
Restructuring and Destructuring

Martin Ward

Reader in Software Engineering

martin@gkc.org.uk

Software Technology Research Lab

De Montfort University

Restructuring Transformations

An unstructured program (action system) can be made more

structured using these transformations:

Expand Call: Replace an action call by a copy of the action

body

Substitute and Delete: Apply Expand Call to all the calls of the

selected action, and then delete the action (provided the

action does not call itself!)

Remove Recursion in Action: In a regular action system, an

action which calls itself can be transformed into an action

which does not call itself by introducing loops

Floop to While: a suitable Floop can be transformed directly

to a while loop. In the general case, a flag may be needed.

Restructuring Transformations

Merge Calls in Action: Attempt to merge two or more calls to

the same action into a single call

Delete Rest: In a regular action system, no action call can

return, so all the rest of the statements after an action call

can be deleted

Delete Item: An action which is never called is “dead code”

and can be deleted

Simplify Action System: Applys the above transformations to

simplify an action system as much as possible

Simplify Item: An action system containing a single action can

be converted to a loop

The next few slides illustrate each of these transformations.

Expand Call

inhere ≡ inhere(var); call more end

more ≡ if m = 1

then p := number[i]; line := line ++ “, ” ++ p fi;

last := item[i]; call l end

becomes:

Expand Call

inhere ≡ inhere(var); call more end

more ≡ if m = 1

then p := number[i]; line := line ++ “, ” ++ p fi;

last := item[i]; call l end

becomes:

inhere ≡ inhere(var);

if m = 1

then p := number[i]; line := line ++ “, ” ++ p fi;

last := item[i]; call l end

more ≡ if m = 1

then p := number[i]; line := line ++ “, ” ++ p fi;

last := item[i]; call l end

If this was the only call to more, then the action can be deleted.

Substitute and Delete

If an action does not call itself, then Substitute and Delete applies

Expand Call to each call of the action, and then deletes the action.

Remove Recursion in Action

more ≡ if m = 1 then p := number[i];

line := line ++ “, ” ++ p fi;

last := item[i];

i := i+ 1;

if i = (n+ 1) then call alldone fi;

p 1(var);

call more end

becomes:

Remove Recursion in Action

more ≡ if m = 1 then p := number[i];

line := line ++ “, ” ++ p fi;

last := item[i];

i := i+ 1;

if i = (n+ 1) then call alldone fi;

p 1(var);

call more end

becomes:

more ≡ do if m = 1 then p := number[i];

line := line ++ “, ” ++ p fi;

last := item[i];

i := i+ 1;

if i = (n+ 1) then call alldone fi;

p 1(var) od end

Remove Recursion in Action

Sometimes a double loop is needed.

more ≡ i := i+ 1;

if i < n+ 1 then call more

elsif B1?(i) then p 1(var)

elsif B2?(i) then call more fi;

p 3(var);

call alldone end

Remove Recursion in Action

Sometimes a double loop is needed.

more ≡ i := i+ 1;

if i < n+ 1 then call more

elsif B1?(i) then p 1(var)

elsif B2?(i) then call more fi;

p 3(var);

call alldone end

becomes:

more ≡ do do i := i+ 1;

if i < n+ 1 then exit

elsif B1?(i) then p 1(var)

elsif B2?(i) then exit fi;

p 3(var);

call alldone od od end

Take Outside Loop

do if X = 1 then Y := 1; X := 0 ; exit(2)

elsif X = 2

then Y := 1; X := 0 ; exit(2)

else X := X − Y fi od

becomes

Take Outside Loop

do if X = 1 then Y := 1; X := 0 ; exit(2)

elsif X = 2

then Y := 1; X := 0 ; exit(2)

else X := X − Y fi od

becomes

do do if X = 1 then exit(1)

elsif X = 2

then exit(1)

else X := X − Y fi od;

Y := 1; X := 0 ; exit(1) od

Double To Single Loop

do do i := i+ 1;

if i < n+ 1 then exit

elsif B1?(i) then p 1(var); exit(2)

elsif B2?(i) then exit

else exit(2) fi od od

becomes:

Double To Single Loop

do do i := i+ 1;

if i < n+ 1 then exit

elsif B1?(i) then p 1(var); exit(2)

elsif B2?(i) then exit

else exit(2) fi od od

becomes:

do i := i+ 1;

if i < n+ 1 then skip

elsif B1?(i) then p 1(var); exit

elsif B2?(i) then skip

else exit fi od

Floop to While

do i := i+ 1;

if i < n+ 1 then skip

elsif B1?(i) then p 1(var); exit

elsif B2?(i) then skip

else exit fi od

becomes:

Floop to While

do i := i+ 1;

if i < n+ 1 then skip

elsif B1?(i) then p 1(var); exit

elsif B2?(i) then skip

else exit fi od

becomes:

fl flag1 := 0;

while fl flag1 = 0 do

i := (i+ 1);

if i < (n+ 1) then fl flag1 := 0

elsif B1?(i) then p 1(var); fl flag1 := 1

elsif B2?(i) then fl flag1 := 0

else fl flag1 := 1 fi od;

Floop to While

Simpler loop:

do i := (i+ 1);

if (n+ 1) 6 i ∧ B1?(i)

then exit(1)

elsif (n+ 1) 6 i ∧ ¬B2?(i)

then exit(1)

elsif i < (n+ 1)

then skip fi od;

becomes:

Floop to While

Simpler loop:

do i := (i+ 1);

if (n+ 1) 6 i ∧ B1?(i)

then exit(1)

elsif (n+ 1) 6 i ∧ ¬B2?(i)

then exit(1)

elsif i < (n+ 1)

then skip fi od;

becomes:

i := (i+ 1);

while ¬B1?(i) ∧ B2?(i) ∨ i < (n+ 1) do

i := (i+ 1) od;

Note that the statement i := i+ 1 had to be copied.

Merge Calls in Action

K ≡ if item[i] 6= last

then !P write(line var os);

line := “”;

m := 0;

inhere(var);

call more fi;

call more end

Merge the two calls into one:

Merge Calls in Action

K ≡ if item[i] 6= last

then !P write(line var os);

line := “”;

m := 0;

inhere(var);

call more fi;

call more end

Merge the two calls into one:

K ≡ if item[i] 6= last

then !P write(line var os);

line := “”;

m := 0;

inhere(var) fi;

call more end

Delete Rest

In a regular action system, any statements immediately following a

call can be deleted.

Similarly, any statements following an exit can be deleted.

x := y; call A; x := x+ 1

becomes:

x := y; call A

Simplify Item

If a regular action system contains a single action, then there can

only be two types of call:

Calls to the action itself

Calls to the terminating action (Z)

The action system is replaced by a double loop:

Calls to the action itself are replaced by exit

Calls to Z are replaced by exit(2)

In simple cases, the double loop may be converted to a single loop,

or eliminated altogether (if there are no calls to the action itself).

Assembler Migration

An Intel assembler program to compute a GCD:

.model small

.code

mov ax,12

mov bx,8

compare:

cmp ax,bx

je theend

ja greater

sub bx,ax

jmp compare

greater:

sub ax,bx

jmp compare

theend:

nop

end

WSL Translation

var 〈flag z := 0, flag c := 0〉 :

actions A S start :

A S start ≡ ax := 12;

bx := 8;

call compare end

compare ≡ if ax = bx then flag z := 1 else flag z := 0 fi;

if ax < bx then flag c := 1 else flag c := 0 fi;

if flag z = 1 then call theend fi;

if flag z = 0 ∧ flag c = 0

then call greater fi;

if bx = ax then flag z := 1 else flag z := 0 fi;

if bx < ax then flag c := 1 else flag c := 0 fi;

bx := bx− ax;

call compare;

call greater end

greater ≡ if ax = bx then flag z := 1 else flag z := 0 fi;

if ax < bx then flag c := 1 else flag c := 0 fi;

ax := ax− bx;

call compare;

call theend end

theend ≡ call Z end endactions end

Flag Removal

actions A S start :

A S start ≡ ax := 12;

bx := 8;

call compare end

compare ≡ if ax = bx

then if ax < bx

then call theend

else call theend fi

else if ax > bx

then call greater fi fi;

bx := (bx− ax);

call compare;

call greater end

greater ≡ ax := (ax− bx);

call compare;

call theend end

theend ≡ call Z end endactions

Collapse Action System

ax := 12;

bx := 8;

do if ax = bx

then if ax < bx

then exit(1)

else exit(1) fi

else if ax > bx

then ax := (ax− bx)

else bx := (bx− ax) fi fi od

Simplify

ax := 12;

bx := 8;

while ax 6= bx do

if ax > bx

then ax := ax− bx

else bx := bx− ax fi od

Program Metrics

Metric Raw WSL Flags Collapse Simplify

Statements 36 18 10 6

Expressions 40 14 14 12

McCabe 9 4 4 3

Control/Data Flow 45 23 14 12

Branch–Loop 8 9 1 1

Structural 242 143 58 40

Destructuring Transformations

A restructuring transformation changes the structure of a program

without changing the sequence of state changes which occur

during the execution of the program.

Such a transformation preserves the operational semantics of the

program.

For example:

if B then S1 else S2 fi

is equivalent to:

if ¬B then S2 else S1 fi

Destructuring Transformations

Assignment merging is not a restructuring transformation:

x := e1; x := e2

is equivalent to:

x := e2[e1/x]

For example:

x := 2 ∗ x; x := x+ 1

is equivalent to:

x := 2 ∗ x+ 1

The first program has two state changes, but the second has only

one, so these are not operationally equivalent.

Destructuring Transformations

One method to prove the correctness of a proposed restructuring

transformation:

1. Convert the first program to a regular action system with no

structured statements

2. Convert the second program to a regular action system with

no structured statements

3. Transform the two action systems to a common format

This can sometimes be easier than trying to transform one

program directly into the other.

Convert to an Action System

Any program S is equivalent to the regular action system:

actions start :

start ≡ S; call Z end endactions

Now, process structured statements in S from the top down,

adding new actions to the action system as required.

Destructuring A Sequence

Suppose we have an action containing a sequence of statements:

A0 ≡ S1; S2; . . . ; Sn; call B end

This is equivalent to the set of actions:

A0 ≡ S1; call A1 end

A1 ≡ S2; call A2 end

An−1 ≡ Sn; call B end

Destructuring a Conditional

A0 ≡ if B1 then S1

elsif B2 then S2

elsif . . .

else Sn fi;

call B end

This is equivalent to:

A0 ≡ if B1 then call A1

elsif B2 then call A2

elsif . . .

else call An fi end

A1 ≡ S1; call B end

. . .

An ≡ Sn; call B end

Destructuring a While Loop

A0 ≡ while B do S od; call B end

This is equivalent to:

A0 ≡ if B then call A1 else call B fi end

A1 ≡ S; call A0 end

Destructuring Floops

To destructure an Floop, first absorb the following call into the

loop:

A0 ≡ do S od; call B end

is transformed to:

A0 ≡ do S′ od end

where S′ is S with each exit(n) with terminal value 1 replaced by

call B (i.e. every exit which could terminate the loop).

In other words, any exit which can terminate the outermost loop is

replaced by call B.

Then replace the loop with a call to the action:

A0 ≡ S′; call A0 end

This is the opposite of Remove Recursion In Action.

Destructuring Floops

An example:

A0 ≡ do inhere(var);

do if m = 1

then p := number[i]; line := line ++ “, ” ++ p fi;

last := item[i]; i := (i+ 1);

if i = (n+ 1)

then !P write(line var os); exit(2) fi;

m := 1;

if item[i] 6= last

then !P write(line var os);

line := “”;

m := 0;

exit(1) fi od od;

call Z end

Destructuring Floops

Absorb the call:

A0 ≡ do inhere(var);

do if m = 1

then p := number[i]; line := line ++ “, ” ++ p fi;

last := item[i]; i := (i+ 1);

if i = (n+ 1)

then !P write(line var os); call Z fi;

m := 1;

if item[i] 6= last

then !P write(line var os);

line := “”;

m := 0;

exit(1) fi od od end

Destructuring Floops

Remove the loop:

A0 ≡ inhere(var);

do if m = 1

then p := number[i]; line := line ++ “, ” ++ p fi;

last := item[i]; i := (i+ 1);

if i = (n+ 1)

then !P write(line var os); call Z fi;

m := 1;

if item[i] 6= last

then !P write(line var os);

line := “”;

m := 0;

exit(1) fi od;

call A0 end

Destructuring Floops

Processing the inner loop.

Process the sequence and then absorb the call:

A0 ≡ inhere(var); call A1 end

A1 ≡ do if m = 1

then p := number[i]; line := line ++ “, ” ++ p fi;

last := item[i]; i := (i+ 1);

if i = (n+ 1)

then !P write(line var os); call Z fi;

m := 1;

if item[i] 6= last

then !P write(line var os);

line := “”;

m := 0;

call A0 fi od end

Destructuring Floops

Processing the inner loop. Remove the loop:

A0 ≡ inhere(var); call A1 end

A1 ≡ if m = 1

then p := number[i]; line := line ++ “, ” ++ p fi;

last := item[i]; i := (i+ 1);

if i = (n+ 1)

then !P write(line var os); call Z fi;

m := 1;

if item[i] 6= last

then !P write(line var os);

line := “”;

m := 0;

call A0 fi;

call A1 end

Loop Inversion

Some transformations can be proved correct by converting both

programs to action systems and analysing the action systems

using Expand Call (and its inverse), case analysis, renaming etc.

For example, to prove that P1:

do S1;

if B then exit fi;

S2 od

is equivalent to P2:

S1;

while ¬B do

S2;

S1 od

where S1 and S2 are both proper sequences.

Loop Inversion

P2 translates to this action system:

actions A0 :

A0 ≡ S1; call A1 end

A1 ≡ if B then call Z else call A2 fi end

A2 ≡ S2; call A3 end

A3 ≡ S1; call A1 end endactions

P1 translates to this action system:

actions A0 :

A0 ≡ S1; call A1 end

A1 ≡ if B then call Z else call A2 fi end

A2 ≡ S2; call A0 end endactions

Loop Inversion

Expand the call A0 in A2:

A2 ≡ S2; S1; call A1 end

Destructure the sequence:

A2 ≡ S2; call A3 end

A3 ≡ S1; call A1 end

The two action systems are now identical.

Loop Unrolling

To prove that the program P1:

while B do S od

is equivalent to P2:

while B do S; if B ∧ Q then S fi od

P1 as an action system:

actions A0 :

A0 ≡ while B do S od; call Z end endactions

Destructure the action system:

actions A0 :

A0 ≡ if B then call A1 else call Z fi end

A1 ≡ S; call A0 end endactions

Loop Unrolling

P2 as an action system:

actions A0 :

A0 ≡ while B do S; if B ∧ Q then S fi od; call Z end endactions

Destructure the action system:

actions A0 :

A0 ≡ if B then call A1 else call Z fi end

A1 ≡ S; call A2 end

A2 ≡ if B ∧ Q then A3 else call A0 fi end

A3 ≡ S; call A0 end endactions

Loop Unrolling

Consider the P1 action system again:

actions A0 :

A0 ≡ if B then call A1 else call Z fi end

A1 ≡ S; call A0 end endactions

P2 has an action A3 ≡ S; call A0 end so we add this action to P1

and note that any call to A1 can be replaced by a call to A3.

In particular, A0 is equivalent to:

A′

0
≡ if B then call A3 else call Z fi end

Also, P2 has if B ∧ Q then . . . fi where P1 has call A0.

So replace call A0 in A1 by the equivalent statement:

if B ∧ Q then call A′

0
else call A0 fi

Loop Unrolling

Unroll call A′

0
in A1:

actions A0 :

A0 ≡ if B then call A1 else call Z fi end

A1 ≡ S; if B ∧ Q then if B then call A3 else call Z fi

else call A0 fi end

A3 ≡ S; call A0 end endactions

Simplify:

actions A0 :

A0 ≡ if B then call A1 else call Z fi end

A1 ≡ S; if B ∧ Q then call A3

else call A0 fi end

A3 ≡ S; call A0 end endactions

Loop Unrolling

Destructure:

actions A0 :

A0 ≡ if B then call A1 else call Z fi end

A1 ≡ S; call A2 end

A2 ≡ if B ∧ Q then call A3 else call A0 fi end

A3 ≡ S; call A0 end endactions

This is identical to the destructured version of P2.

Entire Loop Unrolling

To prove that P1:

while B do S od

is equivalent to P3:

while B do S; while B ∧ Q do S od od

Convert P3 to an action system:

actions A0 :

A0 ≡ if B then call A1 else call Z fi end

A1 ≡ S; call A2 end

A2 ≡ if B ∧ Q then call A3 else call A0 fi end

A3 ≡ S; call A2 end endactions

This is the same as P2 (which we have proved to be equivalent to

P1) except that there is a call A2 in the body of A3 instead of

call A0.

Entire Loop Unrolling

actions A0 :

A0 ≡ if B then call A1 else call Z fi end

A1 ≡ S; call A2 end

A2 ≡ if B ∧ Q then call A3 else call A0 fi end

A3 ≡ S; call A2 end endactions

Case analysis to prove call A2 is equivalent to call A0 in A3:

1. If B is false or Q is false, then call A2 leads to call A0

2. If B is true and Q is true, then

(a) call A2 leads, via call A3, to execute S and call A2, while

(b) call A0 leads, via call A1, to execute S and call A2

Entire Loop Unrolling

Another way to prove that call A2 is equivalent to call A0 in A3 is

to replace call A2 by the equivalent statement:

if B ∧ Q then call A2

else call A2 fi

Expand each call and simplify:

actions A0 :

A0 ≡ if B then call A1 else call Z fi end

A1 ≡ S; call A2 end

A2 ≡ if B ∧ Q then call A3 else call A0 fi end

A3 ≡ S;

if B ∧ Q then S; call A1

else call A0 fi end endactions

Replace S; call A1 by call A0 (since B is true here). We have:

A3 ≡ S; call A0 end

	Restructuring Transformations
	Restructuring Transformations
	Expand Call
	Expand Call

	Substitute and Delete
	Remove Recursion in Action
	Remove Recursion in Action

	Remove Recursion in Action
	Remove Recursion in Action

	Take Outside Loop
	Take Outside Loop

	Double To Single Loop
	Double To Single Loop

	Floop to While
	Floop to While

	Floop to While
	Floop to While

	Merge Calls in Action
	Merge Calls in Action

	Delete Rest
	Simplify Item
	Assembler Migration
	WSL Translation
	Flag Removal
	Collapse Action System
	Simplify
	Program Metrics
	Destructuring Transformations
	Destructuring Transformations
	Destructuring Transformations
	Convert to an Action System
	Destructuring A Sequence
	Destructuring a Conditional
	Destructuring a While Loop
	Destructuring Floops
	Destructuring Floops
	Destructuring Floops
	Destructuring Floops
	Destructuring Floops
	Destructuring Floops
	Loop Inversion
	Loop Inversion
	Loop Inversion
	Loop Unrolling
	Loop Unrolling
	Loop Unrolling
	Loop Unrolling
	Loop Unrolling
	Entire Loop Unrolling
	Entire Loop Unrolling
	Entire Loop Unrolling

