
Program Slicing

Martin Ward

Reader in Software Engineering

martin@gkc.org.uk

Software Technology Research Lab

De Montfort University

Program Slicing

Informally, a slice provides the answer to the question “What

program statements potentially affect the value of variable v at

statement s?” An observer cannot distinguish between the

execution of a program and execution of the slice, when attention

is focused on the value of v in statement s.

Program Slicing

Informally, a slice provides the answer to the question “What

program statements potentially affect the value of variable v at

statement s?” An observer cannot distinguish between the

execution of a program and execution of the slice, when attention

is focused on the value of v in statement s.

Slicing was first described by Mark Weiser as a debugging

technique [Weiser 1984], and has since proved to have

applications in testing, parallelisation, integration, software safety,

program understanding and software maintenance.

Program Slicing

Informally, a slice provides the answer to the question “What

program statements potentially affect the value of variable v at

statement s?” An observer cannot distinguish between the

execution of a program and execution of the slice, when attention

is focused on the value of v in statement s.

Slicing was first described by Mark Weiser as a debugging

technique [Weiser 1984], and has since proved to have

applications in testing, parallelisation, integration, software safety,

program understanding and software maintenance.

Weiser defined a program slice S as a reduced, executable

program obtained from a program P by removing statements,

such that S replicates part of the behaviour of P.

Slicing as a Program Transformation

A slice is not generally a transformation of the original program

because a transformation has to preserve the whole behaviour of

the program, while in the slice some statements which affect the

values of some output variables (those not in the slice) may have

been deleted.

Slicing as a Program Transformation

A slice is not generally a transformation of the original program

because a transformation has to preserve the whole behaviour of

the program, while in the slice some statements which affect the

values of some output variables (those not in the slice) may have

been deleted.

Slicing can be formalised as a program transformation on a

modification of the original program.

Slicing as a Program Transformation

A slice is not generally a transformation of the original program

because a transformation has to preserve the whole behaviour of

the program, while in the slice some statements which affect the

values of some output variables (those not in the slice) may have

been deleted.

Slicing can be formalised as a program transformation on a

modification of the original program.

If we remove the variables we are not interested in from the state

space (for both programs) then the final state space contains only

the variables of interest, so the two programs are equivalent.

Slicing as a Program Transformation

Recall that the semantics of a WSL program is a function which

maps the initial state to the set of possible final states.

A state is a function which maps each variable in the state space

to a value.

The WSL kernel statement remove(y) removes variables from the

state space.

Slicing Example

Slicing on the final value of x:

x := y + 1;

y := y + 4;

x := x+ z

x := y + 1;

x := x+ z

These two programs are not equivalent: because the final value of

y is different.

Slicing Example

Slicing on the final value of x:

x := y + 1;

y := y + 4;

x := x+ z

x := y + 1;

x := x+ z

These two programs are not equivalent: because the final value of

y is different. But if we remove y from the state space:

x := y + 1;

y := y + 4;

x := x+ z;

remove(〈y〉)

x := y + 1;

x := x+ z

remove(〈y〉)

then the resulting programs are equivalent.

Slicing Example

sum := 0;

prod := 1;

i := 1;

while i 6 n do

sum := sum+A[i];

prod := prod ∗A[i];

i := i+ 1 od;

PRINT(“sum = ”, sum);

PRINT(“prod = ”, prod)

Slice with respect to the variable prod on the last line

Slicing Example

sum := 0;

prod := 1;

i := 1;

while i 6 n do

sum := sum+A[i];

prod := prod ∗A[i];

i := i+ 1 od;

PRINT(“sum = ”, sum);

PRINT(“prod = ”, prod)

Slice with respect to the variable prod on the last line

These statements can be deleted

Slicing Example

prod := 1;

i := 1;

while i 6 n do

prod := prod ∗A[i];

i := i+ 1 od;

PRINT(“prod = ”, prod)

Slice with respect to the variable prod on the last line

The resultant slice

Slicing in the Middle

Suppose we want to slice on the value of i in at the top of the

while loop body in this program:

i := 0; s := 0;

while i < n do

s := s+ i;

i := i+ 1 od;

i := 0

Slicing on i at the end of the program would allow i := 0 as a valid

slice: which is not what we wanted!

Slicing in the Middle

Add a new variable, slice, which records this sequence of values of

the variable of interest at the point of interest:

i := 0; s := 0;

while i < n do

s := s+ i;

i := i+ 1 od;

i := 0;

Slicing in the Middle

Add a new variable, slice, which records this sequence of values of

the variable of interest at the point of interest:

i := 0; s := 0;

while i < n do

slice := slice ++ 〈i〉;

s := s+ i;

i := i+ 1 od;

i := 0;

Slicing on slice at the end of the program is equivalent to slicing

on i at the top of the loop.

Slicing in the Middle

If we add the statement remove(〈i, s, n〉) to remove all the other

output variables, then the result can be transformed into the

equivalent program:

i := 0;

while i < n do

slice := slice ++ 〈i〉;

i := i+ 1 od;

remove(〈i, s, n〉)

So the sliced program is:

i := 0;

while i < n do

i := i+ 1 od

Slicing as a Program Transformation

A key insight of this formulation is that it defines the concept of

slicing as a combination of two relations:

1. A syntactic relation (statement deletion) and

2. A semantic relation (which shows what subset of the

semantics has been preserved).

Slicing Definition

A slicing criterion is a set of points in a program (the points of

interest) with a set of variables associated with each point (the

variables of interest).

A syntactic slice of a program S on a given slicing criterion is any

program S′ formed by deleting statements from S such that S′

preserves the values of the variables of interest at each of the

points of interest. The slice may terminate on initial states for

which the original program does not terminate.

A semantic slice of a program S on a given slicing criterion is any

program S′ such that S′ preserves the values of the variables of

interest at each of the points of interest. The slice may terminate

on initial states for which the original program does not terminate.

“Syntax” is everything pertaining to form rather than meaning.

“Semantic” refers to meaning, independent of form.

Slicing Definition

A syntactic slice must preserve two relations:

Slicing Definition

A syntactic slice must preserve two relations:

1. A syntactic relation. The slice is formed from the original

program by deleting statements. This relation is called

reduction

Slicing Definition

A syntactic slice must preserve two relations:

1. A syntactic relation. The slice is formed from the original

program by deleting statements. This relation is called

reduction

2. A semantic relation. The slice must preserve the variables of

interest at the points of interest. The slice may terminate

when the original program did not. This relation is called

semi-refinement

Slicing Definition

A syntactic slice must preserve two relations:

1. A syntactic relation. The slice is formed from the original

program by deleting statements. This relation is called

reduction

2. A semantic relation. The slice must preserve the variables of

interest at the points of interest. The slice may terminate

when the original program did not. This relation is called

semi-refinement

A semantic slice only has to preserve the semantic relation. So

any syntactic slice is also a semantic slice.

Slicing Definition

Any syntactic slice is also a semantic slice, but the reverse is not

necessarily the case.

Since a semantic slice is formed from the original program by

deleting statements, there can be only a finite number of possible

syntactic slices for a given program.

There can be infinitely many different semantic slices for a

program. For example, adding a skip statement to a semantic

slice gives a different semantic slice.

Syntactic vs Semantic Slicing

Example:

Original Program Syntactic slice on y

if p = q

then x := 18

else x := 17 fi;

if p 6= q

then y := x

else y := 2 fi

if p = q

then skip

else x := 17 fi;

if p 6= q

then y := x

else y := 2 fi

Syntactic vs Semantic Slicing

Example:

Original Program Syntactic slice on y

if p = q

then x := 18

else x := 17 fi;

if p 6= q

then y := x

else y := 2 fi

if p = q

then skip

else x := 17 fi;

if p 6= q

then y := x

else y := 2 fi

Semantic slice on y

if p = q

then y := 2

else y := 17 fi

Termination

Suppose we are slicing on the final value of x:

while n > 1 do

if odd?(n) then n := 3 ∗ n+ 1

else n = n/2 fi od;

x := 3

The loop clearly cannot affect the value assigned to x so it should

be deleted: even though it is not known whether the loop will

always terminate.

Termination

Another example:

Original Program Syntactic slice on x

while n > 1 do

y := f(y);

n := n− 1 od;

if y > 0 then x := 3; z := 2

else z := 4; x := 3 fi

if y > 0 then x := 3

else x := 3 fi

Termination

Another example:

Original Program Syntactic slice on x

while n > 1 do

y := f(y);

n := n− 1 od;

if y > 0 then x := 3; z := 2

else z := 4; x := 3 fi

if y > 0 then x := 3

else x := 3 fi

Semantic slice on x

x := 3

Termination

Another example:

Original Program Semantic slice on x

while n > 1 do

y := f(y);

n := n− 1 od;

if y > 0 then x := 3

else abort fi

x := 3

Termination

Another example:

Original Program Semantic slice on x

while n > 1 do

y := f(y);

n := n− 1 od;

if y > 0 then x := 3

else abort fi

x := 3

In this case, the smallest syntactic slice is the original program.

Reduction

We define the relation S1 ⊑ S2, read “S1 is a reduction of S2”, on

WSL programs as follows:

S ⊑ S for any program S

skip ⊑ S for any proper sequence S

If S is not a proper sequence and n > 0 is the largest integer in

TVs(S) then:

exit(n) ⊑ S

If S′
1 ⊑ S1 and S′

2 ⊑ S2 then:

if B then S′
1 else S′

2 fi ⊑ if B then S1 else S2 fi

Reduction

If S′ ⊑ S then:

while B do S′ od ⊑ while B do S od

do S′ od ⊑ do S od

var 〈v := e〉 : S′ end ⊑ var 〈v := e〉 : S end

var 〈v := ⊥〉 : S′ end ⊑ var 〈v := e〉 : S end

If S′
i ⊑ Si for 1 6 i 6 n then:

S′
1; S

′
2; . . . ; S

′
n ⊑ S1; S2; . . . ; Sn

Terminal Values TVs(S)

A proper sequence is any program such that every exit(n) is

contained within at least n enclosing loops.

If S contains an exit(n) surrounded by loops nested fewer than n

deep, then this exit will cause termination of one or more loops

enclosing S.

The set of terminal values of S, denoted TVs(S) is the set of

integers n− d > 0 such that there is an exit(n) within d nested

loops in S which could cause termination of S. TVs(S) also

contains 0 if S could terminate normally (i.e. without terminating

an enclosing loop).

Terminal Values TVs(S)

For example, if S is the program:

do if x = 0 then exit(3)

elsif x = 1 then exit(2) fi;

x := x− 2 od

Then TVs(S) = {1, 2}. Any proper sequence has TVs(S) = {0}

Reduction

The reduction relation does not allow actual deletion of

statements: only replacing a statement by a skip.

This makes it easy to determine the relationship between

components of the original and the reduced program.

Three important properties of the reduction relation are:

Lemma 1 Transitivity: If S1 ⊑ S2 and S2 ⊑ S3 then S1 ⊑ S3

Lemma 2 Antisymmetry: If S1 ⊑ S2 and S2 ⊑ S1 then S1 = S2

Lemma 3 The Replacement Property: If any component of a

program is replaced by a reduction, then the result is a reduction

of the whole program

Semi-Refinement

A slice does not have to be exactly equivalent to the original

program. Consider the program:

S; x := 0

where we are slicing on x and S has no assignments to x. Clearly

we want to slice away S.

But S; x := 0 is only equivalent to x := 0 on x provided S

terminates.

We want to be able to “slice away” potentially non-terminating

code. The semantic relation we need is semi-refinement:

∆ ⊢ S 4 S′

If S terminates, then S ≈ S′, if S does not terminate then S′ can

be anything at all.

Weakest Preconditions

Dijkstra introduced the concept of weakest preconditions as a tool

for reasoning about programs.

For a given program P and condition R on the final state space,

the weakest precondition WP(P,R) is the weakest condition on the

initial state such that if P is started in a state satisfying WP(P,R)

then it is guaranteed to terminate in a state satisfying R.

By using an infinitary logic, it turns out that WP(P,R) has a

simple definition for all kernel language programs S and all

(infinitary logic) formulae R.

Weakest Preconditions

For any kernel language statement S : V → W , and formula R

whose free variables are all in W , we define WP(S,R) as follows:

1. WP({P},R) =
DF

P ∧ R

2. WP([Q],R) =
DF

Q ⇒ R

3. WP(add(x),R) =
DF

∀x.R

4. WP(remove(x),R) =
DF

R

5. WP((S1; S2),R) =
DF

WP(S1,WP(S2,R))

6. WP((S1 ⊓ S2),R) =
DF

WP(S1,R) ∧ WP(S2,R)

7. WP((µX.S),R) =
DF

∨
n<ω WP((µX.S)n,R)

where (µX.S)0 = abort and (µX.S)n+1 = S[(µX.S)n/X] which is S

with all occurrences of X replaced by (µX.S)n.

Weakest Preconditions

Refinement and transformations can be characterised using

weakest preconditions and consequently, the proof of correctness

of a refinement or transformation can be carried out as a first

order logic proof on weakest preconditions.

For example, for any fomula R:

WP(if B then S1 else S2 fi,R)

⇐⇒ (B ⇒ WP(S1,R)) ∧ (¬B ⇒ WP(S2,R))

⇐⇒ (¬B ⇒ WP(S2,R)) ∧ (¬(¬B) ⇒ WP(S1,R))

⇐⇒ WP(if ¬B then S2 else S1 fi,R)

which proves that:

∆ ⊢ if B then S1 else S2 fi ≈ if ¬B then S2 else S1 fi

Proof Theoretic Refinement

Proof theoretic refinement is defined from the weakest

precondition formula WP, applied to the special postcondition

x 6= x′ where x is a list of all the variables assigned in either

statement, and x′ is a list of new variables.

If S,S′ : V → W have no free statement variables and x is a

sequence of all variables assigned to in either S or S′, and the

formulae

WP(S, x 6= x′) ⇒ WP(S′, x 6= x′)

and

WP(S, true) ⇒ WP(S′, true)

are provable from the set ∆ of sentences, then we say that S is

refined by S′ and write:

∆ ⊢ S ≤ S′

These two definitions of refinement are equivalent:

Semi-Refinement

Semi-refinement:

∆ ⊢ S 4 S′

is defined as:

∆ ⊢ S ≈ {WP(true,S)}; S′

If S terminates, then WP(true,S) is true and the assertion is a skip.

In this case, we must have S′ ≈ S

If S may not terminate, then WP(true,S) is false and the assertion

is abort. In this case, S′ can be anything at all.

Semi-refinement lies between semantic equivalence and semantic

refinement.

Semi-refinement captures precisely what we need for the formal

mathematical definition of slicing.

Equivalence or Semi-Refinement?

The following three programs show that there is no semantic

equivalence relation which can be used to define program slicing,

and which allows deletion of irrelevant code:

P1 P2 P3

x := 3;

while y 6= 0 do

z := z + y;

y := y − 1 od

x := 3 x := 3;

while y 6= 0 do

z := z + y od

Equivalence or Semi-Refinement?

P1 P2 P3

x := 3;

while y 6= 0 do

z := z + y;

y := y − 1 od

x := 3 x := 3;

while y 6= 0 do

z := z + y od

The while loop in P1 does not affect x, so we should be able

to delete it

But the loop does not terminate when y < 0 initially

So the equivalence relation must have abort equivalent to skip

But this would allow P3 as a valid slice of P1

But P3 does not terminate in cases when P1 does!

Syntactic Slice

A Syntactic Slice of S on a set X of variables is any program S′

with the same initial and final state spaces such that S′ ⊑ S and

∆ ⊢ S; remove(W \X) 4 S′; remove(W \X)

where W is the final state space for S and S′.

A slicing criterion usually consists of a set of variables plus a

program point at which the values of the variables must be

preserved by the slice.

A more complex slicing criterion might consist of a set of program

points, with a different set of variables of interest at each point.

Simple Slicing

One way to compute slices using program transformations:

The basic approach is to use program transformations and

semi-refinements to duplicate and “pull” the remove statement

backwards through the program S to generate the sliced program

S′, and then “push” the remove statement forwards through S′ to

the end of the program again.

The Slicing Relation

If S,S′ : V → W and Y ⊆ V and X ⊆ W , then: ∆ ⊢ S′
Y |6X S iff:

S′ ⊑ S and

∆ ⊢ S; remove(W \X) 4 add(V \ Y); S′; remove(W \X)

≈ S′; remove(W \X)

X is the set of variables of interest in the final state space. Y

includes all the variables whose initial values are needed to

compute the final values of X.

Note that Y may be larger than is strictly necessary.

An example:

skip; x := y + 1 {y} |6{x} z := 4; x := y + 1

Properties of the Slicing Relation

Weaken Requirements:

If X1 ⊆ X and Y ⊆ Y1 and S′
Y |6X S then S′

Y1
|6X1

S

Example: skip; x := y + 1 {y} |6{x} z := 4; x := y + 1, and

{} ⊆ {x} and {y} ⊆ {y, z}, so:

skip; x := y + 1 {y,z} |6{} z := 4; x := y + 1

Properties of the Slicing Relation

Weaken Requirements:

If X1 ⊆ X and Y ⊆ Y1 and S′
Y |6X S then S′

Y1
|6X1

S

Example: skip; x := y + 1 {y} |6{x} z := 4; x := y + 1, and

{} ⊆ {x} and {y} ⊆ {y, z}, so:

skip; x := y + 1 {y,z} |6{} z := 4; x := y + 1

Strengthen Requirements:

If S′
Y |6X S and variable y does not appear in S or S′, then

S′
Y \{y} |6X∪{y} S

Example: variable p does not appear in our example, so:

skip; x := y + 1 {z} |6{x,p} z := 4; x := y + 1

Properties of the Slicing Relation

Identity Slice:

If S : V → W and X ⊆ W then S V |6X S.

Any slicing relation ought to allow any statement as a valid

slice of itself.

Properties of the Slicing Relation

Identity Slice:

If S : V → W and X ⊆ W then S V |6X S.

Any slicing relation ought to allow any statement as a valid

slice of itself.

Abort:

abort
∅

|6X abort and skip
∅

|6X abort for any X.

Since the abort is guaranteed not to terminate, code before

the abort has no effect, and therefore we don’t need to

preserve the values of any variables before the abort.

Properties of the Slicing Relation

Identity Slice:

If S : V → W and X ⊆ W then S V |6X S.

Any slicing relation ought to allow any statement as a valid

slice of itself.

Abort:

abort
∅

|6X abort and skip
∅

|6X abort for any X.

Since the abort is guaranteed not to terminate, code before

the abort has no effect, and therefore we don’t need to

preserve the values of any variables before the abort.

Assertion:

For any formula Q and any set X: skip X |6X {Q} and

{Q} Y |6X {Q} where Y = X ∪ vars(Q).

Any assertion can be deleted, since it is OK for the slice to

terminate when the original program does not.

Properties of the Slicing Relation

Add Variables:

For any set X and list of variables x: add(x) Y |6X add(x) where

Y = X \ vars(x)

add(〈x, y〉) {z} |6{x,y,z} add(〈x, y〉)

Properties of the Slicing Relation

Add Variables:

For any set X and list of variables x: add(x) Y |6X add(x) where

Y = X \ vars(x)

add(〈x, y〉) {z} |6{x,y,z} add(〈x, y〉)

Remove Variables:

For any set X and list of variables x:

remove(x) X |6X remove(x). Note that vars(x) and X are disjoint

since X must be a subset of the final state space, and no

variable in x is in the final state space.

Properties of the Slicing Relation

Specification Statement:

If x := x′.Q is any specification statement then

x := x′.Q Y |6X x := x′.Q where

Y = (X \ vars(x)) ∪ (vars(Q) \ vars(x′))

〈x〉 := 〈x′〉.(x′ = y + 3) {y,z} |6{x,z} 〈x〉 := 〈x′〉.(x′ = y + 3)

〈x〉 := 〈x′〉.(x′ = x+ y) {x,y,z} |6{x,z} 〈x〉 := 〈x′〉.(x′ = x+ y)

Properties of the Slicing Relation

Specification Statement:

If x := x′.Q is any specification statement then

x := x′.Q Y |6X x := x′.Q where

Y = (X \ vars(x)) ∪ (vars(Q) \ vars(x′))

〈x〉 := 〈x′〉.(x′ = y + 3) {y,z} |6{x,z} 〈x〉 := 〈x′〉.(x′ = y + 3)

〈x〉 := 〈x′〉.(x′ = x+ y) {x,y,z} |6{x,z} 〈x〉 := 〈x′〉.(x′ = x+ y)

Assignment:

If x := e is any assignment, then: x := e Y |6X x := e where

Y = (X \ {x}) ∪ vars(e)

This is a special case of the specification statement.

Properties of the Slicing Relation

Total Slice:

If S : V → V and X ⊆ V and no variable in X is assigned in S,

then: skip X |6X S. In particular, skip X |6X skip for any X.

For example:

skip {z} |6{z} 〈x〉 := 〈x′〉.(x′ = y + 3)

skip {q,r} |6{q,r} while y 6= 0 do x := x+ y; y := y − 1 od

(Note: the Assertion property is actually a special case).

Properties of the Slicing Relation

Total Slice:

If S : V → V and X ⊆ V and no variable in X is assigned in S,

then: skip X |6X S. In particular, skip X |6X skip for any X.

For example:

skip {z} |6{z} 〈x〉 := 〈x′〉.(x′ = y + 3)

skip {q,r} |6{q,r} while y 6= 0 do x := x+ y; y := y − 1 od

(Note: the Assertion property is actually a special case).

Sequence:

If S1,S
′
1 : V → V1, S2,S

′
2 : V1 → W , Y ⊆ W , X1 ⊆ V1 and X ⊆ V

are such that S′
1 Y |6X1

S1 and S′
2 X1

|6X S2 then:

(S′
1; S

′
2) Y |6X (S1; S2)

Sequence Example

Slicing the sequence: x := y + 3; z := z + x; x := x+ y on {x}:

Sequence Example

Slicing the sequence: x := y + 3; z := z + x; x := x+ y on {x}:

By the Assignment property on x := x+ y, we have:

x := x+ y {x,y} |6{x} x := x+ y

Sequence Example

Slicing the sequence: x := y + 3; z := z + x; x := x+ y on {x}:

By the Assignment property on x := x+ y, we have:

x := x+ y {x,y} |6{x} x := x+ y

Now slice z := z + x on {x, y}. By the Total Slice property:

skip {x,y} |6{x,y} z := z + x

Sequence Example

Slicing the sequence: x := y + 3; z := z + x; x := x+ y on {x}:

By the Assignment property on x := x+ y, we have:

x := x+ y {x,y} |6{x} x := x+ y

Now slice z := z + x on {x, y}. By the Total Slice property:

skip {x,y} |6{x,y} z := z + x

Now slice x := y + 3 on {x, y}. By the Assignment property:

x := y + 3 {y} |6{x,y} x := y + 3

Sequence Example

Slicing the sequence: x := y + 3; z := z + x; x := x+ y on {x}:

By the Assignment property on x := x+ y, we have:

x := x+ y {x,y} |6{x} x := x+ y

Now slice z := z + x on {x, y}. By the Total Slice property:

skip {x,y} |6{x,y} z := z + x

Now slice x := y + 3 on {x, y}. By the Assignment property:

x := y + 3 {y} |6{x,y} x := y + 3

Putting these results together, by the Sequence property:

x := y + 3; skip; x := x+ y {y} |6{x} x := y + 3; z := z + x; x := x+ y

Properties of the Slicing Relation

Deterministic Choice:

If S1,S2,S
′
1,S

′
2 : V → W , and X ⊆ W , Yi ⊆ V are such that

S′
i Yi

|6X Si and B is any formula, then:

if B then S′
1 else S′

2 fi Y |6X if B then S1 else S2 fi

where Y = Y1 ∪ Y2 ∪ vars(B). This can be extended to a

multi-way if statement.

if z = 0 then x := x+ y else skip fi

{x,y,z} |6{x} if z = 0 then x := x+ y else p := q + 1 fi

Properties of the Slicing Relation

Nondeterministic Choice:

If S1,S2,S
′
1,S

′
2 : V → W , and X ⊆ W , Yi ⊆ V are such that

S′
i Yi

|6X Si and B1 and B2 are any formulae, then:

if B1 → S′
1 ⊓⊔ B2 → S′

2 fi Y |6X if B1 → S1 ⊓⊔ B2 → S2 fi

where Y = Y1 ∪ Y2 ∪ vars(B). Again, this can be extended to a

multi-way statement.

if z = 0 → x := x+ y ⊓⊔ z > 0 → skip fi

{x,y,z} |6{x} if z = 0 → x := x+ y ⊓⊔ z > 0 → p := q + 1 fi

Properties of the Slicing Relation

Local Variable:

If S,S′ : V → W , X ⊆ W and S′
Y |6X\{x} S, then let

Y1 = (Y \ {x}) ∪ ({x} ∩X) and Y2 = Y1 ∪ vars(e). Then:

var 〈x := ⊥〉 : S′ end Y1
|6X var 〈x := e〉 : S end if x /∈ Y

var 〈x := e〉 : S′ end Y2
|6X var 〈x := e〉 : S end otherwise

The component ({x} ∩X) ensures that the global variable x is

added to the required initial set if and only if it is in the

required final set. Note that the second relation above is also

true when x /∈ Y , but we usually want to minimise the initial

set of variables, so the first relation is preferred for computing

a slice.

Local Variable Examples

In this example, the initial value of x is not needed:

var 〈x := ⊥〉 : x := y + 3; skip; z := y end

{y} |6{z} var 〈x := y〉 : x := y + 3; z := z + y; z := y end

In this example, the initial value of local variable x is needed, and

it is, in fact, the value of the global variable x:

var 〈x := x〉 : x := x+ 3; skip; z := x end

{x} |6{z} var 〈x := x〉 : x := x+ 3; z := z + y; z := x end

Properties of the Slicing Relation

While Loop:

If S,S′ : V → V and Y ⊆ V are such that S′
Y |6Y S, and

vars(B) ⊆ Y , then:

while B do S′ od Y |6Y while B do S od

Unlike all the other properties, this property gives no

indication as to how to compute the set Y from a given set X

of variables of interest.

A simple method is to start with the X ∪ vars(B) and

repeatedly process S, adding variables as necessary, until the

result converges.

While Loop Example

while i 6= 0 do

y := x1; x1 := x2; x2 := x3; i := i− 1 od

We want to slice this loop on {x1}.

While Loop Example

while i 6= 0 do

y := x1; x1 := x2; x2 := x3; i := i− 1 od

We want to slice this loop on {x1}.

Let S be the loop body, and slice it on {x1, i}, using the properties:

skip; x1 := x2; skip; i := i− 1 {x2,i}
|6{x1,i}

S

While Loop Example

while i 6= 0 do

y := x1; x1 := x2; x2 := x3; i := i− 1 od

We want to slice this loop on {x1}.

Let S be the loop body, and slice it on {x1, i}, using the properties:

skip; x1 := x2; skip; i := i− 1 {x2,i}
|6{x1,i}

S

So we need to add x2 to the set of variables of interest.

skip; x1 := x2; x2 := x3; i := i− 1 {x2,x3,i}
|6{x1,x2,i}

S

While Loop Example

while i 6= 0 do

y := x1; x1 := x2; x2 := x3; i := i− 1 od

We want to slice this loop on {x1}.

Let S be the loop body, and slice it on {x1, i}, using the properties:

skip; x1 := x2; skip; i := i− 1 {x2,i}
|6{x1,i}

S

So we need to add x2 to the set of variables of interest.

skip; x1 := x2; x2 := x3; i := i− 1 {x2,x3,i}
|6{x1,x2,i}

S

So we also need to add x3 to the set:

skip; x1 := x2; x2 := x3; i := i− 1 {x2,x3,i}
|6{x1,x2,x3,i}

S

While Loop Example

while i 6= 0 do

y := x1; x1 := x2; x2 := x3; i := i− 1 od

We want to slice this loop on {x1}.

Let S be the loop body, and slice it on {x1, i}, using the properties:

skip; x1 := x2; skip; i := i− 1 {x2,i}
|6{x1,i}

S

So we need to add x2 to the set of variables of interest.

skip; x1 := x2; x2 := x3; i := i− 1 {x2,x3,i}
|6{x1,x2,i}

S

So we also need to add x3 to the set:

skip; x1 := x2; x2 := x3; i := i− 1 {x2,x3,i}
|6{x1,x2,x3,i}

S

The iteration converges, so we set Y = {x1, x2, x3, i}

While Loop Example

We have proved that:

while i 6= 0 do

skip;

x1 := x2;

x2 := x3;

i := i− 1 od

{x1,x2,x3,i}
|6{x1,x2,x3,i}

while i 6= 0 do

y := x1;

x1 := x2;

x2 := x3;

i := i− 1 od

While Loop Example

We have proved that:

while i 6= 0 do

skip;

x1 := x2;

x2 := x3;

i := i− 1 od

{x1,x2,x3,i}
|6{x1,x2,x3,i}

while i 6= 0 do

y := x1;

x1 := x2;

x2 := x3;

i := i− 1 od

So, by the Weakening Requirements property:

while i 6= 0 do

skip;

x1 := x2;

x2 := x3;

i := i− 1 od

{x1,x2,x3,i}
|6{x1}

while i 6= 0 do

y := x1;

x1 := x2;

x2 := x3;

i := i− 1 od

Simple Slicing

This collection of properties gives enough information to compute

a slice for any WSL program which uses these constructs.

This slicing algorithm has been implemented in FermaT as the

Simple Slice transformation.

The paper “Deriving a Slicing Algorithm via FermaT

Transformations” Martin Ward and Hussein Zedan, (IEEE

Transactions on Programming Languages and Systems, Vol 29,

Issue 2, pp 1-52, 2007), develops a formal specification for slicing,

proves the various properties of the slicing relation and uses these

properties to derive the simple slicing algorithm via

transformational programming.

Simple Slicing Algorithm
proc slice() ≡

if @ST(I) = Statements

then var 〈L := 〈〉〉 :

for I ∈ REVERSE(@Cs(I)) do

slice; L := 〈I〉 ++ L od;

I := @Make(Statements, 〈〉, L) end

elsif @ST(I) = Abort

then x := 〈〉

elsif @Assigned(I) ∩ x = ∅

then I := @Make(Skip, 〈〉, 〈〉)

elsif @ST(I) = Assignment

then x := (x \ @Assigned(I)) ∪ @Used(I)

elsif @ST(I) = Var

then var 〈assign := Iˆ1〉 :

var 〈v := @V(assignˆ1),

e := @Used(assignˆ2, x0 := x〉 :

I := Iˆ2;

slice;

if v /∈ x

then assign := @Make(Assign, 〈〉,

〈assignˆ1,BOTTOM〉) fi;

x := (x \ {v}) ∪ ({v} ∩ x0) ∪ e)

I := @Make(Var, 〈〉,

〈assign, I〉) end end

elsif @ST(I) = Cond

then var 〈x1 := ∅, x0 := x,G := 〈〉〉 :

for guard ∈ @Cs(I) do

I := guardˆ2; x := x0; slice;

G := 〈@Make(Guarded, 〈〉,

〈guardˆ1, I〉 + +G;

x1 := x1 ∪ @Used(guardˆ1) ∪ x od;

x := x1;

I := @Make(Cond, 〈〉,REVERSE(G)) end

elsif @ST(I) = While

then var 〈B := Iˆ1, I0 := Iˆ2,

x1 := x ∪ @Used(Iˆ1)〉 :

do I := I0;

x := x1;

slice;

if x ⊆ x1 then exit fi;

x1 := x1 ∪ x od;

I := @Make(While, 〈〉, 〈B, I〉);

x := x1 end

else ERROR(“Unexpected type: ”,

@Type Name(@ST(I))) fi.

Minimal Syntactic Slice

For program understanding and debugging, small slices are more

useful than large slices;

Definition: A minimal slice of S on X is any syntactic slice S′ such

that if S′′ ⊑ S′ is also a syntactic slice, then S′′ = S′. Note that a

minimal slice is not necessarily unique and is not necessarily a slice

with the smallest number of statements.

Consider the program S: x := 2; x := x+ 1; x := 3

A syntactic slice can be obtained from S by deleting the last

statement to give S′: x := 2; x := x+ 1

This program is a minimal slice (according to our definition), since

neither of the remaining statements can be deleted. But there is

another minimal slice of S, namely x := 3, which has fewer

statements than S′.

Dynamic Syntactic Slice

A dynamic slice of a program P is a reduced executable program S

which replicates part of the behaviour of P on a particular initial

state. We can define this initial state by means of an assertion.

A Dynamic Syntactic Slice of S with respect to a formula A of the

form

v1 = V1 ∧ v2 = V2 ∧ · · · ∧ vn = Vn

where V = {v1, v2, . . . , vn} is the initial state space of S and Vi are

constants, and the set of variables X is a subset of the final state

space W of S, is any program S′ ⊑ S such that:

∆ ⊢ {A}; S; remove(W \X) 4 {A}; S′; remove(W \X)

Conditioned Syntactic Slice

If we allow any initial assertion, then the result is called a

conditioned slice:

A Conditioned Syntactic Slice of S with respect to any formula A

and set of variables X is any program S′ ⊑ S such that:

∆ ⊢ {A}; S; remove(W \X) 4 {A}; S′; remove(W \X)

If we remove the requirement that S′ ⊑ S, then we have a

Conditioned Semantic Slice

Conditioned Syntactic Slice

A set of assertions scattered through a program can be replaced

by an equivalent assertion at the beginning of the program (in the

sense that the two programs are equivalent).

So, the condition in a conditioned slice may be provided by

inserting one or more assertions in the program.

Semantic Slicing

By dropping the syntactic requirement (that the slice is formed

from the original program by deleting statements), we get a

generalised slicing concept called semantic slicing.

Harman and Dancic coined the term “amorphous program slicing”

for a combination of slicing and transformation of executable

programs. Amorphous slicing is restricted to finite, executable

programs. It is a combination of a syntactic relation (a partial

order) and a semantic equivalence relation. As we saw earlier, no

semantic equivalence relation is suitable for defining a useful

program slice!

Semantic slicing applies to any WSL programs including

non-executable specification statements, non-executable guard

statements, and programs containing infinitary formulae;

Semantic Slicing

We define a “semantic slice” to be any semi-refinement in WSL,

so the concepts of semantic slicing and amorphous slicing are

distinct.

The relation between a WSL program and its semantic slice is a

purely semantic one.

A semantic slice of S on X is any program S′ such that:

∆ ⊢ S′; remove(W \X) 4 S; remove(W \X)

There are only a finite number of different syntactic slices, but

there are infinitely many possible semantic slices for a program:

including slices which are actually larger than the original program.

A conditioned slice is a slice of a program to which extra

conditions have been added in the form of assertions. These

conditions can allow further statements to be deleted.

Semantic Slicing

Example:

Original Program Syntactic slice on y

if p = q

then x := 18

else x := 17 fi;

if p 6= q

then y := x

else y := 2 fi

if p = q

then skip

else x := 17 fi;

if p 6= q

then y := x

else y := 2 fi

Semantic Slicing

Example:

Original Program Syntactic slice on y

if p = q

then x := 18

else x := 17 fi;

if p 6= q

then y := x

else y := 2 fi

if p = q

then skip

else x := 17 fi;

if p 6= q

then y := x

else y := 2 fi

Semantic slice on y is:

if p = q

then y := 2

else y := 17 fi

Semantic Slicing Implementation

The slicer applies the abstraction transformation Prog To Spec to

blocks of code which do not contain loops, it then uses FermaT’s

condition simplifier to simplify the resulting specification.

Further simplification transformations, such as Constant Propagation,

are applied and any remaining specification statements are refined

(using the Refine Spec transformation) into combinations of

assertions, assignments and if statements, where possible.

Operational Slicing

An intermediate option between syntactic slicing and full semantic

slicing is to restrict the transformations to preserve operational

semantics;

Definition Program S′ is an operational slice of S on X if there

exists a sequence of statements S1, . . . , Sn such that S1 = S,

Sn = S′ and for each 1 6 i < n, either Si+1 is a syntactic slice of Si

on X or ∆ ⊢ annotate(Si) ≈ annotate(Si+1).

An operational slice is therefore a combination of syntactic slicing

and operational transformations. The implementation of

operational slicing can iterate the slicing and transformation steps

until the result converges.

Conditioned Semantic Slice

Definition: Suppose we have a program S and a slicing criterion,

defined from S by inserting assertions and assignments to the slice

variable to form S′. A conditioned semantic slice of S with respect

to this criterion is any program S′′ such that:

∆ ⊢ S′; remove(W) 4 S′′; remove(W)

The conditioned semantic slice is a generalisation of syntactic,

semantic, dynamic, conditioned and operational slicing in the

sense that any of these slices is also a conditioned semantic slice.

FermaT

The FermaT Transformation System is available under the GNU

GPL (General Public Licence) from the following web sites:

http://www.cse.dmu.ac.uk/∼mward/fermat.html

http://www.gkc.org.uk/fermat.html

FermaT is an industrial strength program transformation system,

the result of two decades of research and development, released

under the GNU GPL (General Public License).

FermaT’s transformations include three slicers:

Simple Slice

Syntactic Slice and

Semantic Slice

FermaT’s Syntactic Slicer

As well as the Simple Slice, which is defined for a restricted subset

of WSL, FermaT also has a Syntactic Slice transformation. This is

a more general syntactic slicer which works for unstructured code,

as well as structured code, and is also an interprocedural slicer.

Syntactic Slice is implemented by tracking data flows and control

dependencies in the control flow graph (CFG):

1. Compute the control flow graph as a “basic blocks” file

2. Convert the CFG to Static Single Assignment form

3. Compute control dependencies in the SSA

4. Track control and data dependencies in the CFG to

determine which blocks are in the slice

5. Delete any WSL statements whose blocks are not in the slice

FermaT Syntactic Slice

For syntactic slicing we allow deletion of unused parameters in

procedures: again, this is to prevent the creation of extra

dependencies.

begin

sum := sum 0;

i := 1;

while i 6 10 do

A(var sum, i) od;

PRINT(“sum = ”, sum)

where

proc A(var x, y) ≡

Add(y var x);

Inc(var y) end

proc Add(b var a) ≡

a := a+ b end

proc Inc(var z) ≡

Add(1 var z) end end

If we slice on value of z in the body of procedure Inc, the

Syntactic Slice transformation correctly recognises that the first

parameter to A is redundant, and therefore the variable sum can

be eliminated:

FermaT Syntactic Slice

Original Program Syntactic slice on z

begin

sum := sum 0;

i := 1;

while i 6 10 do

A(var sum, i) od;

PRINT(“sum = ”, sum)

where

proc A(var x, y) ≡

Add(y var x);

Inc(var y) end

proc Add(b var a) ≡

a := a+ b end

proc Inc(var z) ≡

Add(1 var z) end end

begin

i := 1;

while i 6 10 do

A(var i) od

where

proc A(var y) ≡

Inc(var y) end

proc Add(b var a) ≡

a := a+ b end

proc Inc(var z) ≡

Add(1 var z) end end

FermaT Syntactic Slice

Slice on the final value of sum:

actions A1 :

A1 ≡ sum := 0; call A2 end

A2 ≡ prod := 0; call A3 end

A3 ≡ i := 1; call A4 end

A4 ≡ if i 6 n then call A5 else call B1 fi end

A5 ≡ sum := sum+A[i]; call A6 end

A6 ≡ prod := prod ∗A[1]; call A7 end

A7 ≡ i := i+ 1; call A4 end

B1 ≡ PRINT(“sum = ”, sum); call B2 end

B2 ≡ PRINT(“prod = ”, prod); call Z end endactions

FermaT Syntactic Slice

Slice on the final value of sum:

actions A1 :

A1 ≡ sum := 0; call A2 end

A2 ≡ prod := 0; call A3 end

A3 ≡ i := 1; call A4 end

A4 ≡ if i 6 n then call A5 else call B1 fi end

A5 ≡ sum := sum+A[i]; call A6 end

A6 ≡ prod := prod ∗A[1]; call A7 end

A7 ≡ i := i+ 1; call A4 end

B1 ≡ PRINT(“sum = ”, sum); call B2 end

B2 ≡ PRINT(“prod = ”, prod); call Z end endactions

FermaT Syntactic Slice

Slice on the final value of sum:

actions A1 :

A1 ≡ sum := 0; call A3 end

A3 ≡ i := 1; call A4 end

A4 ≡ if i 6 n then call A5 else call Z fi end

A5 ≡ sum := sum+A[i]; call A7 end

A7 ≡ i := i+ 1; call A4 end

endactions

The SCAM Mug

A ceramic mug given to attendees of the First Source Code

Analysis and Manipulation Workshop (SCAM) contained the

program:

while (p(i))

{ if (q(c))

{ x := f();

c := g(); }

i := h(i)

}

The problem is to determine which lines do not affect

the value of x.

The SCAM Mug

A WSL translation of the program (called MUG0) is:

while p?(i) do

if q?(c)

then x := f ;

c := g fi;

i := h(i) od

where we have used the constants f and g for the values returned

by f() and g().

The SCAM Mug

Some of the control and data dependencies in MUG0

x := f
ctrl
−→ q?(c)

q?(c)
data
−→ c := g

x := f
ctrl
−→ p?(i)

p?(i)
data
−→ i := h(i)

Any algorithm which computes slices by tracking control and data

dependencies will assume that every statement in the program

contributes to the final value of x.

The SCAM Mug: Semantic Slice

Our aim is to illustrate the power of FermaT transformations by

showing how a few simple transformations can firstly give a very

simple semantic slice, and then using this result to derive a

minimal syntactic slice.

First, unroll the first iteration of the loop:

if p?(i)

then if q?(c)

then x := f ; c := g fi;

i := h(i);

while p?(i) do

if q?(c)

then x := f ; c := g fi;

i := h(i) od fi

The SCAM Mug: Semantic Slice

Expand the if q?(c) . . . statement forwards over the next two

statements:

if p?(i)

then if q?(c)

then x := f ; c := g;

i := h(i);

while p?(i) do

if q?(c)

then x := f ; c := g fi;

i := h(i) od

else i := h(i);

while p?(i) do

if q?(c)

then x := f ; c := g fi;

i := h(i) od fi fi

The SCAM Mug: Semantic Slice

In the second while loop, ¬q?(c) is invariant over the loop. So we

can simplify the loop body:

if p?(i)

then if q?(c)

then x := f ; c := g;

i := h(i);

while p?(i) do

if q?(c)

then x := f ; c := g fi;

i := h(i) od

else i := h(i);

while p?(i) do

i := h(i) od fi fi

The SCAM Mug: Semantic Slice

Now apply syntactic slicing to the final value of x:

if p?(i)

then if q?(c)

then x := f ; c := g;

i := h(i);

while p?(i) do

if q?(c)

then x := f ; c := g fi;

i := h(i) od fi fi

The SCAM Mug: Semantic Slice

Constant Propagation shows that the second assignment to x is

redundant:

if p?(i)

then if q?(c)

then x := f ; c := g;

i := h(i);

while p?(i) do i := h(i) od fi fi

The SCAM Mug: Semantic Slice

Constant Propagation shows that the second assignment to x is

redundant:

if p?(i)

then if q?(c)

then x := f ; c := g;

i := h(i);

while p?(i) do i := h(i) od fi fi

Another syntactic slice will delete all the code after the first

assignment to x:

if p?(i) then if q?(c) then x := f fi fi

The SCAM Mug: Semantic Slice

Constant Propagation shows that the second assignment to x is

redundant:

if p?(i)

then if q?(c)

then x := f ; c := g;

i := h(i);

while p?(i) do i := h(i) od fi fi

Another syntactic slice will delete all the code after the first

assignment to x:

if p?(i) then if q?(c) then x := f fi fi

Align Nested Statements will simplify this to the program MUG1:

if p?(i) ∧ q?(c) then x := f fi

The SCAM Mug: Syntactic Slice

Start as before by unfolding the while loop and expanding the if

statement in MUG0 to give:

if p?(i)

then if q?(c)

then x := f ; c := g;

i := h(i);

while p?(i) do

if q?(c)

then x := f ; c := g fi;

i := h(i) od

else i := h(i);

while p?(i) do

if q?(c)

then x := f ; c := g fi;

i := h(i) od fi fi

The SCAM Mug: Syntactic Slice

Within the second while loop, ¬q?(c) is invariant as before, so we

can make any changes we like to the body of if q?(c) then . . . fi:

if p?(i)

then if q?(c)

then x := f ; c := g;

i := h(i);

while p?(i) do

if q?(g)

then x := f fi;

i := h(i) od

else i := h(i);

while p?(i) do

if q?(c)

then x := f ; c := g fi;

i := h(i) od fi fi

The SCAM Mug: Syntactic Slice

Within the second while loop, ¬q?(c) is invariant as before, so we

can make any changes we like to the body of if q?(c) then . . . fi:

if p?(i)

then if q?(c)

then x := f ; c := g;

i := h(i);

while p?(i) do

if q?(g)

then x := f fi;

i := h(i) od

else i := h(i);

while p?(i) do

if q?(c)

then x := f ; c := g fi;

i := h(i) od fi fi

Lets delete the assignment c := g.

The SCAM Mug: Syntactic Slice

Constant Propagation then removes all references to c, so the first

assignment can also be deleted:

if p?(i)

then if q?(c)

then x := f ;

i := h(i);

while p?(i) do

if q?(g)

then x := f fi;

i := h(i) od

else i := h(i);

while p?(i) do

if q?(c)

then x := f fi;

i := h(i) od fi fi

The SCAM Mug: Syntactic Slice

The first marked if statement is redundant

if p?(i)

then if q?(c)

then x := f ;

i := h(i);

while p?(i) do

if q?(g)

then x := f fi;

i := h(i) od

else i := h(i);

while p?(i) do

if q?(c)

then x := f fi;

i := h(i) od fi fi

The SCAM Mug: Syntactic Slice

The first marked if statement is redundant

if p?(i)

then if q?(c)

then x := f ;

i := h(i);

while p?(i) do

if q?(c)

then x := f fi;

i := h(i) od

else i := h(i);

while p?(i) do

if q?(c)

then x := f fi;

i := h(i) od fi fi

The SCAM Mug: Syntactic Slice

The first marked if statement is redundant

if p?(i)

then if q?(c)

then x := f ;

i := h(i);

while p?(i) do

if q?(c)

then x := f fi;

i := h(i) od

else i := h(i);

while p?(i) do

if q?(c)

then x := f fi;

i := h(i) od fi fi

The loops, and i := h(i) can be taken out of the enclosing if

The SCAM Mug: Syntactic Slice

if p?(i)

then if q?(c)

then x := f fi;

i := h(i);

while p?(i) do

if q?(c)

then x := f fi;

i := h(i) od fi

The SCAM Mug: Syntactic Slice

if p?(i)

then if q?(c)

then x := f fi;

i := h(i);

while p?(i) do

if q?(c)

then x := f fi;

i := h(i) od fi

Roll up the loop:

while p?(i) do

if q?(c)

then x := f fi;

i := h(i) od

This is a valid syntactic slice of MUG0 on x.

The SCAM Mug: Syntactic Slice

The slice:

while p?(i) do

if q?(c)

then x := f ;

c := g fi;

i := h(i) od

The SCAM Mug: Syntactic Slice

The slice:

while p?(i) do

if q?(c)

then x := f ;

c := g fi;

i := h(i) od

The SCAM Mug: Syntactic Slice

The slice:

while p?(i) do

if q?(c)

then x := f fi;

i := h(i) od

The SCAM Mug: Syntactic Slice

The slice:

while p?(i) do

if q?(c)

then x := f fi;

i := h(i) od

Deleting any more statements from this program will produce an

incorrect result.

So this is a minimal slice.

It is easy to prove that it is the only minimal slice, in this case.

The Generalised Mug Problem

A generalisation of the mug problem is the following:

while p(i) do

if q?(c, i)

then x := f ; x := g(i) fi;

i := h(i) od

If at some point in the course of execution q?(c, i) becomes true,

then the assignment x := f will occur. All subsequent iterations

are redundant since the only way the can affect x is by assigning

the value it already has. So in this case, our first step is to split

the while loop on the condition ¬q?(c, i).

The Generalised Mug Problem

A generalisation of the mug problem is the following:

while p(i) do

if q?(c, i)

then x := f ; x := g(i) fi;

i := h(i) od

If at some point in the course of execution q?(c, i) becomes true,

then the assignment x := f will occur. All subsequent iterations

are redundant since the only way the can affect x is by assigning

the value it already has. So in this case, our first step is to split

the while loop on the condition ¬q?(c, i).

The Loop Merging transformation states that for any condition B′:

∆ ⊢ while B do S od ≈ while B ∧ B′ do S od; while B do S od

The Generalised Mug Problem

Split the loop on the condition ¬q?(c, i), then the first iteration of

the second loop will assign to x and c. So unroll this iteration:

while p(i) ∧ ¬q(c, i) do

if q?(c, i)

then x := f ; x := g(i) fi;

i := h(i) od;

if p(i)

then if q(c, i)

then x := f ; c := g(i) fi;

i := h(i);

while p(i) do

if q(c, i)

then x := f ; c := g(i) fi;

i := h(i) od fi

The Generalised Mug Problem

Split the loop on the condition ¬q?(c, i), then the first iteration of

the second loop will assign to x and c. So unroll this iteration:

while p(i) ∧ ¬q(c, i) do

if q?(c, i)

then x := f ; x := g(i) fi;

i := h(i) od;

{p(i) ⇒ q(c, i)};

if p(i)

then if q(c, i)

then x := f ; c := g(i) fi;

i := h(i);

while p(i) do

if q(c, i)

then x := f ; c := g(i) fi;

i := h(i) od fi

The Generalised Mug Problem

Split the loop on the condition ¬q?(c, i), then the first iteration of

the second loop will assign to x and c. So unroll this iteration:

while p(i) ∧ ¬q(c, i) do

if q?(c, i)

then x := f ; x := g(i) fi;

i := h(i) od;

{p(i) ⇒ q(c, i)};

if p(i)

then {q(c, i)};

if q(c, i)

then x := f ; c := g(i) fi;

i := h(i);

while p(i) do

if q(c, i)

then x := f ; c := g(i) fi;

i := h(i) od fi

The Generalised Mug Problem

Use the assertions to simplify the program:

while p(i) ∧ ¬q(c, i) do

i := h(i) od;

if p(i)

then x := f ; c := g(i);

i := h(i);

while p(i) do

if q(c, i)

then x := f ; c := g(i) fi;

i := h(i) od fi

Now apply Constant Propagation then Syntactic Slice on x:

while p(i) ∧ ¬q(c, i) do

i := h(i) od;

if p(i) then x := f fi

	Program Slicing
	Program Slicing
	Program Slicing

	Slicing as a Program Transformation
	Slicing as a Program Transformation
	Slicing as a Program Transformation

	Slicing as a Program Transformation
	Slicing Example
	Slicing Example

	Slicing Example
	Slicing Example
	Slicing Example

	Slicing in the Middle
	Slicing in the Middle
	Slicing in the Middle

	Slicing in the Middle
	Slicing as a Program Transformation
	Slicing Definition
	Slicing Definition
	Slicing Definition
	Slicing Definition
	Slicing Definition

	Slicing Definition
	Syntactic vs Semantic Slicing
	Syntactic vs Semantic Slicing

	Termination
	Termination
	Termination

	Termination
	Termination

	Reduction
	Reduction
	Terminal Values $|TVs|(S {})$
	Terminal Values $|TVs|(S {})$
	Reduction
	Semi-Refinement
	Weakest Preconditions
	Weakest Preconditions
	Weakest Preconditions
	Proof Theoretic Refinement
	Semi-Refinement
	Equivalence or Semi-Refinement?
	Equivalence or Semi-Refinement?
	Syntactic Slice
	Simple Slicing
	The Slicing Relation
	Properties of the Slicing Relation
	Properties of the Slicing Relation

	Properties of the Slicing Relation
	Properties of the Slicing Relation
	Properties of the Slicing Relation

	Properties of the Slicing Relation
	Properties of the Slicing Relation

	Properties of the Slicing Relation
	Properties of the Slicing Relation

	Properties of the Slicing Relation
	Properties of the Slicing Relation

	Sequence Example
	Sequence Example
	Sequence Example
	Sequence Example
	Sequence Example

	Properties of the Slicing Relation
	Properties of the Slicing Relation
	Properties of the Slicing Relation
	Local Variable Examples
	Properties of the Slicing Relation
	While Loop Example
	While Loop Example
	While Loop Example
	While Loop Example
	While Loop Example

	While Loop Example
	While Loop Example

	Simple Slicing
	Simple Slicing Algorithm
	Minimal Syntactic Slice
	Dynamic Syntactic Slice
	Conditioned Syntactic Slice
	Conditioned Syntactic Slice
	Semantic Slicing
	Semantic Slicing
	Semantic Slicing
	Semantic Slicing

	Semantic Slicing Implementation
	Operational Slicing
	Conditioned Semantic Slice
	FermaT {}
	FermaT {}'s Syntactic Slicer
	FermaT {} Syntactic Slice
	FermaT {} Syntactic Slice
	FermaT {} Syntactic Slice
	FermaT {} Syntactic Slice
	FermaT {} Syntactic Slice

	The SCAM Mug
	The SCAM Mug
	The SCAM Mug
	The SCAM Mug: Semantic Slice
	The SCAM Mug: Semantic Slice
	The SCAM Mug: Semantic Slice
	The SCAM Mug: Semantic Slice
	The SCAM Mug: Semantic Slice
	The SCAM Mug: Semantic Slice
	The SCAM Mug: Semantic Slice

	The SCAM Mug: Syntactic Slice
	The SCAM Mug: Syntactic Slice
	The SCAM Mug: Syntactic Slice

	The SCAM Mug: Syntactic Slice
	The SCAM Mug: Syntactic Slice
	The SCAM Mug: Syntactic Slice
	The SCAM Mug: Syntactic Slice

	The SCAM Mug: Syntactic Slice
	The SCAM Mug: Syntactic Slice

	The SCAM Mug: Syntactic Slice
	The SCAM Mug: Syntactic Slice
	The SCAM Mug: Syntactic Slice
	The SCAM Mug: Syntactic Slice

	The Generalised Mug Problem
	The Generalised Mug Problem

	The Generalised Mug Problem
	The Generalised Mug Problem
	The Generalised Mug Problem

	The Generalised Mug Problem

