[i]; q:=S[i−1] fi.

Here we have added assignments to l[x], r[x] etc. only if i>N.
This can be developed in the same way as the original to get the following iterative version:
Prog ≡ x:=root; q:=0; i:=0;

while m[root] 6=3 do
m′[x]:=m′[x]+1;

if m[x]=1 ∧ i>N → if m′[l[x]]=0 then 〈l[x],q,x〉:=〈q,x,l[x]〉; i:=i+1
else 〈l[x],q〉:=〈q,l[x]〉 fi

⊓⊔ m[x]=2 ∧ i>N → if m′[r[x]]=0 then 〈l[x],r[x],q,x〉:=〈r[x],q,x,l[x]〉; i:=i+1
else 〈l[x],r[x],q〉:=〈r[x],q,l[x]〉 fi

⊓⊔ m[x]=3 ∧ i>N → 〈l[x],r[x],q,x〉:=〈r[x],q,x,l[x]〉; i:=i−1
⊓⊔ m[x]=1 ∧ i6N → if m′[l[x]]=0 then S[i]:=x; i:=i+1; q:=x; x:=l[x] fi
⊓⊔ m[x]=2 ∧ i6N → if m′[r[x]]=0 then S[i]:=x; i:=i+1; q:=x; x:=r[x] fi
⊓⊔ m[x]=3 ∧ i6N → x:=S[i]; i:=i−1; q:=S[i−1] fi od.

This can be made more efficient with the careful use of selective unrolling. Omitting the
details, the result is expressed as a regular action system (we assume N>0 and m[root] 6=3 initially):

11

Prog ≡ x:=root; q:=0; i:=0; A0.
A ≡ if m[x]=0 → A0

⊓⊔ m[x]=1 → A1

⊓⊔ m[x]=2 → A2 fi.
A0 ≡ if m[l[x]]=0 then m[x]:=1; S[i]:=x; i:=i+1; if i>N then q:=x; x:=l[x]; B

else x:=l[x]; A fi
else A1 fi.

A1 ≡ if m[r[x]]=0 then m[x]:=2; S[i]:=x; i:=i+1; if i>N then q:=x; x:=r[x]; B
else x:=r[x]; A fi

else A2 fi.
A2 ≡ m[x]:=3; if i=0 then Z fi;

x:=S[i]; i:=i−1; A.
B ≡ if m[x]=0 → B0

⊓⊔ m[x]=1 → B1

⊓⊔ m[x]=2 → B2 fi.
B0 ≡ if m[l[x]]=0 then m[x]:=1; 〈l[x],q,x〉:=〈q,x,l[x]〉; i:=i+1; B

else 〈l[x],q〉:=〈q,l[x]〉; B1 fi.
B1 ≡ if m[r[x]]=0 then m[x]:=2; 〈l[x],r[x],q,x〉:=〈r[x],q,x,l[x]〉; i:=i+1; B

else 〈l[x],r[x],q〉:=〈r[x],q,l[x]〉; B2 fi.
B2 ≡ m[x]:=3; 〈l[x],r[x],q,x〉:=〈r[x],q,x,l[x]〉; i:=i−1;

if i6N then A else B fi.

This version minimises the number of tests and assignments.

LARGEST STEEP SEGMENT

I am indebted to Richard Bird for suggesting the next problem as a test of my methods of
program development:

Problem: Find the length of the largest steep segment of the array a[1..n] of positive integers.
a[i..j], 16i6j6n, is a steep segment iff

∑

i6k<la[k] 6 a[l] for each l st i6l6j
So i=j is always a steep segment and any subsequence of a steep segment is also a steep segment.

Solution: Suppose we have a caterpillar crawling along the array (the precise mathematical
definition of a caterpillar will be given later), and this caterpillar will only stand on a steep segment:

12

a[1] a[n]
steep segment

i j
The problem therefore is: how long can the caterpillar get?

Claim: If the caterpillar moves from left to right and only moves its tail when it can’t move its head
then its head will reach a[n] and it will have stood on the longest steep segment.
Proof: The head reaches the end since if the tail reaches the head then the head can move (if the head
can’t move on its own then the head and tail move together). Once the head has moved onto the last
space of the longest steep segment the tail must be on the first space since if the tail was past the first
space it must have moved while the head was still inside the segment, yet the tail only moves when the
head cannot. The tail can’t be behind the first space since then the caterpillar would be standing on a
longer segment than the longest steep segment and the caterpillar only stands on steep segments.
Hence once the head reaches a[n] the caterpillar must at some point have stood on the longest steep
segment.
We represent a caterpillar by the pair C= 〈i,j〉 of positive numbers with t(C)=i and h(C)=j.
The caterpillar’s movements must preserve the invariant:

i6j ∧ a[i..j] is a steep segment
After each head move we update result which contains the length of the longest steep segment found
so far.

headmove(C)= 〈t(C),h(C)+1〉
tailmove(C) = 〈t(C)+1,h(C)〉 if t(C)<h(C)

= 〈t(C)+1,h(C)+1〉 otherwise

The program is:
S1 ≡ var C:=〈1,1〉,result:=1; (set up the invariant)
while h(C)6=n do {h(C)<n};
if SS(headmove(C)) then C:=headmove(C);

if length(C)>result then result:=length(C) fi
else C:=tailmove(C) fi od.

where SS(C) ≡ C is a steep segment ie
∀l.t(c)6l6h(c) ⇒

∑

t(C)6k<la[k] 6 a[l]

13

Given SS(C) and h(C)<n we have
SS(headmove(C))⇐⇒

∑

t(C)6k6h(C)a[k] 6 a[h(C)+1].

Using the technique of “finite differencing” we add an extra variable sum and maintain
the relation: sum=

∑

t(C)6k6h(C)a[k] by updating sum after each caterpillar move. Then:

SS(headmove(C)) ⇐⇒ sum6a[h(C)+1]
The program is now:
S2 ≡ var C:=〈1,1〉,result:=1,sum:=a[1]; {h(C)6n};
while h(C)6=n do {h(C)<n};
if sum6a[h(C)+1]
then C:=headmove(C); sum:=sum+a[h(C)];
if length(C)>result then result:=length(C) fi

else if h(C)=t(C)
then C:=〈t(C)+1,h(C)+1〉; sum:=a[h(C)]
else C:=〈t(C)+1,h(C)〉; sum:=sum−a[t(C)−1] fi fi od.

Finally we replace C by the two variables head and tail. length(C)=head−tail+1:
S3 ≡ var head:=1,tail:=1,result:=1,sum:=a[1];
while head6=n do
if sum6a[head+1]
then head:=head+1; sum:=sum+a[head];
if head−tail+1>result then result:=head−tail+1 fi

else if head=tail then head:=head+1; tail:=tail+1; sum:=a[head]
else tail:=tail+1; sum:=sum−a[tail-1] fi fi od.

We can make a small improvement in efficiency by realising that once the tail has gone
past n−result we will not be able to improve on result so we can change the test of the while loop
from head6=n to tail<n−result.

BACKTRACKING

In this section we consider the following form of recursive procedure:
proc F ≡
S1; while B do S2; F; S3 od; S4.

where S1,. . . ,S4 do not call F.

14

This form of procedure frequently occurs with various searching and other recursive
routines which involve backtracking. Examples are: finding all permutations of a set (where the loop
picks each element in turn as the first element of the permutation and the recursive call finds all
permutations of the remaining elements), listing Gray codes, finding a path (or all paths) through a
maze, finding a “Knight’s Tour” of a chessboard, the “Eight Queens” problem, etc.

At first sight it may appear that the following form is more general:
proc F1 ≡
S1; while B do

if Q then Sa; F; Sb

else Sc fi;
S3 od; S4.

However, this can be transformed into the first form as follows:
Split the loop into two to get:

proc F1 ≡
S1;
while B ∧ ¬Q do
if Q then Sa; F; Sb else Sc fi;
S3 od;

{¬B ∨ Q};
while B do
if Q then Sa; F; Sb else Sc fi;
S3 od;

S4.
Simplify the body of the first loop and apply entire loop unfolding to the second loop after pushing S3

into the if statement:
proc F1 ≡
S1;
while B ∧ ¬Q do Sc; S3 od;
{¬B ∨ Q};
while B do
if Q then Sa; F; Sb; S3; while B ∧ ¬Q do Sc; S3 od; {¬B ∨ Q}
else Sc; S3; while B ∧ ¬Q do Sc; S3 od; {¬B ∨ Q} fi od;

S4.
Now we can insert {Q} at the beginning of the second loop body which can therefore be simplified to:

15

proc F1 ≡
S1;
while B ∧ ¬Q do Sc; S3 od;
while B do
Sa; F; Sb; S3; while B ∧ ¬Q do Sc; S3 od od;

S4.

Which is of the same form as the first version.

A general backtracking procedure to find all the solutions to a problem can be derived as
follows: Suppose that the required solution is a set and all subsets of a solution are “partial solutions”
and suppose we have a set of “possible additions” which may be added to a partial solution to get a
bigger one. For example in finding all the paths through a maze a partial solution is a path which
satisfies all the conditions of a solution (does not cross itself etc.) but does not yet extend all the way
through the maze. The possible additions to such a path are all the squares adjacent to it which are
within the maze. In the case of the “Eight Queens” problem the partial solutions are boards for which
only the first n columns have a queen. Possible additions are the legal places where a queen can be
added to the n+1th column.

A procedure to find all solutions may take the form:
proc Find ≡
“Find the set of possible additions to the partial solution”;
while “More possible additions to consider” do
if “Adding next possible addition still gives a partial solution”
then “Add it to the partial solution”;

Find; (find all extensions to the new partial solution)
“Remove it from the partial solution” fi;

“Remove the next possible addition from the set” od;

Note that the step which finds the set of possible additions will also test if the current
partial solution is in fact a full solution.

To find just one solution the only modification needed is to add an extra condition to the
loop which ensures that it terminates as soon as a solution has been found. This may be is achieved by
adding a global boolean variable “success” which is set to false initially and set true when a
solution is found. The while loop is changed to: while ¬success ∧ ...

16

To make this informal algorithm more precise we use Ψ for the partial solution and suppose:
Complete(Ψ) is true iff Ψ is a complete solution,
Cond(Ψ) is the condition that any partial solution must satisfy,
Add(Ψ) is the set of possible additions to partial solution Ψ.
We use Sols for the set of solutions.

Under the condition that any subset of a solution is a partial solution, the following
program sets Sols to the set of all solutions:
Prog ≡ Sols:=∅; Ψ:=∅; if Cond(∅) then Find fi.
Find ≡ var Add, a;

if Complete(Ψ)
then Sols:=Sols∪{Ψ}; Add:=∅

else Add:=Add(Ψ) fi;
if Add6= ∅ then “Pick an element of Add and assign to a” fi;
while Add6= ∅ do
if Cond(Ψ ∪ {a})
then Ψ:=Ψ ∪ {a}; Find; Ψ:=Ψ− {a} fi;
Add:=Add−{a};
if Add6= ∅ then “Pick an element of Add and assign to a” fi od.

Note that Cond(Ψ) is true on each call of Find: this fact is likely to be useful when we are
testing for possible additions to Ψ since we may be able to define a more efficient function
Cond∗(Ψ,a) which tests if Cond(Ψ ∪ {a}) is true given that Cond(Ψ) is true. Note that Ψ is a
global variable but Add and a are local to Find so they may need stacks to implement them. In
many cases however, their values can be “reconstructed” after the inner call to Find. For example if
Ψ is represented by a stack then the statement Ψ:=Ψ ∪ {a} becomes Ψ←a and since Find
preserves Ψ we can restore the values of Ψ and a by executing a← Ψ. Also if the set Add has an
order relation on it then we can refine the statement “Pick an element of Add and assign to a” to pick
the smallest (or largest) element each time and then we can use the restored a to restore Add since:
Add = {x∈Add(Ψ)|a4x} where 4 is the order relation. Finally, the fact that Ψ = ∅ holds only
for the outermost call will aid us in transforming the recursive procedure to an iterative one.

Transformation to Iterative Form

To transform the procedure:
proc F ≡
S1; while B do S2; F; S3 od; S4.

17

to iterative form we add an extra action L to implement the while loop:
Prog ≡ F; Z.
F ≡ S1; L.
L ≡ while B do S2; F; S3 od; S4.

L can be transformed to a tail-recursive action:
L ≡ if B then S2; F; S3; L

else S4 fi.
To apply the standard recursion removal theorem we add an “activation counter” c (which we may
be able to represent by some counting operation already performed within F: for instance the size of
the partial solution Ψ):

Prog ≡ c:=0; F; {c=0}; Z.
F ≡ S1; L.
L ≡ if B then S2; c:=c+1; F; {c>0}; c:=c−1; S3; L

else S4; /F fi.
/F ≡ skip.

Now we can use c to regularise /F:
Prog ≡ c:=0; F.
F ≡ S1; L.
L ≡ if B then S2; c:=c+1; F

else S4; /F fi.
/F ≡ if c=0 then Z

else c:=c−1; S3; L fi.
Copy F and /F into L and remove the recursion:

L ≡ do if B then S2; c:=c+1; S1

else S4; if c=0 then exit fi;
c:=c−1; S3 fi od; Z.

Copy L into F and F into Prog to get the iterative version:
Prog ≡ c:=0;

do if B then S2; c:=c+1; S1

else S4; if c=0 then exit fi;
c:=c−1; S3 fi od.

Example of backtracking: Relation Preserving Mappings

The following problem was suggested to me by Dr. H.Priestley in connection with her work
on continuous lattices (see [Davey & Priestley 89]):

18

Given two finite sets, A and B and a finite set R such that each ρ ∈R defines a relation
on A and a relation on B, find out how many relation-preserving functions Ψ:A → B exist.

Defn: A function Ψ:A → B is relation-preserving iff pairs of related elements in A map to pairs of
related elements in B, ie:

∀ρ ∈R.∀x,y∈A. xρy ⇒ Ψ(x) ρ Ψ(y)

Thus we want to find the size of the set:
{Ψ:A → B|∀ρ ∈R.∀x,y∈A. xρy ⇒ Ψ(x) ρ Ψ(y)}

Note that if Ψ is a map from a proper subset of A, say from A′ where A′ ⊂A, and
a∈A−A′ then the extension of Ψ to A′ ∪ {a} where Ψ(a)=b is relation-preserving iff the
following holds:
∀ρ ∈R.∀a′ ∈A1.

(

a ρ a′ ⇒ b ρ Ψ(a′)
)

∧
(

a′ ρ a ⇒ Ψ(a′) ρ b
)

∧
(

a ρ a ⇒ b ρ b
)

Thus if we know that Ψ is relation-preserving on A′ and a/∈A′ then Ψ ∪ {〈a,b〉} is
relation-preserving on A′ ∪ {a} iff
∀ρ ∈R.∀a′ ∈A1.

(

a ρ a′ ⇒ b ρ Ψ(a′)
)

∧
(

a′ ρ a ⇒ Ψ(a′) ρ b
)

∧
(

a ρ a ⇒ b ρ b
)

Also any relation-preserving function on A′ is also relation-preserving on any subset of
A′ so the set of extensions of Ψ on A′ where A′ ∪ {a} ⊆A is the union of all relation-preserving
extensions of Ψ ∪ {〈a,b〉} for all values of b. If Ψ ∪ {〈a,b〉} is not relation-preserving then there
cannot be any relation-preserving extensions of it.

We therefore define the function extend(Ψ,A,B) which returns the number of relation-
preserving extensions of Ψ to A given that Ψ is relation-preserving on its domain (which is a subset
of A) as follows:

funct extend(Ψ,A,B) ≡
D:=Dom(Ψ); E:=A−D;

if E= ∅

then 1
else count:=0;

pick any a∈E;
for b∈B do
if rel-pres-ext(Ψ,a,b)
then count:=count+extend(Ψ ∪ {〈a,b〉},A,B) fi od;

r fi .

19

Here rel-pres-ext(Ψ,a,b) is a Boolean function which returns true iff Ψ ∪ {〈a,b〉} is relation-
preserving given that Ψ is.

This can be treated using the methods above. We represent the sets A and B by integers
SA and SB where A contains the SA smallest allowed elements. Ψ can then be represented as an
array of integers, and the set R of relations by two 3D arrays of boolean, RA and RB where
RA[i,j,k]=1 iff the ith relation holds between the jth and kth elements of A, and similarly for B. This
leads to the iterative version:
Prog ≡ count:=0; D:=0;

do if D=SA then count:=count+1; b:=Ψ[D]; D:=D−1; a:=D+1; b:=b+1
else a:=D+1; b:=1 fi;

do if b6SB then rp:=tt; ρ:=1; DO; if rp=tt then exit fi; b:=b+1
else if D=0 then exit(2) fi;
b:=Ψ[D]; D:=D−1; a:=D+1; b:=b+1 fi od;

D:=D+1; Ψ[D]:=b od.
where
proc DO ≡ while ρ 6R ∧ rp=tt do

if RA[ρ,a,a] ∧ ¬RB[ρ,b,b] then rp:=ff fi;
a′:=1;
while a′ 6D ∧ rp=tt do
if RA[ρ,a,a′] ∧ ¬RB[ρ,b,Ψ[a′]] then rp:=ff fi;
if rp=tt ∧ RA[ρ,a′,a] ∧ ¬RB[ρ,Ψ[a′],b] then rp:=ff fi;
a′:=a′+1 od;

ρ:=ρ+1 od.

INVERSE ENGINEERING

So far our transformations have mostly been used to transform specifications into
programs and generate different versions of a program. However, they have wider applications in the
field of software maintenance, particularly in the area of program analysis. Since most of the
transformations are invertible they can also be used to derive the specification of a given program,
starting with only the source code and possibly a vague idea of what the program is supposed to do.
Our methods can be used in the verification of a “tricky” algorithm: either by attempting to transform
the specification into that algorithm (as we have done for the Schorr-Waite graph-marking
algorithm), or by transforming the algorithm into a more tractable (but perhaps less efficient) form,
or by a combination of these techniques. Failure of an attempt to derive a specification from an

20

incorrect algorithm can often provide valuable insights into the source of the error (as we shall see
below). The process of extractinH specifications from existing code is termed “Inverse Engineering”.
For our final example we take a published program which was written in such a way that the structure
and effect of the program are very hard to discern; we apply transformations which reveal the
structure and enable its effect to be summarised as a specification.

Naturally, to show the value of these techniques for “real” programs we should give a
much longer example: but space precludes such an exercise. A compromise is to choose a program
which still manages to exhibit a lot of complexity due to the convoluted logic and control flow, hence
the example will look rather artificial but should serve to demonstrate the applicability of the
methods to real sized programs. For working with large programs a semi-automatic interactive
system for applying the transformations without introducing clerical errors is desirable. The author is
currently working on such a system to form part of the Alvey project “An Intelligent Knowledge-
Based System for Software Maintenance” which aims to assist the maintenance programmer in
understanding and modifying an initially unfamiliar system given only the source code.

The program was originally written in DataFlex and published in [Fenton 86], we have
transcribed it into our notation, replacing references to files by arrays. The procedure INHERE was
originally a label in the middle of an if statement in the middle of a loop! (This loop is represented by
procedure L below).
PROG ≡ line:=“”; m:=false; i:=1; INHERE.
L ≡ i:=i+1;

if i=n+1 then ALLDONE fi;
m:=true;
if item[i] 6=last then write(line); line:=“”; m:=false; INHERE fi;
MORE.

INHERE ≡ p:=number[i]; line:=item[i]; line:=line+“ ”+p; MORE.
MORE ≡ if m then p:=number[i]; line:=item[i]; line:=line+“, ”+p fi;

last:=item[i]; L.
ALLDONE ≡ write(line); Z.

Applying our recursion-removal techniques to L we get:

21

L ≡ do i:=i+1;
if i=n+1 then exit fi;
m:=true;
if item[i] 6=last
then write(line); line:=“”; m:=false;

p:=number[i]; line:=item[i]; line:=line+“ ”+p;
if m then p:=number[i]; line:=item[i]; line:=line+“, ”+p fi;
last:=item[i]

else if m then p:=number[i]; line:=item[i]; line:=line+“, ”+p fi;
last:=item[i] fi od;

ALLDONE.

Here the tests of m are redundant: in the first test m is always true and in the second test
m is always false. We can then merge some assignments such as line:=item[i]; line:=line+“ ”+p.
The remaining test of m is now redundant so the variable m can be completely removed. We get the
following version of the program:
PROG ≡ i:=1; p:=number[i]; line:=item[i]; line:=line+“ ”+p; last:=item[i];

do i:=i+1;
if i=n+1 then exit fi;
p:=number[i];
if item[i] 6=last
then write(line); line:=item[i];

line:=line+“ ”+p
else line:=line+“, ”+p fi;

last:=item[i] od;
write(line).

The two statements line:=line+“ ”+p and line:=line+“, ”+p are almost the same, they
can be made the same by adding another variable sep (separator) which is set to “ ” or “, ” as
appropriate. Then the statement line:=line+sep+p can be moved out of the if and taken, with
last:=item[i], to the beginning of the loop. This leaves two copies of sep:=“ ”; we convert the loop to
a double loop and move some statements of the outer loop to the beginning. After some further
transformation (which lack of space prevents us from giving in detail) we are left with the following
version of the program:

22

PROG ≡ i:=1;
do last:=item[i]; line:=last; sep:=“ ”;
do p:=number[i]; line:=line+sep+p;

i:=i+1;
if i=m+1 then exit fi;
if item[i] 6=last then else fi;
sep:=“, ” od;

write(line);
if i=n+1 then exit fi od.

The transformations hav revealed the “true” structure of the program, which involves a
double loop. The program scans through a sorted file (here represented by the arrays item and
number) consisting of words and page references. The outer loop scans through distinct items and
for each distinct item the inner loop steps through the page references for that item. Writing the
program as a single loop whose body must distinguish the two cases of a new item and a repeated
item obscured the simple basic structure which has been revealed through transformations. This kind
of transformation has important applications in program maintenance: the second version is far
easier to understand and modify: there is only one copy of the statement which writes to the file, for
example, and the “flag” m which was used to direct the control flow is now not needed. The
transformation from first version to second used only general transformations which have been
proved to work in all cases, and so could be applied without having to understand the program first.

The transformations have also revealed a bug in the program: note that the outer loop is in
the form of a REPEAT...UNTIL loop and so the body is executed at least once. Hence the program
will not work correctly if presented with an empty file. This bug is not immediately obvious in the first
version of the program. For the first version a typical “fix” would be to add a test for an empty file
and goto a label at the end of the program. In that case this “fix” is also typical in that it further
obscures the program structure, increases the program length and increases the number of identifiers
used. In contrast with this, to carry out the same modification to the second version we merely change
the outer loop to a while loop.

Deriving a Specification

We will now perform some further transformations aimed at extracting the specification
of this program. Note that the first line of the inner loop plays two roles: adding a space and the first
line number to line and adding subsequent numbers to the line separated by commas. Expressing a
loop as a single statement is easier if each execution of the loop does a “similar” job; this suggests
taking out the first statement of the loop. This will enable us to transform the loop into a while loop:

23

PROG ≡ i:=1;
while i 6=n+1 do

last:=item[i]; line:=last+“ ”+number[i];
i:=i+1;
while

(

i 6=n+1
)

∧
(

item[i]=last
)

do
line:=line+“, ”+number[i];
i:=i+1 od;

write(line) od.

Within the inner loop, if i0 and line0 are the initial values of i and line then we see that the condi-
tion:

line = line0 +
∑

i0<j6i〈”, ”+number[j]〉
is preserved by the loop body (here

∑

represents concatenation of a sequence of strings). So we can
assign this value to line after the loop and remove the assignment inside the loop. The loop becomes:

while
(

i 6=n+1
)

∧
(

item[i]=last
)

i:=i+1 od
which can be replaced by the single statement: i:=µi′.

(

i′ >i ∧
(

i′ =n+1 ∨ item[i′] 6=last
))

which is
read as “i becomes the smallest i′ not less than i such that i′ =n+1 or item[i′] 6=last”.

So our specification of the program is:
PROG ≡ i:=1;

while i 6=n+1 do
i0:=i; i:=µi′.

(

i′ >i ∧
(

i′ =n+1 ∨ item[i′] 6=item[i]
))

;
line:=item[i0]+“ ”+number[i0]+

∑

i0<j6i〈“, ”+number[j]〉;
write(line) od.

“PROGRAMMING IN THE LARGE” ISSUES

In giving examples of program development we have of necessity had to restrict ourselves
to fairly small programs. However we believe that the techniques developed in this thesis have
application to the problems involved in writing large software systems, even though these problems
can be very different to the ones encountered in writing small programs. One way of dealing with a
large program is to organise it as a set of “contracts” which may be implemented completely
independently of one another, as far as correctness is concerned. For efficiency reasons it may be
useful to know how a contract will be used, but correctness should be the primary concern in the initial

24

stages of a project: it doesn’t matter how fast a program runs if it gives the wrong result: the “null
program” skip can do that faster than any other program! “The preoccupation with optimisation
should be removed from the early stages of programming. The ideal approach would be first, to
produce a program that is demonstrably correct, and then, through a series of efficiency-improving
transformations, modify this program to produce a correct and efficient one. A language is
optimisable if it makes possible the automatic application of these transformations. . . it has been
shown that many features that reduce optimisability also hamper readability.” [Ghezzi & Jazayeri
82].

A “contract” consists of a complete and precise specification of a set of procedures,
functions and data types together with their implementations. If other procedures etc. are required in
the implementation then their specifications are included also. It should be possible to prove that the
implementation satisfies the specification purely from the information in the contract: in this sense
all contracts are independent. Once all specifications have been implemented (directly or indirectly)
as programs then the contracts can be put together to form the required program which will be
correct by construction.

The methods in this thesis can be used to provide the implementation part of a contract by
transforming the specifications into programs, possibly generating further “subcontracts” in the
process.

Each contract should be small in the sense that it can be read and comprehended in one
sitting by someone familiar with the language and notation. This suggests that it should be no more
than a few pages long. (Further research is needed to discover the “optimal length” of a contract).

Most of the contracts can be implemented in a very high-level programming language,
those contracts (and only those) for which it has been demonstrated that efficiency is important can
be transformed into a lower level programming language and more effort can be expended on
improving their efficiency (by transforming recursion into iteration etc.).

Maintenance is probably the most important issue for all but the most trivial programs.
Most professional programmers spend the major part of their time modifying existing programs to
fix bugs and add features, rather than writing new ones, yet this aspect of programming has received
little theoretical research. The contract approach allows the production of “bug-free” programs
which are very easy to modify in order to fulfill an enhanced specification while making the most use
of work already done. When the specification of the system is changed the original contract must be
re-written, which is likely to require new subcontracts to be written while also re-using many of the
original contracts. Re-usability of effort is also enabled by this technique. Instead of building up a
collection of monolithic software packages (each imposing a maintenance burden) the programming
team will build a library of general purpose specifications and implementations. Any contract may be
re-used for any later system: possibly using completely different implementations of the
subcontracts. This re-use of results is an important added benefit of this programming method: in
particular, since most of the contracts will be written in a high-level, machine-independent language

25

the task of porting programs onto new machines and operating systems will be made easier.
In order for this method of programming to be successful an automated system is required

for carrying out the transformations, maintaining the different versions of all the contracts and the
links between them and carrying out independent compilation of sets of contracts with “cross-
contract” type and version number checking etc. Intelligent storage and retrieval systems for
contracts will also enable the maximum use to be made of previous work.

FURTHER WORK

The Maintainer’s Assistant

We have already given a small example of the application of this research to problems in
software maintenance. The author is currently working on an Alvey project at the University of
Durham which aims to produce a prototype “Maintainer’s Assistant” tool. This tool employs the
program transformation techniques developed here and aims to help the maintenance programmer
to understand and modify an initially unfamiliar program, given only the source code. The tool
consists of a structure editor, a library of proven transformations and a knowledge-based system
which analyses the programs and specifications under consideration and uses heuristic knowledge to
determine which transformations will achieve a given end (for example, deriving the specification of a
section of code, finding the most suitable technique for recursion removal, optimising for efficiency
etc.)

Assembler Programs

The author is also currently working on a project funded by IBM which aims to develop a
tool to assist in the formal transformation of assembly code into high-level language code and Z
specifications. Assembly language programs create special problems with aliasing (common and
overlapping data areas, pointers and indexes used in ad-hoc ways etc.). Our solution is to represent
the whole store of the machine as a single array, with another array used to represent the registers.
With other program analysis techniques this would cause insurmountable problems since the most
that could be said about any operation is that “the store has changed in some way”. However, we have
developed special transformations for dealing with arrays which make this approach a practical one.
We have been able to transform the assembler to a HLL representation, replace the “areas of store”
by the data structures they implement (using transformations which change the data representation
of a program), and then transform this HLL version into a specification. At the moment this has all
been done by hand, but many of more tedious operations will be carried out automatically, making
this a practical option for the maintenance of large assembly-language programs.

26

